diff options
author | Thomas Huth <thuth@redhat.com> | 2016-10-11 08:56:52 +0200 |
---|---|---|
committer | Thomas Huth <thuth@redhat.com> | 2016-12-20 21:52:12 +0100 |
commit | fcf5ef2ab52c621a4617ebbef36bf43b4003f4c0 (patch) | |
tree | 2b450d96b01455df8ed908bf8f26ddc388a03380 /target/arm/op_helper.c | |
parent | 82ecffa8c050bf5bbc13329e9b65eac1caa5b55c (diff) |
Move target-* CPU file into a target/ folder
We've currently got 18 architectures in QEMU, and thus 18 target-xxx
folders in the root folder of the QEMU source tree. More architectures
(e.g. RISC-V, AVR) are likely to be included soon, too, so the main
folder of the QEMU sources slowly gets quite overcrowded with the
target-xxx folders.
To disburden the main folder a little bit, let's move the target-xxx
folders into a dedicated target/ folder, so that target-xxx/ simply
becomes target/xxx/ instead.
Acked-by: Laurent Vivier <laurent@vivier.eu> [m68k part]
Acked-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> [tricore part]
Acked-by: Michael Walle <michael@walle.cc> [lm32 part]
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> [s390x part]
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> [s390x part]
Acked-by: Eduardo Habkost <ehabkost@redhat.com> [i386 part]
Acked-by: Artyom Tarasenko <atar4qemu@gmail.com> [sparc part]
Acked-by: Richard Henderson <rth@twiddle.net> [alpha part]
Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa part]
Reviewed-by: David Gibson <david@gibson.dropbear.id.au> [ppc part]
Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> [crisµblaze part]
Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn> [unicore32 part]
Signed-off-by: Thomas Huth <thuth@redhat.com>
Diffstat (limited to 'target/arm/op_helper.c')
-rw-r--r-- | target/arm/op_helper.c | 1335 |
1 files changed, 1335 insertions, 0 deletions
diff --git a/target/arm/op_helper.c b/target/arm/op_helper.c new file mode 100644 index 0000000000..cd94216591 --- /dev/null +++ b/target/arm/op_helper.c @@ -0,0 +1,1335 @@ +/* + * ARM helper routines + * + * Copyright (c) 2005-2007 CodeSourcery, LLC + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ +#include "qemu/osdep.h" +#include "cpu.h" +#include "exec/helper-proto.h" +#include "internals.h" +#include "exec/exec-all.h" +#include "exec/cpu_ldst.h" + +#define SIGNBIT (uint32_t)0x80000000 +#define SIGNBIT64 ((uint64_t)1 << 63) + +static void raise_exception(CPUARMState *env, uint32_t excp, + uint32_t syndrome, uint32_t target_el) +{ + CPUState *cs = CPU(arm_env_get_cpu(env)); + + assert(!excp_is_internal(excp)); + cs->exception_index = excp; + env->exception.syndrome = syndrome; + env->exception.target_el = target_el; + cpu_loop_exit(cs); +} + +static int exception_target_el(CPUARMState *env) +{ + int target_el = MAX(1, arm_current_el(env)); + + /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL + * to EL3 in this case. + */ + if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) { + target_el = 3; + } + + return target_el; +} + +uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def, + uint32_t rn, uint32_t maxindex) +{ + uint32_t val; + uint32_t tmp; + int index; + int shift; + uint64_t *table; + table = (uint64_t *)&env->vfp.regs[rn]; + val = 0; + for (shift = 0; shift < 32; shift += 8) { + index = (ireg >> shift) & 0xff; + if (index < maxindex) { + tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff; + val |= tmp << shift; + } else { + val |= def & (0xff << shift); + } + } + return val; +} + +#if !defined(CONFIG_USER_ONLY) + +static inline uint32_t merge_syn_data_abort(uint32_t template_syn, + unsigned int target_el, + bool same_el, + bool s1ptw, bool is_write, + int fsc) +{ + uint32_t syn; + + /* ISV is only set for data aborts routed to EL2 and + * never for stage-1 page table walks faulting on stage 2. + * + * Furthermore, ISV is only set for certain kinds of load/stores. + * If the template syndrome does not have ISV set, we should leave + * it cleared. + * + * See ARMv8 specs, D7-1974: + * ISS encoding for an exception from a Data Abort, the + * ISV field. + */ + if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) { + syn = syn_data_abort_no_iss(same_el, + 0, 0, s1ptw, is_write, fsc); + } else { + /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template + * syndrome created at translation time. + * Now we create the runtime syndrome with the remaining fields. + */ + syn = syn_data_abort_with_iss(same_el, + 0, 0, 0, 0, 0, + 0, 0, s1ptw, is_write, fsc, + false); + /* Merge the runtime syndrome with the template syndrome. */ + syn |= template_syn; + } + return syn; +} + +/* try to fill the TLB and return an exception if error. If retaddr is + * NULL, it means that the function was called in C code (i.e. not + * from generated code or from helper.c) + */ +void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type, + int mmu_idx, uintptr_t retaddr) +{ + bool ret; + uint32_t fsr = 0; + ARMMMUFaultInfo fi = {}; + + ret = arm_tlb_fill(cs, addr, access_type, mmu_idx, &fsr, &fi); + if (unlikely(ret)) { + ARMCPU *cpu = ARM_CPU(cs); + CPUARMState *env = &cpu->env; + uint32_t syn, exc; + unsigned int target_el; + bool same_el; + + if (retaddr) { + /* now we have a real cpu fault */ + cpu_restore_state(cs, retaddr); + } + + target_el = exception_target_el(env); + if (fi.stage2) { + target_el = 2; + env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; + } + same_el = arm_current_el(env) == target_el; + /* AArch64 syndrome does not have an LPAE bit */ + syn = fsr & ~(1 << 9); + + /* For insn and data aborts we assume there is no instruction syndrome + * information; this is always true for exceptions reported to EL1. + */ + if (access_type == MMU_INST_FETCH) { + syn = syn_insn_abort(same_el, 0, fi.s1ptw, syn); + exc = EXCP_PREFETCH_ABORT; + } else { + syn = merge_syn_data_abort(env->exception.syndrome, target_el, + same_el, fi.s1ptw, + access_type == MMU_DATA_STORE, syn); + if (access_type == MMU_DATA_STORE + && arm_feature(env, ARM_FEATURE_V6)) { + fsr |= (1 << 11); + } + exc = EXCP_DATA_ABORT; + } + + env->exception.vaddress = addr; + env->exception.fsr = fsr; + raise_exception(env, exc, syn, target_el); + } +} + +/* Raise a data fault alignment exception for the specified virtual address */ +void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, + MMUAccessType access_type, + int mmu_idx, uintptr_t retaddr) +{ + ARMCPU *cpu = ARM_CPU(cs); + CPUARMState *env = &cpu->env; + int target_el; + bool same_el; + uint32_t syn; + + if (retaddr) { + /* now we have a real cpu fault */ + cpu_restore_state(cs, retaddr); + } + + target_el = exception_target_el(env); + same_el = (arm_current_el(env) == target_el); + + env->exception.vaddress = vaddr; + + /* the DFSR for an alignment fault depends on whether we're using + * the LPAE long descriptor format, or the short descriptor format + */ + if (arm_s1_regime_using_lpae_format(env, cpu_mmu_index(env, false))) { + env->exception.fsr = (1 << 9) | 0x21; + } else { + env->exception.fsr = 0x1; + } + + if (access_type == MMU_DATA_STORE && arm_feature(env, ARM_FEATURE_V6)) { + env->exception.fsr |= (1 << 11); + } + + syn = merge_syn_data_abort(env->exception.syndrome, target_el, + same_el, 0, access_type == MMU_DATA_STORE, + 0x21); + raise_exception(env, EXCP_DATA_ABORT, syn, target_el); +} + +#endif /* !defined(CONFIG_USER_ONLY) */ + +uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b) +{ + uint32_t res = a + b; + if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) + env->QF = 1; + return res; +} + +uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b) +{ + uint32_t res = a + b; + if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) { + env->QF = 1; + res = ~(((int32_t)a >> 31) ^ SIGNBIT); + } + return res; +} + +uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b) +{ + uint32_t res = a - b; + if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) { + env->QF = 1; + res = ~(((int32_t)a >> 31) ^ SIGNBIT); + } + return res; +} + +uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val) +{ + uint32_t res; + if (val >= 0x40000000) { + res = ~SIGNBIT; + env->QF = 1; + } else if (val <= (int32_t)0xc0000000) { + res = SIGNBIT; + env->QF = 1; + } else { + res = val << 1; + } + return res; +} + +uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) +{ + uint32_t res = a + b; + if (res < a) { + env->QF = 1; + res = ~0; + } + return res; +} + +uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) +{ + uint32_t res = a - b; + if (res > a) { + env->QF = 1; + res = 0; + } + return res; +} + +/* Signed saturation. */ +static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift) +{ + int32_t top; + uint32_t mask; + + top = val >> shift; + mask = (1u << shift) - 1; + if (top > 0) { + env->QF = 1; + return mask; + } else if (top < -1) { + env->QF = 1; + return ~mask; + } + return val; +} + +/* Unsigned saturation. */ +static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift) +{ + uint32_t max; + + max = (1u << shift) - 1; + if (val < 0) { + env->QF = 1; + return 0; + } else if (val > max) { + env->QF = 1; + return max; + } + return val; +} + +/* Signed saturate. */ +uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift) +{ + return do_ssat(env, x, shift); +} + +/* Dual halfword signed saturate. */ +uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift) +{ + uint32_t res; + + res = (uint16_t)do_ssat(env, (int16_t)x, shift); + res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16; + return res; +} + +/* Unsigned saturate. */ +uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift) +{ + return do_usat(env, x, shift); +} + +/* Dual halfword unsigned saturate. */ +uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift) +{ + uint32_t res; + + res = (uint16_t)do_usat(env, (int16_t)x, shift); + res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16; + return res; +} + +void HELPER(setend)(CPUARMState *env) +{ + env->uncached_cpsr ^= CPSR_E; +} + +/* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped. + * The function returns the target EL (1-3) if the instruction is to be trapped; + * otherwise it returns 0 indicating it is not trapped. + */ +static inline int check_wfx_trap(CPUARMState *env, bool is_wfe) +{ + int cur_el = arm_current_el(env); + uint64_t mask; + + /* If we are currently in EL0 then we need to check if SCTLR is set up for + * WFx instructions being trapped to EL1. These trap bits don't exist in v7. + */ + if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) { + int target_el; + + mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI; + if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) { + /* Secure EL0 and Secure PL1 is at EL3 */ + target_el = 3; + } else { + target_el = 1; + } + + if (!(env->cp15.sctlr_el[target_el] & mask)) { + return target_el; + } + } + + /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it + * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the + * bits will be zero indicating no trap. + */ + if (cur_el < 2 && !arm_is_secure(env)) { + mask = (is_wfe) ? HCR_TWE : HCR_TWI; + if (env->cp15.hcr_el2 & mask) { + return 2; + } + } + + /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */ + if (cur_el < 3) { + mask = (is_wfe) ? SCR_TWE : SCR_TWI; + if (env->cp15.scr_el3 & mask) { + return 3; + } + } + + return 0; +} + +void HELPER(wfi)(CPUARMState *env) +{ + CPUState *cs = CPU(arm_env_get_cpu(env)); + int target_el = check_wfx_trap(env, false); + + if (cpu_has_work(cs)) { + /* Don't bother to go into our "low power state" if + * we would just wake up immediately. + */ + return; + } + + if (target_el) { + env->pc -= 4; + raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el); + } + + cs->exception_index = EXCP_HLT; + cs->halted = 1; + cpu_loop_exit(cs); +} + +void HELPER(wfe)(CPUARMState *env) +{ + /* This is a hint instruction that is semantically different + * from YIELD even though we currently implement it identically. + * Don't actually halt the CPU, just yield back to top + * level loop. This is not going into a "low power state" + * (ie halting until some event occurs), so we never take + * a configurable trap to a different exception level. + */ + HELPER(yield)(env); +} + +void HELPER(yield)(CPUARMState *env) +{ + ARMCPU *cpu = arm_env_get_cpu(env); + CPUState *cs = CPU(cpu); + + /* This is a non-trappable hint instruction that generally indicates + * that the guest is currently busy-looping. Yield control back to the + * top level loop so that a more deserving VCPU has a chance to run. + */ + cs->exception_index = EXCP_YIELD; + cpu_loop_exit(cs); +} + +/* Raise an internal-to-QEMU exception. This is limited to only + * those EXCP values which are special cases for QEMU to interrupt + * execution and not to be used for exceptions which are passed to + * the guest (those must all have syndrome information and thus should + * use exception_with_syndrome). + */ +void HELPER(exception_internal)(CPUARMState *env, uint32_t excp) +{ + CPUState *cs = CPU(arm_env_get_cpu(env)); + + assert(excp_is_internal(excp)); + cs->exception_index = excp; + cpu_loop_exit(cs); +} + +/* Raise an exception with the specified syndrome register value */ +void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp, + uint32_t syndrome, uint32_t target_el) +{ + raise_exception(env, excp, syndrome, target_el); +} + +uint32_t HELPER(cpsr_read)(CPUARMState *env) +{ + return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED); +} + +void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask) +{ + cpsr_write(env, val, mask, CPSRWriteByInstr); +} + +/* Write the CPSR for a 32-bit exception return */ +void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val) +{ + cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn); + + /* Generated code has already stored the new PC value, but + * without masking out its low bits, because which bits need + * masking depends on whether we're returning to Thumb or ARM + * state. Do the masking now. + */ + env->regs[15] &= (env->thumb ? ~1 : ~3); + + arm_call_el_change_hook(arm_env_get_cpu(env)); +} + +/* Access to user mode registers from privileged modes. */ +uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno) +{ + uint32_t val; + + if (regno == 13) { + val = env->banked_r13[BANK_USRSYS]; + } else if (regno == 14) { + val = env->banked_r14[BANK_USRSYS]; + } else if (regno >= 8 + && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { + val = env->usr_regs[regno - 8]; + } else { + val = env->regs[regno]; + } + return val; +} + +void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val) +{ + if (regno == 13) { + env->banked_r13[BANK_USRSYS] = val; + } else if (regno == 14) { + env->banked_r14[BANK_USRSYS] = val; + } else if (regno >= 8 + && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { + env->usr_regs[regno - 8] = val; + } else { + env->regs[regno] = val; + } +} + +void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) +{ + if ((env->uncached_cpsr & CPSR_M) == mode) { + env->regs[13] = val; + } else { + env->banked_r13[bank_number(mode)] = val; + } +} + +uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) +{ + if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) { + /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF. + * Other UNPREDICTABLE and UNDEF cases were caught at translate time. + */ + raise_exception(env, EXCP_UDEF, syn_uncategorized(), + exception_target_el(env)); + } + + if ((env->uncached_cpsr & CPSR_M) == mode) { + return env->regs[13]; + } else { + return env->banked_r13[bank_number(mode)]; + } +} + +static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode, + uint32_t regno) +{ + /* Raise an exception if the requested access is one of the UNPREDICTABLE + * cases; otherwise return. This broadly corresponds to the pseudocode + * BankedRegisterAccessValid() and SPSRAccessValid(), + * except that we have already handled some cases at translate time. + */ + int curmode = env->uncached_cpsr & CPSR_M; + + if (curmode == tgtmode) { + goto undef; + } + + if (tgtmode == ARM_CPU_MODE_USR) { + switch (regno) { + case 8 ... 12: + if (curmode != ARM_CPU_MODE_FIQ) { + goto undef; + } + break; + case 13: + if (curmode == ARM_CPU_MODE_SYS) { + goto undef; + } + break; + case 14: + if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) { + goto undef; + } + break; + default: + break; + } + } + + if (tgtmode == ARM_CPU_MODE_HYP) { + switch (regno) { + case 17: /* ELR_Hyp */ + if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) { + goto undef; + } + break; + default: + if (curmode != ARM_CPU_MODE_MON) { + goto undef; + } + break; + } + } + + return; + +undef: + raise_exception(env, EXCP_UDEF, syn_uncategorized(), + exception_target_el(env)); +} + +void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode, + uint32_t regno) +{ + msr_mrs_banked_exc_checks(env, tgtmode, regno); + + switch (regno) { + case 16: /* SPSRs */ + env->banked_spsr[bank_number(tgtmode)] = value; + break; + case 17: /* ELR_Hyp */ + env->elr_el[2] = value; + break; + case 13: + env->banked_r13[bank_number(tgtmode)] = value; + break; + case 14: + env->banked_r14[bank_number(tgtmode)] = value; + break; + case 8 ... 12: + switch (tgtmode) { + case ARM_CPU_MODE_USR: + env->usr_regs[regno - 8] = value; + break; + case ARM_CPU_MODE_FIQ: + env->fiq_regs[regno - 8] = value; + break; + default: + g_assert_not_reached(); + } + break; + default: + g_assert_not_reached(); + } +} + +uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno) +{ + msr_mrs_banked_exc_checks(env, tgtmode, regno); + + switch (regno) { + case 16: /* SPSRs */ + return env->banked_spsr[bank_number(tgtmode)]; + case 17: /* ELR_Hyp */ + return env->elr_el[2]; + case 13: + return env->banked_r13[bank_number(tgtmode)]; + case 14: + return env->banked_r14[bank_number(tgtmode)]; + case 8 ... 12: + switch (tgtmode) { + case ARM_CPU_MODE_USR: + return env->usr_regs[regno - 8]; + case ARM_CPU_MODE_FIQ: + return env->fiq_regs[regno - 8]; + default: + g_assert_not_reached(); + } + default: + g_assert_not_reached(); + } +} + +void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome, + uint32_t isread) +{ + const ARMCPRegInfo *ri = rip; + int target_el; + + if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14 + && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) { + raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env)); + } + + if (!ri->accessfn) { + return; + } + + switch (ri->accessfn(env, ri, isread)) { + case CP_ACCESS_OK: + return; + case CP_ACCESS_TRAP: + target_el = exception_target_el(env); + break; + case CP_ACCESS_TRAP_EL2: + /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is + * a bug in the access function. + */ + assert(!arm_is_secure(env) && arm_current_el(env) != 3); + target_el = 2; + break; + case CP_ACCESS_TRAP_EL3: + target_el = 3; + break; + case CP_ACCESS_TRAP_UNCATEGORIZED: + target_el = exception_target_el(env); + syndrome = syn_uncategorized(); + break; + case CP_ACCESS_TRAP_UNCATEGORIZED_EL2: + target_el = 2; + syndrome = syn_uncategorized(); + break; + case CP_ACCESS_TRAP_UNCATEGORIZED_EL3: + target_el = 3; + syndrome = syn_uncategorized(); + break; + case CP_ACCESS_TRAP_FP_EL2: + target_el = 2; + /* Since we are an implementation that takes exceptions on a trapped + * conditional insn only if the insn has passed its condition code + * check, we take the IMPDEF choice to always report CV=1 COND=0xe + * (which is also the required value for AArch64 traps). + */ + syndrome = syn_fp_access_trap(1, 0xe, false); + break; + case CP_ACCESS_TRAP_FP_EL3: + target_el = 3; + syndrome = syn_fp_access_trap(1, 0xe, false); + break; + default: + g_assert_not_reached(); + } + + raise_exception(env, EXCP_UDEF, syndrome, target_el); +} + +void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value) +{ + const ARMCPRegInfo *ri = rip; + + ri->writefn(env, ri, value); +} + +uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip) +{ + const ARMCPRegInfo *ri = rip; + + return ri->readfn(env, ri); +} + +void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value) +{ + const ARMCPRegInfo *ri = rip; + + ri->writefn(env, ri, value); +} + +uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip) +{ + const ARMCPRegInfo *ri = rip; + + return ri->readfn(env, ri); +} + +void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm) +{ + /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set. + * Note that SPSel is never OK from EL0; we rely on handle_msr_i() + * to catch that case at translate time. + */ + if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { + uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3), + extract32(op, 3, 3), 4, + imm, 0x1f, 0); + raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env)); + } + + switch (op) { + case 0x05: /* SPSel */ + update_spsel(env, imm); + break; + case 0x1e: /* DAIFSet */ + env->daif |= (imm << 6) & PSTATE_DAIF; + break; + case 0x1f: /* DAIFClear */ + env->daif &= ~((imm << 6) & PSTATE_DAIF); + break; + default: + g_assert_not_reached(); + } +} + +void HELPER(clear_pstate_ss)(CPUARMState *env) +{ + env->pstate &= ~PSTATE_SS; +} + +void HELPER(pre_hvc)(CPUARMState *env) +{ + ARMCPU *cpu = arm_env_get_cpu(env); + int cur_el = arm_current_el(env); + /* FIXME: Use actual secure state. */ + bool secure = false; + bool undef; + + if (arm_is_psci_call(cpu, EXCP_HVC)) { + /* If PSCI is enabled and this looks like a valid PSCI call then + * that overrides the architecturally mandated HVC behaviour. + */ + return; + } + + if (!arm_feature(env, ARM_FEATURE_EL2)) { + /* If EL2 doesn't exist, HVC always UNDEFs */ + undef = true; + } else if (arm_feature(env, ARM_FEATURE_EL3)) { + /* EL3.HCE has priority over EL2.HCD. */ + undef = !(env->cp15.scr_el3 & SCR_HCE); + } else { + undef = env->cp15.hcr_el2 & HCR_HCD; + } + + /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state. + * For ARMv8/AArch64, HVC is allowed in EL3. + * Note that we've already trapped HVC from EL0 at translation + * time. + */ + if (secure && (!is_a64(env) || cur_el == 1)) { + undef = true; + } + + if (undef) { + raise_exception(env, EXCP_UDEF, syn_uncategorized(), + exception_target_el(env)); + } +} + +void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome) +{ + ARMCPU *cpu = arm_env_get_cpu(env); + int cur_el = arm_current_el(env); + bool secure = arm_is_secure(env); + bool smd = env->cp15.scr_el3 & SCR_SMD; + /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state. + * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization + * extensions, SMD only applies to NS state. + * On ARMv7 without the Virtualization extensions, the SMD bit + * doesn't exist, but we forbid the guest to set it to 1 in scr_write(), + * so we need not special case this here. + */ + bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure; + + if (arm_is_psci_call(cpu, EXCP_SMC)) { + /* If PSCI is enabled and this looks like a valid PSCI call then + * that overrides the architecturally mandated SMC behaviour. + */ + return; + } + + if (!arm_feature(env, ARM_FEATURE_EL3)) { + /* If we have no EL3 then SMC always UNDEFs */ + undef = true; + } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) { + /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */ + raise_exception(env, EXCP_HYP_TRAP, syndrome, 2); + } + + if (undef) { + raise_exception(env, EXCP_UDEF, syn_uncategorized(), + exception_target_el(env)); + } +} + +static int el_from_spsr(uint32_t spsr) +{ + /* Return the exception level that this SPSR is requesting a return to, + * or -1 if it is invalid (an illegal return) + */ + if (spsr & PSTATE_nRW) { + switch (spsr & CPSR_M) { + case ARM_CPU_MODE_USR: + return 0; + case ARM_CPU_MODE_HYP: + return 2; + case ARM_CPU_MODE_FIQ: + case ARM_CPU_MODE_IRQ: + case ARM_CPU_MODE_SVC: + case ARM_CPU_MODE_ABT: + case ARM_CPU_MODE_UND: + case ARM_CPU_MODE_SYS: + return 1; + case ARM_CPU_MODE_MON: + /* Returning to Mon from AArch64 is never possible, + * so this is an illegal return. + */ + default: + return -1; + } + } else { + if (extract32(spsr, 1, 1)) { + /* Return with reserved M[1] bit set */ + return -1; + } + if (extract32(spsr, 0, 4) == 1) { + /* return to EL0 with M[0] bit set */ + return -1; + } + return extract32(spsr, 2, 2); + } +} + +void HELPER(exception_return)(CPUARMState *env) +{ + int cur_el = arm_current_el(env); + unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el); + uint32_t spsr = env->banked_spsr[spsr_idx]; + int new_el; + bool return_to_aa64 = (spsr & PSTATE_nRW) == 0; + + aarch64_save_sp(env, cur_el); + + env->exclusive_addr = -1; + + /* We must squash the PSTATE.SS bit to zero unless both of the + * following hold: + * 1. debug exceptions are currently disabled + * 2. singlestep will be active in the EL we return to + * We check 1 here and 2 after we've done the pstate/cpsr write() to + * transition to the EL we're going to. + */ + if (arm_generate_debug_exceptions(env)) { + spsr &= ~PSTATE_SS; + } + + new_el = el_from_spsr(spsr); + if (new_el == -1) { + goto illegal_return; + } + if (new_el > cur_el + || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) { + /* Disallow return to an EL which is unimplemented or higher + * than the current one. + */ + goto illegal_return; + } + + if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) { + /* Return to an EL which is configured for a different register width */ + goto illegal_return; + } + + if (new_el == 2 && arm_is_secure_below_el3(env)) { + /* Return to the non-existent secure-EL2 */ + goto illegal_return; + } + + if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE) + && !arm_is_secure_below_el3(env)) { + goto illegal_return; + } + + if (!return_to_aa64) { + env->aarch64 = 0; + /* We do a raw CPSR write because aarch64_sync_64_to_32() + * will sort the register banks out for us, and we've already + * caught all the bad-mode cases in el_from_spsr(). + */ + cpsr_write(env, spsr, ~0, CPSRWriteRaw); + if (!arm_singlestep_active(env)) { + env->uncached_cpsr &= ~PSTATE_SS; + } + aarch64_sync_64_to_32(env); + + if (spsr & CPSR_T) { + env->regs[15] = env->elr_el[cur_el] & ~0x1; + } else { + env->regs[15] = env->elr_el[cur_el] & ~0x3; + } + } else { + env->aarch64 = 1; + pstate_write(env, spsr); + if (!arm_singlestep_active(env)) { + env->pstate &= ~PSTATE_SS; + } + aarch64_restore_sp(env, new_el); + env->pc = env->elr_el[cur_el]; + } + + arm_call_el_change_hook(arm_env_get_cpu(env)); + + return; + +illegal_return: + /* Illegal return events of various kinds have architecturally + * mandated behaviour: + * restore NZCV and DAIF from SPSR_ELx + * set PSTATE.IL + * restore PC from ELR_ELx + * no change to exception level, execution state or stack pointer + */ + env->pstate |= PSTATE_IL; + env->pc = env->elr_el[cur_el]; + spsr &= PSTATE_NZCV | PSTATE_DAIF; + spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF); + pstate_write(env, spsr); + if (!arm_singlestep_active(env)) { + env->pstate &= ~PSTATE_SS; + } +} + +/* Return true if the linked breakpoint entry lbn passes its checks */ +static bool linked_bp_matches(ARMCPU *cpu, int lbn) +{ + CPUARMState *env = &cpu->env; + uint64_t bcr = env->cp15.dbgbcr[lbn]; + int brps = extract32(cpu->dbgdidr, 24, 4); + int ctx_cmps = extract32(cpu->dbgdidr, 20, 4); + int bt; + uint32_t contextidr; + + /* Links to unimplemented or non-context aware breakpoints are + * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or + * as if linked to an UNKNOWN context-aware breakpoint (in which + * case DBGWCR<n>_EL1.LBN must indicate that breakpoint). + * We choose the former. + */ + if (lbn > brps || lbn < (brps - ctx_cmps)) { + return false; + } + + bcr = env->cp15.dbgbcr[lbn]; + + if (extract64(bcr, 0, 1) == 0) { + /* Linked breakpoint disabled : generate no events */ + return false; + } + + bt = extract64(bcr, 20, 4); + + /* We match the whole register even if this is AArch32 using the + * short descriptor format (in which case it holds both PROCID and ASID), + * since we don't implement the optional v7 context ID masking. + */ + contextidr = extract64(env->cp15.contextidr_el[1], 0, 32); + + switch (bt) { + case 3: /* linked context ID match */ + if (arm_current_el(env) > 1) { + /* Context matches never fire in EL2 or (AArch64) EL3 */ + return false; + } + return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32)); + case 5: /* linked address mismatch (reserved in AArch64) */ + case 9: /* linked VMID match (reserved if no EL2) */ + case 11: /* linked context ID and VMID match (reserved if no EL2) */ + default: + /* Links to Unlinked context breakpoints must generate no + * events; we choose to do the same for reserved values too. + */ + return false; + } + + return false; +} + +static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp) +{ + CPUARMState *env = &cpu->env; + uint64_t cr; + int pac, hmc, ssc, wt, lbn; + /* Note that for watchpoints the check is against the CPU security + * state, not the S/NS attribute on the offending data access. + */ + bool is_secure = arm_is_secure(env); + int access_el = arm_current_el(env); + + if (is_wp) { + CPUWatchpoint *wp = env->cpu_watchpoint[n]; + + if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) { + return false; + } + cr = env->cp15.dbgwcr[n]; + if (wp->hitattrs.user) { + /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should + * match watchpoints as if they were accesses done at EL0, even if + * the CPU is at EL1 or higher. + */ + access_el = 0; + } + } else { + uint64_t pc = is_a64(env) ? env->pc : env->regs[15]; + + if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) { + return false; + } + cr = env->cp15.dbgbcr[n]; + } + /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is + * enabled and that the address and access type match; for breakpoints + * we know the address matched; check the remaining fields, including + * linked breakpoints. We rely on WCR and BCR having the same layout + * for the LBN, SSC, HMC, PAC/PMC and is-linked fields. + * Note that some combinations of {PAC, HMC, SSC} are reserved and + * must act either like some valid combination or as if the watchpoint + * were disabled. We choose the former, and use this together with + * the fact that EL3 must always be Secure and EL2 must always be + * Non-Secure to simplify the code slightly compared to the full + * table in the ARM ARM. + */ + pac = extract64(cr, 1, 2); + hmc = extract64(cr, 13, 1); + ssc = extract64(cr, 14, 2); + + switch (ssc) { + case 0: + break; + case 1: + case 3: + if (is_secure) { + return false; + } + break; + case 2: + if (!is_secure) { + return false; + } + break; + } + + switch (access_el) { + case 3: + case 2: + if (!hmc) { + return false; + } + break; + case 1: + if (extract32(pac, 0, 1) == 0) { + return false; + } + break; + case 0: + if (extract32(pac, 1, 1) == 0) { + return false; + } + break; + default: + g_assert_not_reached(); + } + + wt = extract64(cr, 20, 1); + lbn = extract64(cr, 16, 4); + + if (wt && !linked_bp_matches(cpu, lbn)) { + return false; + } + + return true; +} + +static bool check_watchpoints(ARMCPU *cpu) +{ + CPUARMState *env = &cpu->env; + int n; + + /* If watchpoints are disabled globally or we can't take debug + * exceptions here then watchpoint firings are ignored. + */ + if (extract32(env->cp15.mdscr_el1, 15, 1) == 0 + || !arm_generate_debug_exceptions(env)) { + return false; + } + + for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) { + if (bp_wp_matches(cpu, n, true)) { + return true; + } + } + return false; +} + +static bool check_breakpoints(ARMCPU *cpu) +{ + CPUARMState *env = &cpu->env; + int n; + + /* If breakpoints are disabled globally or we can't take debug + * exceptions here then breakpoint firings are ignored. + */ + if (extract32(env->cp15.mdscr_el1, 15, 1) == 0 + || !arm_generate_debug_exceptions(env)) { + return false; + } + + for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) { + if (bp_wp_matches(cpu, n, false)) { + return true; + } + } + return false; +} + +void HELPER(check_breakpoints)(CPUARMState *env) +{ + ARMCPU *cpu = arm_env_get_cpu(env); + + if (check_breakpoints(cpu)) { + HELPER(exception_internal(env, EXCP_DEBUG)); + } +} + +bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp) +{ + /* Called by core code when a CPU watchpoint fires; need to check if this + * is also an architectural watchpoint match. + */ + ARMCPU *cpu = ARM_CPU(cs); + + return check_watchpoints(cpu); +} + +void arm_debug_excp_handler(CPUState *cs) +{ + /* Called by core code when a watchpoint or breakpoint fires; + * need to check which one and raise the appropriate exception. + */ + ARMCPU *cpu = ARM_CPU(cs); + CPUARMState *env = &cpu->env; + CPUWatchpoint *wp_hit = cs->watchpoint_hit; + + if (wp_hit) { + if (wp_hit->flags & BP_CPU) { + bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0; + bool same_el = arm_debug_target_el(env) == arm_current_el(env); + + cs->watchpoint_hit = NULL; + + if (extended_addresses_enabled(env)) { + env->exception.fsr = (1 << 9) | 0x22; + } else { + env->exception.fsr = 0x2; + } + env->exception.vaddress = wp_hit->hitaddr; + raise_exception(env, EXCP_DATA_ABORT, + syn_watchpoint(same_el, 0, wnr), + arm_debug_target_el(env)); + } + } else { + uint64_t pc = is_a64(env) ? env->pc : env->regs[15]; + bool same_el = (arm_debug_target_el(env) == arm_current_el(env)); + + /* (1) GDB breakpoints should be handled first. + * (2) Do not raise a CPU exception if no CPU breakpoint has fired, + * since singlestep is also done by generating a debug internal + * exception. + */ + if (cpu_breakpoint_test(cs, pc, BP_GDB) + || !cpu_breakpoint_test(cs, pc, BP_CPU)) { + return; + } + + if (extended_addresses_enabled(env)) { + env->exception.fsr = (1 << 9) | 0x22; + } else { + env->exception.fsr = 0x2; + } + /* FAR is UNKNOWN, so doesn't need setting */ + raise_exception(env, EXCP_PREFETCH_ABORT, + syn_breakpoint(same_el), + arm_debug_target_el(env)); + } +} + +/* ??? Flag setting arithmetic is awkward because we need to do comparisons. + The only way to do that in TCG is a conditional branch, which clobbers + all our temporaries. For now implement these as helper functions. */ + +/* Similarly for variable shift instructions. */ + +uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i) +{ + int shift = i & 0xff; + if (shift >= 32) { + if (shift == 32) + env->CF = x & 1; + else + env->CF = 0; + return 0; + } else if (shift != 0) { + env->CF = (x >> (32 - shift)) & 1; + return x << shift; + } + return x; +} + +uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i) +{ + int shift = i & 0xff; + if (shift >= 32) { + if (shift == 32) + env->CF = (x >> 31) & 1; + else + env->CF = 0; + return 0; + } else if (shift != 0) { + env->CF = (x >> (shift - 1)) & 1; + return x >> shift; + } + return x; +} + +uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i) +{ + int shift = i & 0xff; + if (shift >= 32) { + env->CF = (x >> 31) & 1; + return (int32_t)x >> 31; + } else if (shift != 0) { + env->CF = (x >> (shift - 1)) & 1; + return (int32_t)x >> shift; + } + return x; +} + +uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i) +{ + int shift1, shift; + shift1 = i & 0xff; + shift = shift1 & 0x1f; + if (shift == 0) { + if (shift1 != 0) + env->CF = (x >> 31) & 1; + return x; + } else { + env->CF = (x >> (shift - 1)) & 1; + return ((uint32_t)x >> shift) | (x << (32 - shift)); + } +} |