aboutsummaryrefslogtreecommitdiff
path: root/target/arm/kvm64.c
diff options
context:
space:
mode:
authorThomas Huth <thuth@redhat.com>2016-10-11 08:56:52 +0200
committerThomas Huth <thuth@redhat.com>2016-12-20 21:52:12 +0100
commitfcf5ef2ab52c621a4617ebbef36bf43b4003f4c0 (patch)
tree2b450d96b01455df8ed908bf8f26ddc388a03380 /target/arm/kvm64.c
parent82ecffa8c050bf5bbc13329e9b65eac1caa5b55c (diff)
Move target-* CPU file into a target/ folder
We've currently got 18 architectures in QEMU, and thus 18 target-xxx folders in the root folder of the QEMU source tree. More architectures (e.g. RISC-V, AVR) are likely to be included soon, too, so the main folder of the QEMU sources slowly gets quite overcrowded with the target-xxx folders. To disburden the main folder a little bit, let's move the target-xxx folders into a dedicated target/ folder, so that target-xxx/ simply becomes target/xxx/ instead. Acked-by: Laurent Vivier <laurent@vivier.eu> [m68k part] Acked-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> [tricore part] Acked-by: Michael Walle <michael@walle.cc> [lm32 part] Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> [s390x part] Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> [s390x part] Acked-by: Eduardo Habkost <ehabkost@redhat.com> [i386 part] Acked-by: Artyom Tarasenko <atar4qemu@gmail.com> [sparc part] Acked-by: Richard Henderson <rth@twiddle.net> [alpha part] Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa part] Reviewed-by: David Gibson <david@gibson.dropbear.id.au> [ppc part] Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> [cris&microblaze part] Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn> [unicore32 part] Signed-off-by: Thomas Huth <thuth@redhat.com>
Diffstat (limited to 'target/arm/kvm64.c')
-rw-r--r--target/arm/kvm64.c982
1 files changed, 982 insertions, 0 deletions
diff --git a/target/arm/kvm64.c b/target/arm/kvm64.c
new file mode 100644
index 0000000000..61111091ad
--- /dev/null
+++ b/target/arm/kvm64.c
@@ -0,0 +1,982 @@
+/*
+ * ARM implementation of KVM hooks, 64 bit specific code
+ *
+ * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
+ * Copyright Alex Bennée 2014, Linaro
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ *
+ */
+
+#include "qemu/osdep.h"
+#include <sys/ioctl.h>
+#include <sys/ptrace.h>
+
+#include <linux/elf.h>
+#include <linux/kvm.h>
+
+#include "qemu-common.h"
+#include "cpu.h"
+#include "qemu/timer.h"
+#include "qemu/error-report.h"
+#include "qemu/host-utils.h"
+#include "exec/gdbstub.h"
+#include "sysemu/sysemu.h"
+#include "sysemu/kvm.h"
+#include "kvm_arm.h"
+#include "internals.h"
+#include "hw/arm/arm.h"
+
+static bool have_guest_debug;
+
+/*
+ * Although the ARM implementation of hardware assisted debugging
+ * allows for different breakpoints per-core, the current GDB
+ * interface treats them as a global pool of registers (which seems to
+ * be the case for x86, ppc and s390). As a result we store one copy
+ * of registers which is used for all active cores.
+ *
+ * Write access is serialised by virtue of the GDB protocol which
+ * updates things. Read access (i.e. when the values are copied to the
+ * vCPU) is also gated by GDB's run control.
+ *
+ * This is not unreasonable as most of the time debugging kernels you
+ * never know which core will eventually execute your function.
+ */
+
+typedef struct {
+ uint64_t bcr;
+ uint64_t bvr;
+} HWBreakpoint;
+
+/* The watchpoint registers can cover more area than the requested
+ * watchpoint so we need to store the additional information
+ * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
+ * when the watchpoint is hit.
+ */
+typedef struct {
+ uint64_t wcr;
+ uint64_t wvr;
+ CPUWatchpoint details;
+} HWWatchpoint;
+
+/* Maximum and current break/watch point counts */
+int max_hw_bps, max_hw_wps;
+GArray *hw_breakpoints, *hw_watchpoints;
+
+#define cur_hw_wps (hw_watchpoints->len)
+#define cur_hw_bps (hw_breakpoints->len)
+#define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
+#define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
+
+/**
+ * kvm_arm_init_debug() - check for guest debug capabilities
+ * @cs: CPUState
+ *
+ * kvm_check_extension returns the number of debug registers we have
+ * or 0 if we have none.
+ *
+ */
+static void kvm_arm_init_debug(CPUState *cs)
+{
+ have_guest_debug = kvm_check_extension(cs->kvm_state,
+ KVM_CAP_SET_GUEST_DEBUG);
+
+ max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
+ hw_watchpoints = g_array_sized_new(true, true,
+ sizeof(HWWatchpoint), max_hw_wps);
+
+ max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
+ hw_breakpoints = g_array_sized_new(true, true,
+ sizeof(HWBreakpoint), max_hw_bps);
+ return;
+}
+
+/**
+ * insert_hw_breakpoint()
+ * @addr: address of breakpoint
+ *
+ * See ARM ARM D2.9.1 for details but here we are only going to create
+ * simple un-linked breakpoints (i.e. we don't chain breakpoints
+ * together to match address and context or vmid). The hardware is
+ * capable of fancier matching but that will require exposing that
+ * fanciness to GDB's interface
+ *
+ * D7.3.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers
+ *
+ * 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0
+ * +------+------+-------+-----+----+------+-----+------+-----+---+
+ * | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
+ * +------+------+-------+-----+----+------+-----+------+-----+---+
+ *
+ * BT: Breakpoint type (0 = unlinked address match)
+ * LBN: Linked BP number (0 = unused)
+ * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
+ * BAS: Byte Address Select (RES1 for AArch64)
+ * E: Enable bit
+ */
+static int insert_hw_breakpoint(target_ulong addr)
+{
+ HWBreakpoint brk = {
+ .bcr = 0x1, /* BCR E=1, enable */
+ .bvr = addr
+ };
+
+ if (cur_hw_bps >= max_hw_bps) {
+ return -ENOBUFS;
+ }
+
+ brk.bcr = deposit32(brk.bcr, 1, 2, 0x3); /* PMC = 11 */
+ brk.bcr = deposit32(brk.bcr, 5, 4, 0xf); /* BAS = RES1 */
+
+ g_array_append_val(hw_breakpoints, brk);
+
+ return 0;
+}
+
+/**
+ * delete_hw_breakpoint()
+ * @pc: address of breakpoint
+ *
+ * Delete a breakpoint and shuffle any above down
+ */
+
+static int delete_hw_breakpoint(target_ulong pc)
+{
+ int i;
+ for (i = 0; i < hw_breakpoints->len; i++) {
+ HWBreakpoint *brk = get_hw_bp(i);
+ if (brk->bvr == pc) {
+ g_array_remove_index(hw_breakpoints, i);
+ return 0;
+ }
+ }
+ return -ENOENT;
+}
+
+/**
+ * insert_hw_watchpoint()
+ * @addr: address of watch point
+ * @len: size of area
+ * @type: type of watch point
+ *
+ * See ARM ARM D2.10. As with the breakpoints we can do some advanced
+ * stuff if we want to. The watch points can be linked with the break
+ * points above to make them context aware. However for simplicity
+ * currently we only deal with simple read/write watch points.
+ *
+ * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
+ *
+ * 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0
+ * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
+ * | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
+ * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
+ *
+ * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
+ * WT: 0 - unlinked, 1 - linked (not currently used)
+ * LBN: Linked BP number (not currently used)
+ * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
+ * BAS: Byte Address Select
+ * LSC: Load/Store control (01: load, 10: store, 11: both)
+ * E: Enable
+ *
+ * The bottom 2 bits of the value register are masked. Therefore to
+ * break on any sizes smaller than an unaligned word you need to set
+ * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
+ * need to ensure you mask the address as required and set BAS=0xff
+ */
+
+static int insert_hw_watchpoint(target_ulong addr,
+ target_ulong len, int type)
+{
+ HWWatchpoint wp = {
+ .wcr = 1, /* E=1, enable */
+ .wvr = addr & (~0x7ULL),
+ .details = { .vaddr = addr, .len = len }
+ };
+
+ if (cur_hw_wps >= max_hw_wps) {
+ return -ENOBUFS;
+ }
+
+ /*
+ * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
+ * valid whether EL3 is implemented or not
+ */
+ wp.wcr = deposit32(wp.wcr, 1, 2, 3);
+
+ switch (type) {
+ case GDB_WATCHPOINT_READ:
+ wp.wcr = deposit32(wp.wcr, 3, 2, 1);
+ wp.details.flags = BP_MEM_READ;
+ break;
+ case GDB_WATCHPOINT_WRITE:
+ wp.wcr = deposit32(wp.wcr, 3, 2, 2);
+ wp.details.flags = BP_MEM_WRITE;
+ break;
+ case GDB_WATCHPOINT_ACCESS:
+ wp.wcr = deposit32(wp.wcr, 3, 2, 3);
+ wp.details.flags = BP_MEM_ACCESS;
+ break;
+ default:
+ g_assert_not_reached();
+ break;
+ }
+ if (len <= 8) {
+ /* we align the address and set the bits in BAS */
+ int off = addr & 0x7;
+ int bas = (1 << len) - 1;
+
+ wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
+ } else {
+ /* For ranges above 8 bytes we need to be a power of 2 */
+ if (is_power_of_2(len)) {
+ int bits = ctz64(len);
+
+ wp.wvr &= ~((1 << bits) - 1);
+ wp.wcr = deposit32(wp.wcr, 24, 4, bits);
+ wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
+ } else {
+ return -ENOBUFS;
+ }
+ }
+
+ g_array_append_val(hw_watchpoints, wp);
+ return 0;
+}
+
+
+static bool check_watchpoint_in_range(int i, target_ulong addr)
+{
+ HWWatchpoint *wp = get_hw_wp(i);
+ uint64_t addr_top, addr_bottom = wp->wvr;
+ int bas = extract32(wp->wcr, 5, 8);
+ int mask = extract32(wp->wcr, 24, 4);
+
+ if (mask) {
+ addr_top = addr_bottom + (1 << mask);
+ } else {
+ /* BAS must be contiguous but can offset against the base
+ * address in DBGWVR */
+ addr_bottom = addr_bottom + ctz32(bas);
+ addr_top = addr_bottom + clo32(bas);
+ }
+
+ if (addr >= addr_bottom && addr <= addr_top) {
+ return true;
+ }
+
+ return false;
+}
+
+/**
+ * delete_hw_watchpoint()
+ * @addr: address of breakpoint
+ *
+ * Delete a breakpoint and shuffle any above down
+ */
+
+static int delete_hw_watchpoint(target_ulong addr,
+ target_ulong len, int type)
+{
+ int i;
+ for (i = 0; i < cur_hw_wps; i++) {
+ if (check_watchpoint_in_range(i, addr)) {
+ g_array_remove_index(hw_watchpoints, i);
+ return 0;
+ }
+ }
+ return -ENOENT;
+}
+
+
+int kvm_arch_insert_hw_breakpoint(target_ulong addr,
+ target_ulong len, int type)
+{
+ switch (type) {
+ case GDB_BREAKPOINT_HW:
+ return insert_hw_breakpoint(addr);
+ break;
+ case GDB_WATCHPOINT_READ:
+ case GDB_WATCHPOINT_WRITE:
+ case GDB_WATCHPOINT_ACCESS:
+ return insert_hw_watchpoint(addr, len, type);
+ default:
+ return -ENOSYS;
+ }
+}
+
+int kvm_arch_remove_hw_breakpoint(target_ulong addr,
+ target_ulong len, int type)
+{
+ switch (type) {
+ case GDB_BREAKPOINT_HW:
+ return delete_hw_breakpoint(addr);
+ break;
+ case GDB_WATCHPOINT_READ:
+ case GDB_WATCHPOINT_WRITE:
+ case GDB_WATCHPOINT_ACCESS:
+ return delete_hw_watchpoint(addr, len, type);
+ default:
+ return -ENOSYS;
+ }
+}
+
+
+void kvm_arch_remove_all_hw_breakpoints(void)
+{
+ if (cur_hw_wps > 0) {
+ g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
+ }
+ if (cur_hw_bps > 0) {
+ g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
+ }
+}
+
+void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
+{
+ int i;
+ memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
+
+ for (i = 0; i < max_hw_wps; i++) {
+ HWWatchpoint *wp = get_hw_wp(i);
+ ptr->dbg_wcr[i] = wp->wcr;
+ ptr->dbg_wvr[i] = wp->wvr;
+ }
+ for (i = 0; i < max_hw_bps; i++) {
+ HWBreakpoint *bp = get_hw_bp(i);
+ ptr->dbg_bcr[i] = bp->bcr;
+ ptr->dbg_bvr[i] = bp->bvr;
+ }
+}
+
+bool kvm_arm_hw_debug_active(CPUState *cs)
+{
+ return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
+}
+
+static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
+{
+ int i;
+
+ for (i = 0; i < cur_hw_bps; i++) {
+ HWBreakpoint *bp = get_hw_bp(i);
+ if (bp->bvr == pc) {
+ return true;
+ }
+ }
+ return false;
+}
+
+static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
+{
+ int i;
+
+ for (i = 0; i < cur_hw_wps; i++) {
+ if (check_watchpoint_in_range(i, addr)) {
+ return &get_hw_wp(i)->details;
+ }
+ }
+ return NULL;
+}
+
+static bool kvm_arm_pmu_support_ctrl(CPUState *cs, struct kvm_device_attr *attr)
+{
+ return kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr) == 0;
+}
+
+int kvm_arm_pmu_create(CPUState *cs, int irq)
+{
+ int err;
+
+ struct kvm_device_attr attr = {
+ .group = KVM_ARM_VCPU_PMU_V3_CTRL,
+ .addr = (intptr_t)&irq,
+ .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
+ .flags = 0,
+ };
+
+ if (!kvm_arm_pmu_support_ctrl(cs, &attr)) {
+ return 0;
+ }
+
+ err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, &attr);
+ if (err < 0) {
+ fprintf(stderr, "KVM_SET_DEVICE_ATTR failed: %s\n",
+ strerror(-err));
+ abort();
+ }
+
+ attr.group = KVM_ARM_VCPU_PMU_V3_CTRL;
+ attr.attr = KVM_ARM_VCPU_PMU_V3_INIT;
+ attr.addr = 0;
+ attr.flags = 0;
+
+ err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, &attr);
+ if (err < 0) {
+ fprintf(stderr, "KVM_SET_DEVICE_ATTR failed: %s\n",
+ strerror(-err));
+ abort();
+ }
+
+ return 1;
+}
+
+static inline void set_feature(uint64_t *features, int feature)
+{
+ *features |= 1ULL << feature;
+}
+
+static inline void unset_feature(uint64_t *features, int feature)
+{
+ *features &= ~(1ULL << feature);
+}
+
+bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
+{
+ /* Identify the feature bits corresponding to the host CPU, and
+ * fill out the ARMHostCPUClass fields accordingly. To do this
+ * we have to create a scratch VM, create a single CPU inside it,
+ * and then query that CPU for the relevant ID registers.
+ * For AArch64 we currently don't care about ID registers at
+ * all; we just want to know the CPU type.
+ */
+ int fdarray[3];
+ uint64_t features = 0;
+ /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
+ * we know these will only support creating one kind of guest CPU,
+ * which is its preferred CPU type. Fortunately these old kernels
+ * support only a very limited number of CPUs.
+ */
+ static const uint32_t cpus_to_try[] = {
+ KVM_ARM_TARGET_AEM_V8,
+ KVM_ARM_TARGET_FOUNDATION_V8,
+ KVM_ARM_TARGET_CORTEX_A57,
+ QEMU_KVM_ARM_TARGET_NONE
+ };
+ struct kvm_vcpu_init init;
+
+ if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
+ return false;
+ }
+
+ ahcc->target = init.target;
+ ahcc->dtb_compatible = "arm,arm-v8";
+
+ kvm_arm_destroy_scratch_host_vcpu(fdarray);
+
+ /* We can assume any KVM supporting CPU is at least a v8
+ * with VFPv4+Neon; this in turn implies most of the other
+ * feature bits.
+ */
+ set_feature(&features, ARM_FEATURE_V8);
+ set_feature(&features, ARM_FEATURE_VFP4);
+ set_feature(&features, ARM_FEATURE_NEON);
+ set_feature(&features, ARM_FEATURE_AARCH64);
+ set_feature(&features, ARM_FEATURE_PMU);
+
+ ahcc->features = features;
+
+ return true;
+}
+
+#define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
+
+int kvm_arch_init_vcpu(CPUState *cs)
+{
+ int ret;
+ uint64_t mpidr;
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+
+ if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
+ !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
+ fprintf(stderr, "KVM is not supported for this guest CPU type\n");
+ return -EINVAL;
+ }
+
+ /* Determine init features for this CPU */
+ memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
+ if (cpu->start_powered_off) {
+ cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
+ }
+ if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
+ cpu->psci_version = 2;
+ cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
+ }
+ if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+ cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
+ }
+ if (!kvm_irqchip_in_kernel() ||
+ !kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
+ cpu->has_pmu = false;
+ }
+ if (cpu->has_pmu) {
+ cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
+ } else {
+ unset_feature(&env->features, ARM_FEATURE_PMU);
+ }
+
+ /* Do KVM_ARM_VCPU_INIT ioctl */
+ ret = kvm_arm_vcpu_init(cs);
+ if (ret) {
+ return ret;
+ }
+
+ /*
+ * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
+ * Currently KVM has its own idea about MPIDR assignment, so we
+ * override our defaults with what we get from KVM.
+ */
+ ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
+ if (ret) {
+ return ret;
+ }
+ cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
+
+ kvm_arm_init_debug(cs);
+
+ return kvm_arm_init_cpreg_list(cpu);
+}
+
+bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
+{
+ /* Return true if the regidx is a register we should synchronize
+ * via the cpreg_tuples array (ie is not a core reg we sync by
+ * hand in kvm_arch_get/put_registers())
+ */
+ switch (regidx & KVM_REG_ARM_COPROC_MASK) {
+ case KVM_REG_ARM_CORE:
+ return false;
+ default:
+ return true;
+ }
+}
+
+typedef struct CPRegStateLevel {
+ uint64_t regidx;
+ int level;
+} CPRegStateLevel;
+
+/* All system registers not listed in the following table are assumed to be
+ * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
+ * often, you must add it to this table with a state of either
+ * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
+ */
+static const CPRegStateLevel non_runtime_cpregs[] = {
+ { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
+};
+
+int kvm_arm_cpreg_level(uint64_t regidx)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
+ const CPRegStateLevel *l = &non_runtime_cpregs[i];
+ if (l->regidx == regidx) {
+ return l->level;
+ }
+ }
+
+ return KVM_PUT_RUNTIME_STATE;
+}
+
+#define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
+ KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+#define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
+ KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+#define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
+ KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+int kvm_arch_put_registers(CPUState *cs, int level)
+{
+ struct kvm_one_reg reg;
+ uint32_t fpr;
+ uint64_t val;
+ int i;
+ int ret;
+ unsigned int el;
+
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+
+ /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
+ * AArch64 registers before pushing them out to 64-bit KVM.
+ */
+ if (!is_a64(env)) {
+ aarch64_sync_32_to_64(env);
+ }
+
+ for (i = 0; i < 31; i++) {
+ reg.id = AARCH64_CORE_REG(regs.regs[i]);
+ reg.addr = (uintptr_t) &env->xregs[i];
+ ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+ }
+
+ /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
+ * QEMU side we keep the current SP in xregs[31] as well.
+ */
+ aarch64_save_sp(env, 1);
+
+ reg.id = AARCH64_CORE_REG(regs.sp);
+ reg.addr = (uintptr_t) &env->sp_el[0];
+ ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+
+ reg.id = AARCH64_CORE_REG(sp_el1);
+ reg.addr = (uintptr_t) &env->sp_el[1];
+ ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+
+ /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
+ if (is_a64(env)) {
+ val = pstate_read(env);
+ } else {
+ val = cpsr_read(env);
+ }
+ reg.id = AARCH64_CORE_REG(regs.pstate);
+ reg.addr = (uintptr_t) &val;
+ ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+
+ reg.id = AARCH64_CORE_REG(regs.pc);
+ reg.addr = (uintptr_t) &env->pc;
+ ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+
+ reg.id = AARCH64_CORE_REG(elr_el1);
+ reg.addr = (uintptr_t) &env->elr_el[1];
+ ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+
+ /* Saved Program State Registers
+ *
+ * Before we restore from the banked_spsr[] array we need to
+ * ensure that any modifications to env->spsr are correctly
+ * reflected in the banks.
+ */
+ el = arm_current_el(env);
+ if (el > 0 && !is_a64(env)) {
+ i = bank_number(env->uncached_cpsr & CPSR_M);
+ env->banked_spsr[i] = env->spsr;
+ }
+
+ /* KVM 0-4 map to QEMU banks 1-5 */
+ for (i = 0; i < KVM_NR_SPSR; i++) {
+ reg.id = AARCH64_CORE_REG(spsr[i]);
+ reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
+ ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+ }
+
+ /* Advanced SIMD and FP registers
+ * We map Qn = regs[2n+1]:regs[2n]
+ */
+ for (i = 0; i < 32; i++) {
+ int rd = i << 1;
+ uint64_t fp_val[2];
+#ifdef HOST_WORDS_BIGENDIAN
+ fp_val[0] = env->vfp.regs[rd + 1];
+ fp_val[1] = env->vfp.regs[rd];
+#else
+ fp_val[1] = env->vfp.regs[rd + 1];
+ fp_val[0] = env->vfp.regs[rd];
+#endif
+ reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
+ reg.addr = (uintptr_t)(&fp_val);
+ ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+ }
+
+ reg.addr = (uintptr_t)(&fpr);
+ fpr = vfp_get_fpsr(env);
+ reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
+ ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+
+ fpr = vfp_get_fpcr(env);
+ reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
+ ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+
+ if (!write_list_to_kvmstate(cpu, level)) {
+ return EINVAL;
+ }
+
+ kvm_arm_sync_mpstate_to_kvm(cpu);
+
+ return ret;
+}
+
+int kvm_arch_get_registers(CPUState *cs)
+{
+ struct kvm_one_reg reg;
+ uint64_t val;
+ uint32_t fpr;
+ unsigned int el;
+ int i;
+ int ret;
+
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+
+ for (i = 0; i < 31; i++) {
+ reg.id = AARCH64_CORE_REG(regs.regs[i]);
+ reg.addr = (uintptr_t) &env->xregs[i];
+ ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+ }
+
+ reg.id = AARCH64_CORE_REG(regs.sp);
+ reg.addr = (uintptr_t) &env->sp_el[0];
+ ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+
+ reg.id = AARCH64_CORE_REG(sp_el1);
+ reg.addr = (uintptr_t) &env->sp_el[1];
+ ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+
+ reg.id = AARCH64_CORE_REG(regs.pstate);
+ reg.addr = (uintptr_t) &val;
+ ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+
+ env->aarch64 = ((val & PSTATE_nRW) == 0);
+ if (is_a64(env)) {
+ pstate_write(env, val);
+ } else {
+ cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
+ }
+
+ /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
+ * QEMU side we keep the current SP in xregs[31] as well.
+ */
+ aarch64_restore_sp(env, 1);
+
+ reg.id = AARCH64_CORE_REG(regs.pc);
+ reg.addr = (uintptr_t) &env->pc;
+ ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+
+ /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
+ * incoming AArch64 regs received from 64-bit KVM.
+ * We must perform this after all of the registers have been acquired from
+ * the kernel.
+ */
+ if (!is_a64(env)) {
+ aarch64_sync_64_to_32(env);
+ }
+
+ reg.id = AARCH64_CORE_REG(elr_el1);
+ reg.addr = (uintptr_t) &env->elr_el[1];
+ ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+
+ /* Fetch the SPSR registers
+ *
+ * KVM SPSRs 0-4 map to QEMU banks 1-5
+ */
+ for (i = 0; i < KVM_NR_SPSR; i++) {
+ reg.id = AARCH64_CORE_REG(spsr[i]);
+ reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
+ ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+ }
+
+ el = arm_current_el(env);
+ if (el > 0 && !is_a64(env)) {
+ i = bank_number(env->uncached_cpsr & CPSR_M);
+ env->spsr = env->banked_spsr[i];
+ }
+
+ /* Advanced SIMD and FP registers
+ * We map Qn = regs[2n+1]:regs[2n]
+ */
+ for (i = 0; i < 32; i++) {
+ uint64_t fp_val[2];
+ reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
+ reg.addr = (uintptr_t)(&fp_val);
+ ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ } else {
+ int rd = i << 1;
+#ifdef HOST_WORDS_BIGENDIAN
+ env->vfp.regs[rd + 1] = fp_val[0];
+ env->vfp.regs[rd] = fp_val[1];
+#else
+ env->vfp.regs[rd + 1] = fp_val[1];
+ env->vfp.regs[rd] = fp_val[0];
+#endif
+ }
+ }
+
+ reg.addr = (uintptr_t)(&fpr);
+ reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
+ ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+ vfp_set_fpsr(env, fpr);
+
+ reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
+ ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+ vfp_set_fpcr(env, fpr);
+
+ if (!write_kvmstate_to_list(cpu)) {
+ return EINVAL;
+ }
+ /* Note that it's OK to have registers which aren't in CPUState,
+ * so we can ignore a failure return here.
+ */
+ write_list_to_cpustate(cpu);
+
+ kvm_arm_sync_mpstate_to_qemu(cpu);
+
+ /* TODO: other registers */
+ return ret;
+}
+
+/* C6.6.29 BRK instruction */
+static const uint32_t brk_insn = 0xd4200000;
+
+int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
+{
+ if (have_guest_debug) {
+ if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
+ cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
+ return -EINVAL;
+ }
+ return 0;
+ } else {
+ error_report("guest debug not supported on this kernel");
+ return -EINVAL;
+ }
+}
+
+int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
+{
+ static uint32_t brk;
+
+ if (have_guest_debug) {
+ if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
+ brk != brk_insn ||
+ cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
+ return -EINVAL;
+ }
+ return 0;
+ } else {
+ error_report("guest debug not supported on this kernel");
+ return -EINVAL;
+ }
+}
+
+/* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
+ *
+ * To minimise translating between kernel and user-space the kernel
+ * ABI just provides user-space with the full exception syndrome
+ * register value to be decoded in QEMU.
+ */
+
+bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
+{
+ int hsr_ec = debug_exit->hsr >> ARM_EL_EC_SHIFT;
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUClass *cc = CPU_GET_CLASS(cs);
+ CPUARMState *env = &cpu->env;
+
+ /* Ensure PC is synchronised */
+ kvm_cpu_synchronize_state(cs);
+
+ switch (hsr_ec) {
+ case EC_SOFTWARESTEP:
+ if (cs->singlestep_enabled) {
+ return true;
+ } else {
+ /*
+ * The kernel should have suppressed the guest's ability to
+ * single step at this point so something has gone wrong.
+ */
+ error_report("%s: guest single-step while debugging unsupported"
+ " (%"PRIx64", %"PRIx32")\n",
+ __func__, env->pc, debug_exit->hsr);
+ return false;
+ }
+ break;
+ case EC_AA64_BKPT:
+ if (kvm_find_sw_breakpoint(cs, env->pc)) {
+ return true;
+ }
+ break;
+ case EC_BREAKPOINT:
+ if (find_hw_breakpoint(cs, env->pc)) {
+ return true;
+ }
+ break;
+ case EC_WATCHPOINT:
+ {
+ CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
+ if (wp) {
+ cs->watchpoint_hit = wp;
+ return true;
+ }
+ break;
+ }
+ default:
+ error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")\n",
+ __func__, debug_exit->hsr, env->pc);
+ }
+
+ /* If we are not handling the debug exception it must belong to
+ * the guest. Let's re-use the existing TCG interrupt code to set
+ * everything up properly.
+ */
+ cs->exception_index = EXCP_BKPT;
+ env->exception.syndrome = debug_exit->hsr;
+ env->exception.vaddress = debug_exit->far;
+ cc->do_interrupt(cs);
+
+ return false;
+}