diff options
author | Thomas Huth <thuth@redhat.com> | 2016-10-11 08:56:52 +0200 |
---|---|---|
committer | Thomas Huth <thuth@redhat.com> | 2016-12-20 21:52:12 +0100 |
commit | fcf5ef2ab52c621a4617ebbef36bf43b4003f4c0 (patch) | |
tree | 2b450d96b01455df8ed908bf8f26ddc388a03380 /target-ppc/kvm.c | |
parent | 82ecffa8c050bf5bbc13329e9b65eac1caa5b55c (diff) |
Move target-* CPU file into a target/ folder
We've currently got 18 architectures in QEMU, and thus 18 target-xxx
folders in the root folder of the QEMU source tree. More architectures
(e.g. RISC-V, AVR) are likely to be included soon, too, so the main
folder of the QEMU sources slowly gets quite overcrowded with the
target-xxx folders.
To disburden the main folder a little bit, let's move the target-xxx
folders into a dedicated target/ folder, so that target-xxx/ simply
becomes target/xxx/ instead.
Acked-by: Laurent Vivier <laurent@vivier.eu> [m68k part]
Acked-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> [tricore part]
Acked-by: Michael Walle <michael@walle.cc> [lm32 part]
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> [s390x part]
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> [s390x part]
Acked-by: Eduardo Habkost <ehabkost@redhat.com> [i386 part]
Acked-by: Artyom Tarasenko <atar4qemu@gmail.com> [sparc part]
Acked-by: Richard Henderson <rth@twiddle.net> [alpha part]
Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa part]
Reviewed-by: David Gibson <david@gibson.dropbear.id.au> [ppc part]
Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> [crisµblaze part]
Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn> [unicore32 part]
Signed-off-by: Thomas Huth <thuth@redhat.com>
Diffstat (limited to 'target-ppc/kvm.c')
-rw-r--r-- | target-ppc/kvm.c | 2674 |
1 files changed, 0 insertions, 2674 deletions
diff --git a/target-ppc/kvm.c b/target-ppc/kvm.c deleted file mode 100644 index 9c4834c4fc..0000000000 --- a/target-ppc/kvm.c +++ /dev/null @@ -1,2674 +0,0 @@ -/* - * PowerPC implementation of KVM hooks - * - * Copyright IBM Corp. 2007 - * Copyright (C) 2011 Freescale Semiconductor, Inc. - * - * Authors: - * Jerone Young <jyoung5@us.ibm.com> - * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> - * Hollis Blanchard <hollisb@us.ibm.com> - * - * This work is licensed under the terms of the GNU GPL, version 2 or later. - * See the COPYING file in the top-level directory. - * - */ - -#include "qemu/osdep.h" -#include <dirent.h> -#include <sys/ioctl.h> -#include <sys/vfs.h> - -#include <linux/kvm.h> - -#include "qemu-common.h" -#include "qemu/error-report.h" -#include "cpu.h" -#include "qemu/timer.h" -#include "sysemu/sysemu.h" -#include "sysemu/kvm.h" -#include "sysemu/numa.h" -#include "kvm_ppc.h" -#include "sysemu/cpus.h" -#include "sysemu/device_tree.h" -#include "mmu-hash64.h" - -#include "hw/sysbus.h" -#include "hw/ppc/spapr.h" -#include "hw/ppc/spapr_vio.h" -#include "hw/ppc/spapr_cpu_core.h" -#include "hw/ppc/ppc.h" -#include "sysemu/watchdog.h" -#include "trace.h" -#include "exec/gdbstub.h" -#include "exec/memattrs.h" -#include "sysemu/hostmem.h" -#include "qemu/cutils.h" -#if defined(TARGET_PPC64) -#include "hw/ppc/spapr_cpu_core.h" -#endif - -//#define DEBUG_KVM - -#ifdef DEBUG_KVM -#define DPRINTF(fmt, ...) \ - do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) -#else -#define DPRINTF(fmt, ...) \ - do { } while (0) -#endif - -#define PROC_DEVTREE_CPU "/proc/device-tree/cpus/" - -const KVMCapabilityInfo kvm_arch_required_capabilities[] = { - KVM_CAP_LAST_INFO -}; - -static int cap_interrupt_unset = false; -static int cap_interrupt_level = false; -static int cap_segstate; -static int cap_booke_sregs; -static int cap_ppc_smt; -static int cap_ppc_rma; -static int cap_spapr_tce; -static int cap_spapr_multitce; -static int cap_spapr_vfio; -static int cap_hior; -static int cap_one_reg; -static int cap_epr; -static int cap_ppc_watchdog; -static int cap_papr; -static int cap_htab_fd; -static int cap_fixup_hcalls; -static int cap_htm; /* Hardware transactional memory support */ - -static uint32_t debug_inst_opcode; - -/* XXX We have a race condition where we actually have a level triggered - * interrupt, but the infrastructure can't expose that yet, so the guest - * takes but ignores it, goes to sleep and never gets notified that there's - * still an interrupt pending. - * - * As a quick workaround, let's just wake up again 20 ms after we injected - * an interrupt. That way we can assure that we're always reinjecting - * interrupts in case the guest swallowed them. - */ -static QEMUTimer *idle_timer; - -static void kvm_kick_cpu(void *opaque) -{ - PowerPCCPU *cpu = opaque; - - qemu_cpu_kick(CPU(cpu)); -} - -/* Check whether we are running with KVM-PR (instead of KVM-HV). This - * should only be used for fallback tests - generally we should use - * explicit capabilities for the features we want, rather than - * assuming what is/isn't available depending on the KVM variant. */ -static bool kvmppc_is_pr(KVMState *ks) -{ - /* Assume KVM-PR if the GET_PVINFO capability is available */ - return kvm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0; -} - -static int kvm_ppc_register_host_cpu_type(void); - -int kvm_arch_init(MachineState *ms, KVMState *s) -{ - cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ); - cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL); - cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE); - cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS); - cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT); - cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA); - cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE); - cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE); - cap_spapr_vfio = false; - cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG); - cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR); - cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR); - cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG); - /* Note: we don't set cap_papr here, because this capability is - * only activated after this by kvmppc_set_papr() */ - cap_htab_fd = kvm_check_extension(s, KVM_CAP_PPC_HTAB_FD); - cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL); - cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM); - - if (!cap_interrupt_level) { - fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the " - "VM to stall at times!\n"); - } - - kvm_ppc_register_host_cpu_type(); - - return 0; -} - -static int kvm_arch_sync_sregs(PowerPCCPU *cpu) -{ - CPUPPCState *cenv = &cpu->env; - CPUState *cs = CPU(cpu); - struct kvm_sregs sregs; - int ret; - - if (cenv->excp_model == POWERPC_EXCP_BOOKE) { - /* What we're really trying to say is "if we're on BookE, we use - the native PVR for now". This is the only sane way to check - it though, so we potentially confuse users that they can run - BookE guests on BookS. Let's hope nobody dares enough :) */ - return 0; - } else { - if (!cap_segstate) { - fprintf(stderr, "kvm error: missing PVR setting capability\n"); - return -ENOSYS; - } - } - - ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); - if (ret) { - return ret; - } - - sregs.pvr = cenv->spr[SPR_PVR]; - return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); -} - -/* Set up a shared TLB array with KVM */ -static int kvm_booke206_tlb_init(PowerPCCPU *cpu) -{ - CPUPPCState *env = &cpu->env; - CPUState *cs = CPU(cpu); - struct kvm_book3e_206_tlb_params params = {}; - struct kvm_config_tlb cfg = {}; - unsigned int entries = 0; - int ret, i; - - if (!kvm_enabled() || - !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) { - return 0; - } - - assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN); - - for (i = 0; i < BOOKE206_MAX_TLBN; i++) { - params.tlb_sizes[i] = booke206_tlb_size(env, i); - params.tlb_ways[i] = booke206_tlb_ways(env, i); - entries += params.tlb_sizes[i]; - } - - assert(entries == env->nb_tlb); - assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t)); - - env->tlb_dirty = true; - - cfg.array = (uintptr_t)env->tlb.tlbm; - cfg.array_len = sizeof(ppcmas_tlb_t) * entries; - cfg.params = (uintptr_t)¶ms; - cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV; - - ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg); - if (ret < 0) { - fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n", - __func__, strerror(-ret)); - return ret; - } - - env->kvm_sw_tlb = true; - return 0; -} - - -#if defined(TARGET_PPC64) -static void kvm_get_fallback_smmu_info(PowerPCCPU *cpu, - struct kvm_ppc_smmu_info *info) -{ - CPUPPCState *env = &cpu->env; - CPUState *cs = CPU(cpu); - - memset(info, 0, sizeof(*info)); - - /* We don't have the new KVM_PPC_GET_SMMU_INFO ioctl, so - * need to "guess" what the supported page sizes are. - * - * For that to work we make a few assumptions: - * - * - Check whether we are running "PR" KVM which only supports 4K - * and 16M pages, but supports them regardless of the backing - * store characteritics. We also don't support 1T segments. - * - * This is safe as if HV KVM ever supports that capability or PR - * KVM grows supports for more page/segment sizes, those versions - * will have implemented KVM_CAP_PPC_GET_SMMU_INFO and thus we - * will not hit this fallback - * - * - Else we are running HV KVM. This means we only support page - * sizes that fit in the backing store. Additionally we only - * advertize 64K pages if the processor is ARCH 2.06 and we assume - * P7 encodings for the SLB and hash table. Here too, we assume - * support for any newer processor will mean a kernel that - * implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit - * this fallback. - */ - if (kvmppc_is_pr(cs->kvm_state)) { - /* No flags */ - info->flags = 0; - info->slb_size = 64; - - /* Standard 4k base page size segment */ - info->sps[0].page_shift = 12; - info->sps[0].slb_enc = 0; - info->sps[0].enc[0].page_shift = 12; - info->sps[0].enc[0].pte_enc = 0; - - /* Standard 16M large page size segment */ - info->sps[1].page_shift = 24; - info->sps[1].slb_enc = SLB_VSID_L; - info->sps[1].enc[0].page_shift = 24; - info->sps[1].enc[0].pte_enc = 0; - } else { - int i = 0; - - /* HV KVM has backing store size restrictions */ - info->flags = KVM_PPC_PAGE_SIZES_REAL; - - if (env->mmu_model & POWERPC_MMU_1TSEG) { - info->flags |= KVM_PPC_1T_SEGMENTS; - } - - if (env->mmu_model == POWERPC_MMU_2_06 || - env->mmu_model == POWERPC_MMU_2_07) { - info->slb_size = 32; - } else { - info->slb_size = 64; - } - - /* Standard 4k base page size segment */ - info->sps[i].page_shift = 12; - info->sps[i].slb_enc = 0; - info->sps[i].enc[0].page_shift = 12; - info->sps[i].enc[0].pte_enc = 0; - i++; - - /* 64K on MMU 2.06 and later */ - if (env->mmu_model == POWERPC_MMU_2_06 || - env->mmu_model == POWERPC_MMU_2_07) { - info->sps[i].page_shift = 16; - info->sps[i].slb_enc = 0x110; - info->sps[i].enc[0].page_shift = 16; - info->sps[i].enc[0].pte_enc = 1; - i++; - } - - /* Standard 16M large page size segment */ - info->sps[i].page_shift = 24; - info->sps[i].slb_enc = SLB_VSID_L; - info->sps[i].enc[0].page_shift = 24; - info->sps[i].enc[0].pte_enc = 0; - } -} - -static void kvm_get_smmu_info(PowerPCCPU *cpu, struct kvm_ppc_smmu_info *info) -{ - CPUState *cs = CPU(cpu); - int ret; - - if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) { - ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_SMMU_INFO, info); - if (ret == 0) { - return; - } - } - - kvm_get_fallback_smmu_info(cpu, info); -} - -static long gethugepagesize(const char *mem_path) -{ - struct statfs fs; - int ret; - - do { - ret = statfs(mem_path, &fs); - } while (ret != 0 && errno == EINTR); - - if (ret != 0) { - fprintf(stderr, "Couldn't statfs() memory path: %s\n", - strerror(errno)); - exit(1); - } - -#define HUGETLBFS_MAGIC 0x958458f6 - - if (fs.f_type != HUGETLBFS_MAGIC) { - /* Explicit mempath, but it's ordinary pages */ - return getpagesize(); - } - - /* It's hugepage, return the huge page size */ - return fs.f_bsize; -} - -/* - * FIXME TOCTTOU: this iterates over memory backends' mem-path, which - * may or may not name the same files / on the same filesystem now as - * when we actually open and map them. Iterate over the file - * descriptors instead, and use qemu_fd_getpagesize(). - */ -static int find_max_supported_pagesize(Object *obj, void *opaque) -{ - char *mem_path; - long *hpsize_min = opaque; - - if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { - mem_path = object_property_get_str(obj, "mem-path", NULL); - if (mem_path) { - long hpsize = gethugepagesize(mem_path); - if (hpsize < *hpsize_min) { - *hpsize_min = hpsize; - } - } else { - *hpsize_min = getpagesize(); - } - } - - return 0; -} - -static long getrampagesize(void) -{ - long hpsize = LONG_MAX; - long mainrampagesize; - Object *memdev_root; - - if (mem_path) { - mainrampagesize = gethugepagesize(mem_path); - } else { - mainrampagesize = getpagesize(); - } - - /* it's possible we have memory-backend objects with - * hugepage-backed RAM. these may get mapped into system - * address space via -numa parameters or memory hotplug - * hooks. we want to take these into account, but we - * also want to make sure these supported hugepage - * sizes are applicable across the entire range of memory - * we may boot from, so we take the min across all - * backends, and assume normal pages in cases where a - * backend isn't backed by hugepages. - */ - memdev_root = object_resolve_path("/objects", NULL); - if (memdev_root) { - object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize); - } - if (hpsize == LONG_MAX) { - /* No additional memory regions found ==> Report main RAM page size */ - return mainrampagesize; - } - - /* If NUMA is disabled or the NUMA nodes are not backed with a - * memory-backend, then there is at least one node using "normal" RAM, - * so if its page size is smaller we have got to report that size instead. - */ - if (hpsize > mainrampagesize && - (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) { - static bool warned; - if (!warned) { - error_report("Huge page support disabled (n/a for main memory)."); - warned = true; - } - return mainrampagesize; - } - - return hpsize; -} - -static bool kvm_valid_page_size(uint32_t flags, long rampgsize, uint32_t shift) -{ - if (!(flags & KVM_PPC_PAGE_SIZES_REAL)) { - return true; - } - - return (1ul << shift) <= rampgsize; -} - -static void kvm_fixup_page_sizes(PowerPCCPU *cpu) -{ - static struct kvm_ppc_smmu_info smmu_info; - static bool has_smmu_info; - CPUPPCState *env = &cpu->env; - long rampagesize; - int iq, ik, jq, jk; - bool has_64k_pages = false; - - /* We only handle page sizes for 64-bit server guests for now */ - if (!(env->mmu_model & POWERPC_MMU_64)) { - return; - } - - /* Collect MMU info from kernel if not already */ - if (!has_smmu_info) { - kvm_get_smmu_info(cpu, &smmu_info); - has_smmu_info = true; - } - - rampagesize = getrampagesize(); - - /* Convert to QEMU form */ - memset(&env->sps, 0, sizeof(env->sps)); - - /* If we have HV KVM, we need to forbid CI large pages if our - * host page size is smaller than 64K. - */ - if (smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL) { - env->ci_large_pages = getpagesize() >= 0x10000; - } - - /* - * XXX This loop should be an entry wide AND of the capabilities that - * the selected CPU has with the capabilities that KVM supports. - */ - for (ik = iq = 0; ik < KVM_PPC_PAGE_SIZES_MAX_SZ; ik++) { - struct ppc_one_seg_page_size *qsps = &env->sps.sps[iq]; - struct kvm_ppc_one_seg_page_size *ksps = &smmu_info.sps[ik]; - - if (!kvm_valid_page_size(smmu_info.flags, rampagesize, - ksps->page_shift)) { - continue; - } - qsps->page_shift = ksps->page_shift; - qsps->slb_enc = ksps->slb_enc; - for (jk = jq = 0; jk < KVM_PPC_PAGE_SIZES_MAX_SZ; jk++) { - if (!kvm_valid_page_size(smmu_info.flags, rampagesize, - ksps->enc[jk].page_shift)) { - continue; - } - if (ksps->enc[jk].page_shift == 16) { - has_64k_pages = true; - } - qsps->enc[jq].page_shift = ksps->enc[jk].page_shift; - qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc; - if (++jq >= PPC_PAGE_SIZES_MAX_SZ) { - break; - } - } - if (++iq >= PPC_PAGE_SIZES_MAX_SZ) { - break; - } - } - env->slb_nr = smmu_info.slb_size; - if (!(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) { - env->mmu_model &= ~POWERPC_MMU_1TSEG; - } - if (!has_64k_pages) { - env->mmu_model &= ~POWERPC_MMU_64K; - } -} -#else /* defined (TARGET_PPC64) */ - -static inline void kvm_fixup_page_sizes(PowerPCCPU *cpu) -{ -} - -#endif /* !defined (TARGET_PPC64) */ - -unsigned long kvm_arch_vcpu_id(CPUState *cpu) -{ - return ppc_get_vcpu_dt_id(POWERPC_CPU(cpu)); -} - -/* e500 supports 2 h/w breakpoint and 2 watchpoint. - * book3s supports only 1 watchpoint, so array size - * of 4 is sufficient for now. - */ -#define MAX_HW_BKPTS 4 - -static struct HWBreakpoint { - target_ulong addr; - int type; -} hw_debug_points[MAX_HW_BKPTS]; - -static CPUWatchpoint hw_watchpoint; - -/* Default there is no breakpoint and watchpoint supported */ -static int max_hw_breakpoint; -static int max_hw_watchpoint; -static int nb_hw_breakpoint; -static int nb_hw_watchpoint; - -static void kvmppc_hw_debug_points_init(CPUPPCState *cenv) -{ - if (cenv->excp_model == POWERPC_EXCP_BOOKE) { - max_hw_breakpoint = 2; - max_hw_watchpoint = 2; - } - - if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) { - fprintf(stderr, "Error initializing h/w breakpoints\n"); - return; - } -} - -int kvm_arch_init_vcpu(CPUState *cs) -{ - PowerPCCPU *cpu = POWERPC_CPU(cs); - CPUPPCState *cenv = &cpu->env; - int ret; - - /* Gather server mmu info from KVM and update the CPU state */ - kvm_fixup_page_sizes(cpu); - - /* Synchronize sregs with kvm */ - ret = kvm_arch_sync_sregs(cpu); - if (ret) { - if (ret == -EINVAL) { - error_report("Register sync failed... If you're using kvm-hv.ko," - " only \"-cpu host\" is possible"); - } - return ret; - } - - idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu); - - switch (cenv->mmu_model) { - case POWERPC_MMU_BOOKE206: - /* This target supports access to KVM's guest TLB */ - ret = kvm_booke206_tlb_init(cpu); - break; - case POWERPC_MMU_2_07: - if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) { - /* KVM-HV has transactional memory on POWER8 also without the - * KVM_CAP_PPC_HTM extension, so enable it here instead. */ - cap_htm = true; - } - break; - default: - break; - } - - kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode); - kvmppc_hw_debug_points_init(cenv); - - return ret; -} - -static void kvm_sw_tlb_put(PowerPCCPU *cpu) -{ - CPUPPCState *env = &cpu->env; - CPUState *cs = CPU(cpu); - struct kvm_dirty_tlb dirty_tlb; - unsigned char *bitmap; - int ret; - - if (!env->kvm_sw_tlb) { - return; - } - - bitmap = g_malloc((env->nb_tlb + 7) / 8); - memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8); - - dirty_tlb.bitmap = (uintptr_t)bitmap; - dirty_tlb.num_dirty = env->nb_tlb; - - ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb); - if (ret) { - fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n", - __func__, strerror(-ret)); - } - - g_free(bitmap); -} - -static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr) -{ - PowerPCCPU *cpu = POWERPC_CPU(cs); - CPUPPCState *env = &cpu->env; - union { - uint32_t u32; - uint64_t u64; - } val; - struct kvm_one_reg reg = { - .id = id, - .addr = (uintptr_t) &val, - }; - int ret; - - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); - if (ret != 0) { - trace_kvm_failed_spr_get(spr, strerror(errno)); - } else { - switch (id & KVM_REG_SIZE_MASK) { - case KVM_REG_SIZE_U32: - env->spr[spr] = val.u32; - break; - - case KVM_REG_SIZE_U64: - env->spr[spr] = val.u64; - break; - - default: - /* Don't handle this size yet */ - abort(); - } - } -} - -static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr) -{ - PowerPCCPU *cpu = POWERPC_CPU(cs); - CPUPPCState *env = &cpu->env; - union { - uint32_t u32; - uint64_t u64; - } val; - struct kvm_one_reg reg = { - .id = id, - .addr = (uintptr_t) &val, - }; - int ret; - - switch (id & KVM_REG_SIZE_MASK) { - case KVM_REG_SIZE_U32: - val.u32 = env->spr[spr]; - break; - - case KVM_REG_SIZE_U64: - val.u64 = env->spr[spr]; - break; - - default: - /* Don't handle this size yet */ - abort(); - } - - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); - if (ret != 0) { - trace_kvm_failed_spr_set(spr, strerror(errno)); - } -} - -static int kvm_put_fp(CPUState *cs) -{ - PowerPCCPU *cpu = POWERPC_CPU(cs); - CPUPPCState *env = &cpu->env; - struct kvm_one_reg reg; - int i; - int ret; - - if (env->insns_flags & PPC_FLOAT) { - uint64_t fpscr = env->fpscr; - bool vsx = !!(env->insns_flags2 & PPC2_VSX); - - reg.id = KVM_REG_PPC_FPSCR; - reg.addr = (uintptr_t)&fpscr; - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); - if (ret < 0) { - DPRINTF("Unable to set FPSCR to KVM: %s\n", strerror(errno)); - return ret; - } - - for (i = 0; i < 32; i++) { - uint64_t vsr[2]; - -#ifdef HOST_WORDS_BIGENDIAN - vsr[0] = float64_val(env->fpr[i]); - vsr[1] = env->vsr[i]; -#else - vsr[0] = env->vsr[i]; - vsr[1] = float64_val(env->fpr[i]); -#endif - reg.addr = (uintptr_t) &vsr; - reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); - - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); - if (ret < 0) { - DPRINTF("Unable to set %s%d to KVM: %s\n", vsx ? "VSR" : "FPR", - i, strerror(errno)); - return ret; - } - } - } - - if (env->insns_flags & PPC_ALTIVEC) { - reg.id = KVM_REG_PPC_VSCR; - reg.addr = (uintptr_t)&env->vscr; - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); - if (ret < 0) { - DPRINTF("Unable to set VSCR to KVM: %s\n", strerror(errno)); - return ret; - } - - for (i = 0; i < 32; i++) { - reg.id = KVM_REG_PPC_VR(i); - reg.addr = (uintptr_t)&env->avr[i]; - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); - if (ret < 0) { - DPRINTF("Unable to set VR%d to KVM: %s\n", i, strerror(errno)); - return ret; - } - } - } - - return 0; -} - -static int kvm_get_fp(CPUState *cs) -{ - PowerPCCPU *cpu = POWERPC_CPU(cs); - CPUPPCState *env = &cpu->env; - struct kvm_one_reg reg; - int i; - int ret; - - if (env->insns_flags & PPC_FLOAT) { - uint64_t fpscr; - bool vsx = !!(env->insns_flags2 & PPC2_VSX); - - reg.id = KVM_REG_PPC_FPSCR; - reg.addr = (uintptr_t)&fpscr; - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); - if (ret < 0) { - DPRINTF("Unable to get FPSCR from KVM: %s\n", strerror(errno)); - return ret; - } else { - env->fpscr = fpscr; - } - - for (i = 0; i < 32; i++) { - uint64_t vsr[2]; - - reg.addr = (uintptr_t) &vsr; - reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); - - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); - if (ret < 0) { - DPRINTF("Unable to get %s%d from KVM: %s\n", - vsx ? "VSR" : "FPR", i, strerror(errno)); - return ret; - } else { -#ifdef HOST_WORDS_BIGENDIAN - env->fpr[i] = vsr[0]; - if (vsx) { - env->vsr[i] = vsr[1]; - } -#else - env->fpr[i] = vsr[1]; - if (vsx) { - env->vsr[i] = vsr[0]; - } -#endif - } - } - } - - if (env->insns_flags & PPC_ALTIVEC) { - reg.id = KVM_REG_PPC_VSCR; - reg.addr = (uintptr_t)&env->vscr; - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); - if (ret < 0) { - DPRINTF("Unable to get VSCR from KVM: %s\n", strerror(errno)); - return ret; - } - - for (i = 0; i < 32; i++) { - reg.id = KVM_REG_PPC_VR(i); - reg.addr = (uintptr_t)&env->avr[i]; - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); - if (ret < 0) { - DPRINTF("Unable to get VR%d from KVM: %s\n", - i, strerror(errno)); - return ret; - } - } - } - - return 0; -} - -#if defined(TARGET_PPC64) -static int kvm_get_vpa(CPUState *cs) -{ - PowerPCCPU *cpu = POWERPC_CPU(cs); - CPUPPCState *env = &cpu->env; - struct kvm_one_reg reg; - int ret; - - reg.id = KVM_REG_PPC_VPA_ADDR; - reg.addr = (uintptr_t)&env->vpa_addr; - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); - if (ret < 0) { - DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno)); - return ret; - } - - assert((uintptr_t)&env->slb_shadow_size - == ((uintptr_t)&env->slb_shadow_addr + 8)); - reg.id = KVM_REG_PPC_VPA_SLB; - reg.addr = (uintptr_t)&env->slb_shadow_addr; - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); - if (ret < 0) { - DPRINTF("Unable to get SLB shadow state from KVM: %s\n", - strerror(errno)); - return ret; - } - - assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8)); - reg.id = KVM_REG_PPC_VPA_DTL; - reg.addr = (uintptr_t)&env->dtl_addr; - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); - if (ret < 0) { - DPRINTF("Unable to get dispatch trace log state from KVM: %s\n", - strerror(errno)); - return ret; - } - - return 0; -} - -static int kvm_put_vpa(CPUState *cs) -{ - PowerPCCPU *cpu = POWERPC_CPU(cs); - CPUPPCState *env = &cpu->env; - struct kvm_one_reg reg; - int ret; - - /* SLB shadow or DTL can't be registered unless a master VPA is - * registered. That means when restoring state, if a VPA *is* - * registered, we need to set that up first. If not, we need to - * deregister the others before deregistering the master VPA */ - assert(env->vpa_addr || !(env->slb_shadow_addr || env->dtl_addr)); - - if (env->vpa_addr) { - reg.id = KVM_REG_PPC_VPA_ADDR; - reg.addr = (uintptr_t)&env->vpa_addr; - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); - if (ret < 0) { - DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno)); - return ret; - } - } - - assert((uintptr_t)&env->slb_shadow_size - == ((uintptr_t)&env->slb_shadow_addr + 8)); - reg.id = KVM_REG_PPC_VPA_SLB; - reg.addr = (uintptr_t)&env->slb_shadow_addr; - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); - if (ret < 0) { - DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno)); - return ret; - } - - assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8)); - reg.id = KVM_REG_PPC_VPA_DTL; - reg.addr = (uintptr_t)&env->dtl_addr; - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); - if (ret < 0) { - DPRINTF("Unable to set dispatch trace log state to KVM: %s\n", - strerror(errno)); - return ret; - } - - if (!env->vpa_addr) { - reg.id = KVM_REG_PPC_VPA_ADDR; - reg.addr = (uintptr_t)&env->vpa_addr; - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); - if (ret < 0) { - DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno)); - return ret; - } - } - - return 0; -} -#endif /* TARGET_PPC64 */ - -int kvmppc_put_books_sregs(PowerPCCPU *cpu) -{ - CPUPPCState *env = &cpu->env; - struct kvm_sregs sregs; - int i; - - sregs.pvr = env->spr[SPR_PVR]; - - sregs.u.s.sdr1 = env->spr[SPR_SDR1]; - - /* Sync SLB */ -#ifdef TARGET_PPC64 - for (i = 0; i < ARRAY_SIZE(env->slb); i++) { - sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid; - if (env->slb[i].esid & SLB_ESID_V) { - sregs.u.s.ppc64.slb[i].slbe |= i; - } - sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid; - } -#endif - - /* Sync SRs */ - for (i = 0; i < 16; i++) { - sregs.u.s.ppc32.sr[i] = env->sr[i]; - } - - /* Sync BATs */ - for (i = 0; i < 8; i++) { - /* Beware. We have to swap upper and lower bits here */ - sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32) - | env->DBAT[1][i]; - sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32) - | env->IBAT[1][i]; - } - - return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); -} - -int kvm_arch_put_registers(CPUState *cs, int level) -{ - PowerPCCPU *cpu = POWERPC_CPU(cs); - CPUPPCState *env = &cpu->env; - struct kvm_regs regs; - int ret; - int i; - - ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); - if (ret < 0) { - return ret; - } - - regs.ctr = env->ctr; - regs.lr = env->lr; - regs.xer = cpu_read_xer(env); - regs.msr = env->msr; - regs.pc = env->nip; - - regs.srr0 = env->spr[SPR_SRR0]; - regs.srr1 = env->spr[SPR_SRR1]; - - regs.sprg0 = env->spr[SPR_SPRG0]; - regs.sprg1 = env->spr[SPR_SPRG1]; - regs.sprg2 = env->spr[SPR_SPRG2]; - regs.sprg3 = env->spr[SPR_SPRG3]; - regs.sprg4 = env->spr[SPR_SPRG4]; - regs.sprg5 = env->spr[SPR_SPRG5]; - regs.sprg6 = env->spr[SPR_SPRG6]; - regs.sprg7 = env->spr[SPR_SPRG7]; - - regs.pid = env->spr[SPR_BOOKE_PID]; - - for (i = 0;i < 32; i++) - regs.gpr[i] = env->gpr[i]; - - regs.cr = 0; - for (i = 0; i < 8; i++) { - regs.cr |= (env->crf[i] & 15) << (4 * (7 - i)); - } - - ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); - if (ret < 0) - return ret; - - kvm_put_fp(cs); - - if (env->tlb_dirty) { - kvm_sw_tlb_put(cpu); - env->tlb_dirty = false; - } - - if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) { - ret = kvmppc_put_books_sregs(cpu); - if (ret < 0) { - return ret; - } - } - - if (cap_hior && (level >= KVM_PUT_RESET_STATE)) { - kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); - } - - if (cap_one_reg) { - int i; - - /* We deliberately ignore errors here, for kernels which have - * the ONE_REG calls, but don't support the specific - * registers, there's a reasonable chance things will still - * work, at least until we try to migrate. */ - for (i = 0; i < 1024; i++) { - uint64_t id = env->spr_cb[i].one_reg_id; - - if (id != 0) { - kvm_put_one_spr(cs, id, i); - } - } - -#ifdef TARGET_PPC64 - if (msr_ts) { - for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) { - kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]); - } - for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) { - kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]); - } - kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr); - kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr); - kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr); - kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr); - kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr); - kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr); - kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave); - kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr); - kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr); - kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar); - } - - if (cap_papr) { - if (kvm_put_vpa(cs) < 0) { - DPRINTF("Warning: Unable to set VPA information to KVM\n"); - } - } - - kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset); -#endif /* TARGET_PPC64 */ - } - - return ret; -} - -static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor) -{ - env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR]; -} - -static int kvmppc_get_booke_sregs(PowerPCCPU *cpu) -{ - CPUPPCState *env = &cpu->env; - struct kvm_sregs sregs; - int ret; - - ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); - if (ret < 0) { - return ret; - } - - if (sregs.u.e.features & KVM_SREGS_E_BASE) { - env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0; - env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1; - env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr; - env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear; - env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr; - env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr; - env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr; - env->spr[SPR_DECR] = sregs.u.e.dec; - env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff; - env->spr[SPR_TBU] = sregs.u.e.tb >> 32; - env->spr[SPR_VRSAVE] = sregs.u.e.vrsave; - } - - if (sregs.u.e.features & KVM_SREGS_E_ARCH206) { - env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir; - env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0; - env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1; - env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar; - env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr; - } - - if (sregs.u.e.features & KVM_SREGS_E_64) { - env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr; - } - - if (sregs.u.e.features & KVM_SREGS_E_SPRG8) { - env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8; - } - - if (sregs.u.e.features & KVM_SREGS_E_IVOR) { - env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0]; - kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0); - env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1]; - kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1); - env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2]; - kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2); - env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3]; - kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3); - env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4]; - kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4); - env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5]; - kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5); - env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6]; - kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6); - env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7]; - kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7); - env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8]; - kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8); - env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9]; - kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9); - env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10]; - kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10); - env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11]; - kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11); - env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12]; - kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12); - env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13]; - kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13); - env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14]; - kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14); - env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15]; - kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15); - - if (sregs.u.e.features & KVM_SREGS_E_SPE) { - env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0]; - kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32); - env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1]; - kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33); - env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2]; - kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34); - } - - if (sregs.u.e.features & KVM_SREGS_E_PM) { - env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3]; - kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35); - } - - if (sregs.u.e.features & KVM_SREGS_E_PC) { - env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4]; - kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36); - env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5]; - kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37); - } - } - - if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) { - env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0; - env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1; - env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2; - env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff; - env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4; - env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6; - env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32; - env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg; - env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0]; - env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1]; - } - - if (sregs.u.e.features & KVM_SREGS_EXP) { - env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr; - } - - if (sregs.u.e.features & KVM_SREGS_E_PD) { - env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc; - env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc; - } - - if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) { - env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr; - env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar; - env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0; - - if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) { - env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1; - env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2; - } - } - - return 0; -} - -static int kvmppc_get_books_sregs(PowerPCCPU *cpu) -{ - CPUPPCState *env = &cpu->env; - struct kvm_sregs sregs; - int ret; - int i; - - ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); - if (ret < 0) { - return ret; - } - - if (!env->external_htab) { - ppc_store_sdr1(env, sregs.u.s.sdr1); - } - - /* Sync SLB */ -#ifdef TARGET_PPC64 - /* - * The packed SLB array we get from KVM_GET_SREGS only contains - * information about valid entries. So we flush our internal copy - * to get rid of stale ones, then put all valid SLB entries back - * in. - */ - memset(env->slb, 0, sizeof(env->slb)); - for (i = 0; i < ARRAY_SIZE(env->slb); i++) { - target_ulong rb = sregs.u.s.ppc64.slb[i].slbe; - target_ulong rs = sregs.u.s.ppc64.slb[i].slbv; - /* - * Only restore valid entries - */ - if (rb & SLB_ESID_V) { - ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs); - } - } -#endif - - /* Sync SRs */ - for (i = 0; i < 16; i++) { - env->sr[i] = sregs.u.s.ppc32.sr[i]; - } - - /* Sync BATs */ - for (i = 0; i < 8; i++) { - env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff; - env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32; - env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff; - env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32; - } - - return 0; -} - -int kvm_arch_get_registers(CPUState *cs) -{ - PowerPCCPU *cpu = POWERPC_CPU(cs); - CPUPPCState *env = &cpu->env; - struct kvm_regs regs; - uint32_t cr; - int i, ret; - - ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); - if (ret < 0) - return ret; - - cr = regs.cr; - for (i = 7; i >= 0; i--) { - env->crf[i] = cr & 15; - cr >>= 4; - } - - env->ctr = regs.ctr; - env->lr = regs.lr; - cpu_write_xer(env, regs.xer); - env->msr = regs.msr; - env->nip = regs.pc; - - env->spr[SPR_SRR0] = regs.srr0; - env->spr[SPR_SRR1] = regs.srr1; - - env->spr[SPR_SPRG0] = regs.sprg0; - env->spr[SPR_SPRG1] = regs.sprg1; - env->spr[SPR_SPRG2] = regs.sprg2; - env->spr[SPR_SPRG3] = regs.sprg3; - env->spr[SPR_SPRG4] = regs.sprg4; - env->spr[SPR_SPRG5] = regs.sprg5; - env->spr[SPR_SPRG6] = regs.sprg6; - env->spr[SPR_SPRG7] = regs.sprg7; - - env->spr[SPR_BOOKE_PID] = regs.pid; - - for (i = 0;i < 32; i++) - env->gpr[i] = regs.gpr[i]; - - kvm_get_fp(cs); - - if (cap_booke_sregs) { - ret = kvmppc_get_booke_sregs(cpu); - if (ret < 0) { - return ret; - } - } - - if (cap_segstate) { - ret = kvmppc_get_books_sregs(cpu); - if (ret < 0) { - return ret; - } - } - - if (cap_hior) { - kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); - } - - if (cap_one_reg) { - int i; - - /* We deliberately ignore errors here, for kernels which have - * the ONE_REG calls, but don't support the specific - * registers, there's a reasonable chance things will still - * work, at least until we try to migrate. */ - for (i = 0; i < 1024; i++) { - uint64_t id = env->spr_cb[i].one_reg_id; - - if (id != 0) { - kvm_get_one_spr(cs, id, i); - } - } - -#ifdef TARGET_PPC64 - if (msr_ts) { - for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) { - kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]); - } - for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) { - kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]); - } - kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr); - kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr); - kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr); - kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr); - kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr); - kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr); - kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave); - kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr); - kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr); - kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar); - } - - if (cap_papr) { - if (kvm_get_vpa(cs) < 0) { - DPRINTF("Warning: Unable to get VPA information from KVM\n"); - } - } - - kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset); -#endif - } - - return 0; -} - -int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level) -{ - unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET; - - if (irq != PPC_INTERRUPT_EXT) { - return 0; - } - - if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) { - return 0; - } - - kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq); - - return 0; -} - -#if defined(TARGET_PPCEMB) -#define PPC_INPUT_INT PPC40x_INPUT_INT -#elif defined(TARGET_PPC64) -#define PPC_INPUT_INT PPC970_INPUT_INT -#else -#define PPC_INPUT_INT PPC6xx_INPUT_INT -#endif - -void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) -{ - PowerPCCPU *cpu = POWERPC_CPU(cs); - CPUPPCState *env = &cpu->env; - int r; - unsigned irq; - - qemu_mutex_lock_iothread(); - - /* PowerPC QEMU tracks the various core input pins (interrupt, critical - * interrupt, reset, etc) in PPC-specific env->irq_input_state. */ - if (!cap_interrupt_level && - run->ready_for_interrupt_injection && - (cs->interrupt_request & CPU_INTERRUPT_HARD) && - (env->irq_input_state & (1<<PPC_INPUT_INT))) - { - /* For now KVM disregards the 'irq' argument. However, in the - * future KVM could cache it in-kernel to avoid a heavyweight exit - * when reading the UIC. - */ - irq = KVM_INTERRUPT_SET; - - DPRINTF("injected interrupt %d\n", irq); - r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq); - if (r < 0) { - printf("cpu %d fail inject %x\n", cs->cpu_index, irq); - } - - /* Always wake up soon in case the interrupt was level based */ - timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + - (NANOSECONDS_PER_SECOND / 50)); - } - - /* We don't know if there are more interrupts pending after this. However, - * the guest will return to userspace in the course of handling this one - * anyways, so we will get a chance to deliver the rest. */ - - qemu_mutex_unlock_iothread(); -} - -MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) -{ - return MEMTXATTRS_UNSPECIFIED; -} - -int kvm_arch_process_async_events(CPUState *cs) -{ - return cs->halted; -} - -static int kvmppc_handle_halt(PowerPCCPU *cpu) -{ - CPUState *cs = CPU(cpu); - CPUPPCState *env = &cpu->env; - - if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) { - cs->halted = 1; - cs->exception_index = EXCP_HLT; - } - - return 0; -} - -/* map dcr access to existing qemu dcr emulation */ -static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data) -{ - if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) - fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn); - - return 0; -} - -static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data) -{ - if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) - fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn); - - return 0; -} - -int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) -{ - /* Mixed endian case is not handled */ - uint32_t sc = debug_inst_opcode; - - if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, - sizeof(sc), 0) || - cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) { - return -EINVAL; - } - - return 0; -} - -int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) -{ - uint32_t sc; - - if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) || - sc != debug_inst_opcode || - cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, - sizeof(sc), 1)) { - return -EINVAL; - } - - return 0; -} - -static int find_hw_breakpoint(target_ulong addr, int type) -{ - int n; - - assert((nb_hw_breakpoint + nb_hw_watchpoint) - <= ARRAY_SIZE(hw_debug_points)); - - for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) { - if (hw_debug_points[n].addr == addr && - hw_debug_points[n].type == type) { - return n; - } - } - - return -1; -} - -static int find_hw_watchpoint(target_ulong addr, int *flag) -{ - int n; - - n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS); - if (n >= 0) { - *flag = BP_MEM_ACCESS; - return n; - } - - n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE); - if (n >= 0) { - *flag = BP_MEM_WRITE; - return n; - } - - n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ); - if (n >= 0) { - *flag = BP_MEM_READ; - return n; - } - - return -1; -} - -int kvm_arch_insert_hw_breakpoint(target_ulong addr, - target_ulong len, int type) -{ - if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) { - return -ENOBUFS; - } - - hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr; - hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type; - - switch (type) { - case GDB_BREAKPOINT_HW: - if (nb_hw_breakpoint >= max_hw_breakpoint) { - return -ENOBUFS; - } - - if (find_hw_breakpoint(addr, type) >= 0) { - return -EEXIST; - } - - nb_hw_breakpoint++; - break; - - case GDB_WATCHPOINT_WRITE: - case GDB_WATCHPOINT_READ: - case GDB_WATCHPOINT_ACCESS: - if (nb_hw_watchpoint >= max_hw_watchpoint) { - return -ENOBUFS; - } - - if (find_hw_breakpoint(addr, type) >= 0) { - return -EEXIST; - } - - nb_hw_watchpoint++; - break; - - default: - return -ENOSYS; - } - - return 0; -} - -int kvm_arch_remove_hw_breakpoint(target_ulong addr, - target_ulong len, int type) -{ - int n; - - n = find_hw_breakpoint(addr, type); - if (n < 0) { - return -ENOENT; - } - - switch (type) { - case GDB_BREAKPOINT_HW: - nb_hw_breakpoint--; - break; - - case GDB_WATCHPOINT_WRITE: - case GDB_WATCHPOINT_READ: - case GDB_WATCHPOINT_ACCESS: - nb_hw_watchpoint--; - break; - - default: - return -ENOSYS; - } - hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint]; - - return 0; -} - -void kvm_arch_remove_all_hw_breakpoints(void) -{ - nb_hw_breakpoint = nb_hw_watchpoint = 0; -} - -void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) -{ - int n; - - /* Software Breakpoint updates */ - if (kvm_sw_breakpoints_active(cs)) { - dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; - } - - assert((nb_hw_breakpoint + nb_hw_watchpoint) - <= ARRAY_SIZE(hw_debug_points)); - assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp)); - - if (nb_hw_breakpoint + nb_hw_watchpoint > 0) { - dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; - memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp)); - for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) { - switch (hw_debug_points[n].type) { - case GDB_BREAKPOINT_HW: - dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT; - break; - case GDB_WATCHPOINT_WRITE: - dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE; - break; - case GDB_WATCHPOINT_READ: - dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ; - break; - case GDB_WATCHPOINT_ACCESS: - dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE | - KVMPPC_DEBUG_WATCH_READ; - break; - default: - cpu_abort(cs, "Unsupported breakpoint type\n"); - } - dbg->arch.bp[n].addr = hw_debug_points[n].addr; - } - } -} - -static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run) -{ - CPUState *cs = CPU(cpu); - CPUPPCState *env = &cpu->env; - struct kvm_debug_exit_arch *arch_info = &run->debug.arch; - int handle = 0; - int n; - int flag = 0; - - if (cs->singlestep_enabled) { - handle = 1; - } else if (arch_info->status) { - if (nb_hw_breakpoint + nb_hw_watchpoint > 0) { - if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) { - n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW); - if (n >= 0) { - handle = 1; - } - } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ | - KVMPPC_DEBUG_WATCH_WRITE)) { - n = find_hw_watchpoint(arch_info->address, &flag); - if (n >= 0) { - handle = 1; - cs->watchpoint_hit = &hw_watchpoint; - hw_watchpoint.vaddr = hw_debug_points[n].addr; - hw_watchpoint.flags = flag; - } - } - } - } else if (kvm_find_sw_breakpoint(cs, arch_info->address)) { - handle = 1; - } else { - /* QEMU is not able to handle debug exception, so inject - * program exception to guest; - * Yes program exception NOT debug exception !! - * When QEMU is using debug resources then debug exception must - * be always set. To achieve this we set MSR_DE and also set - * MSRP_DEP so guest cannot change MSR_DE. - * When emulating debug resource for guest we want guest - * to control MSR_DE (enable/disable debug interrupt on need). - * Supporting both configurations are NOT possible. - * So the result is that we cannot share debug resources - * between QEMU and Guest on BOOKE architecture. - * In the current design QEMU gets the priority over guest, - * this means that if QEMU is using debug resources then guest - * cannot use them; - * For software breakpoint QEMU uses a privileged instruction; - * So there cannot be any reason that we are here for guest - * set debug exception, only possibility is guest executed a - * privileged / illegal instruction and that's why we are - * injecting a program interrupt. - */ - - cpu_synchronize_state(cs); - /* env->nip is PC, so increment this by 4 to use - * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4. - */ - env->nip += 4; - cs->exception_index = POWERPC_EXCP_PROGRAM; - env->error_code = POWERPC_EXCP_INVAL; - ppc_cpu_do_interrupt(cs); - } - - return handle; -} - -int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) -{ - PowerPCCPU *cpu = POWERPC_CPU(cs); - CPUPPCState *env = &cpu->env; - int ret; - - qemu_mutex_lock_iothread(); - - switch (run->exit_reason) { - case KVM_EXIT_DCR: - if (run->dcr.is_write) { - DPRINTF("handle dcr write\n"); - ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data); - } else { - DPRINTF("handle dcr read\n"); - ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data); - } - break; - case KVM_EXIT_HLT: - DPRINTF("handle halt\n"); - ret = kvmppc_handle_halt(cpu); - break; -#if defined(TARGET_PPC64) - case KVM_EXIT_PAPR_HCALL: - DPRINTF("handle PAPR hypercall\n"); - run->papr_hcall.ret = spapr_hypercall(cpu, - run->papr_hcall.nr, - run->papr_hcall.args); - ret = 0; - break; -#endif - case KVM_EXIT_EPR: - DPRINTF("handle epr\n"); - run->epr.epr = ldl_phys(cs->as, env->mpic_iack); - ret = 0; - break; - case KVM_EXIT_WATCHDOG: - DPRINTF("handle watchdog expiry\n"); - watchdog_perform_action(); - ret = 0; - break; - - case KVM_EXIT_DEBUG: - DPRINTF("handle debug exception\n"); - if (kvm_handle_debug(cpu, run)) { - ret = EXCP_DEBUG; - break; - } - /* re-enter, this exception was guest-internal */ - ret = 0; - break; - - default: - fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); - ret = -1; - break; - } - - qemu_mutex_unlock_iothread(); - return ret; -} - -int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) -{ - CPUState *cs = CPU(cpu); - uint32_t bits = tsr_bits; - struct kvm_one_reg reg = { - .id = KVM_REG_PPC_OR_TSR, - .addr = (uintptr_t) &bits, - }; - - return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); -} - -int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) -{ - - CPUState *cs = CPU(cpu); - uint32_t bits = tsr_bits; - struct kvm_one_reg reg = { - .id = KVM_REG_PPC_CLEAR_TSR, - .addr = (uintptr_t) &bits, - }; - - return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); -} - -int kvmppc_set_tcr(PowerPCCPU *cpu) -{ - CPUState *cs = CPU(cpu); - CPUPPCState *env = &cpu->env; - uint32_t tcr = env->spr[SPR_BOOKE_TCR]; - - struct kvm_one_reg reg = { - .id = KVM_REG_PPC_TCR, - .addr = (uintptr_t) &tcr, - }; - - return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); -} - -int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu) -{ - CPUState *cs = CPU(cpu); - int ret; - - if (!kvm_enabled()) { - return -1; - } - - if (!cap_ppc_watchdog) { - printf("warning: KVM does not support watchdog"); - return -1; - } - - ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0); - if (ret < 0) { - fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n", - __func__, strerror(-ret)); - return ret; - } - - return ret; -} - -static int read_cpuinfo(const char *field, char *value, int len) -{ - FILE *f; - int ret = -1; - int field_len = strlen(field); - char line[512]; - - f = fopen("/proc/cpuinfo", "r"); - if (!f) { - return -1; - } - - do { - if (!fgets(line, sizeof(line), f)) { - break; - } - if (!strncmp(line, field, field_len)) { - pstrcpy(value, len, line); - ret = 0; - break; - } - } while(*line); - - fclose(f); - - return ret; -} - -uint32_t kvmppc_get_tbfreq(void) -{ - char line[512]; - char *ns; - uint32_t retval = NANOSECONDS_PER_SECOND; - - if (read_cpuinfo("timebase", line, sizeof(line))) { - return retval; - } - - if (!(ns = strchr(line, ':'))) { - return retval; - } - - ns++; - - return atoi(ns); -} - -bool kvmppc_get_host_serial(char **value) -{ - return g_file_get_contents("/proc/device-tree/system-id", value, NULL, - NULL); -} - -bool kvmppc_get_host_model(char **value) -{ - return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL); -} - -/* Try to find a device tree node for a CPU with clock-frequency property */ -static int kvmppc_find_cpu_dt(char *buf, int buf_len) -{ - struct dirent *dirp; - DIR *dp; - - if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) { - printf("Can't open directory " PROC_DEVTREE_CPU "\n"); - return -1; - } - - buf[0] = '\0'; - while ((dirp = readdir(dp)) != NULL) { - FILE *f; - snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU, - dirp->d_name); - f = fopen(buf, "r"); - if (f) { - snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name); - fclose(f); - break; - } - buf[0] = '\0'; - } - closedir(dp); - if (buf[0] == '\0') { - printf("Unknown host!\n"); - return -1; - } - - return 0; -} - -static uint64_t kvmppc_read_int_dt(const char *filename) -{ - union { - uint32_t v32; - uint64_t v64; - } u; - FILE *f; - int len; - - f = fopen(filename, "rb"); - if (!f) { - return -1; - } - - len = fread(&u, 1, sizeof(u), f); - fclose(f); - switch (len) { - case 4: - /* property is a 32-bit quantity */ - return be32_to_cpu(u.v32); - case 8: - return be64_to_cpu(u.v64); - } - - return 0; -} - -/* Read a CPU node property from the host device tree that's a single - * integer (32-bit or 64-bit). Returns 0 if anything goes wrong - * (can't find or open the property, or doesn't understand the - * format) */ -static uint64_t kvmppc_read_int_cpu_dt(const char *propname) -{ - char buf[PATH_MAX], *tmp; - uint64_t val; - - if (kvmppc_find_cpu_dt(buf, sizeof(buf))) { - return -1; - } - - tmp = g_strdup_printf("%s/%s", buf, propname); - val = kvmppc_read_int_dt(tmp); - g_free(tmp); - - return val; -} - -uint64_t kvmppc_get_clockfreq(void) -{ - return kvmppc_read_int_cpu_dt("clock-frequency"); -} - -uint32_t kvmppc_get_vmx(void) -{ - return kvmppc_read_int_cpu_dt("ibm,vmx"); -} - -uint32_t kvmppc_get_dfp(void) -{ - return kvmppc_read_int_cpu_dt("ibm,dfp"); -} - -static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo) - { - PowerPCCPU *cpu = ppc_env_get_cpu(env); - CPUState *cs = CPU(cpu); - - if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) && - !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) { - return 0; - } - - return 1; -} - -int kvmppc_get_hasidle(CPUPPCState *env) -{ - struct kvm_ppc_pvinfo pvinfo; - - if (!kvmppc_get_pvinfo(env, &pvinfo) && - (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) { - return 1; - } - - return 0; -} - -int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len) -{ - uint32_t *hc = (uint32_t*)buf; - struct kvm_ppc_pvinfo pvinfo; - - if (!kvmppc_get_pvinfo(env, &pvinfo)) { - memcpy(buf, pvinfo.hcall, buf_len); - return 0; - } - - /* - * Fallback to always fail hypercalls regardless of endianness: - * - * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian) - * li r3, -1 - * b .+8 (becomes nop in wrong endian) - * bswap32(li r3, -1) - */ - - hc[0] = cpu_to_be32(0x08000048); - hc[1] = cpu_to_be32(0x3860ffff); - hc[2] = cpu_to_be32(0x48000008); - hc[3] = cpu_to_be32(bswap32(0x3860ffff)); - - return 1; -} - -static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall) -{ - return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1); -} - -void kvmppc_enable_logical_ci_hcalls(void) -{ - /* - * FIXME: it would be nice if we could detect the cases where - * we're using a device which requires the in kernel - * implementation of these hcalls, but the kernel lacks them and - * produce a warning. - */ - kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD); - kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE); -} - -void kvmppc_enable_set_mode_hcall(void) -{ - kvmppc_enable_hcall(kvm_state, H_SET_MODE); -} - -void kvmppc_enable_clear_ref_mod_hcalls(void) -{ - kvmppc_enable_hcall(kvm_state, H_CLEAR_REF); - kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD); -} - -void kvmppc_set_papr(PowerPCCPU *cpu) -{ - CPUState *cs = CPU(cpu); - int ret; - - ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0); - if (ret) { - error_report("This vCPU type or KVM version does not support PAPR"); - exit(1); - } - - /* Update the capability flag so we sync the right information - * with kvm */ - cap_papr = 1; -} - -int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t cpu_version) -{ - return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &cpu_version); -} - -void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy) -{ - CPUState *cs = CPU(cpu); - int ret; - - ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy); - if (ret && mpic_proxy) { - error_report("This KVM version does not support EPR"); - exit(1); - } -} - -int kvmppc_smt_threads(void) -{ - return cap_ppc_smt ? cap_ppc_smt : 1; -} - -#ifdef TARGET_PPC64 -off_t kvmppc_alloc_rma(void **rma) -{ - off_t size; - int fd; - struct kvm_allocate_rma ret; - - /* If cap_ppc_rma == 0, contiguous RMA allocation is not supported - * if cap_ppc_rma == 1, contiguous RMA allocation is supported, but - * not necessary on this hardware - * if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware - * - * FIXME: We should allow the user to force contiguous RMA - * allocation in the cap_ppc_rma==1 case. - */ - if (cap_ppc_rma < 2) { - return 0; - } - - fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret); - if (fd < 0) { - fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n", - strerror(errno)); - return -1; - } - - size = MIN(ret.rma_size, 256ul << 20); - - *rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); - if (*rma == MAP_FAILED) { - fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno)); - return -1; - }; - - return size; -} - -uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift) -{ - struct kvm_ppc_smmu_info info; - long rampagesize, best_page_shift; - int i; - - if (cap_ppc_rma >= 2) { - return current_size; - } - - /* Find the largest hardware supported page size that's less than - * or equal to the (logical) backing page size of guest RAM */ - kvm_get_smmu_info(POWERPC_CPU(first_cpu), &info); - rampagesize = getrampagesize(); - best_page_shift = 0; - - for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) { - struct kvm_ppc_one_seg_page_size *sps = &info.sps[i]; - - if (!sps->page_shift) { - continue; - } - - if ((sps->page_shift > best_page_shift) - && ((1UL << sps->page_shift) <= rampagesize)) { - best_page_shift = sps->page_shift; - } - } - - return MIN(current_size, - 1ULL << (best_page_shift + hash_shift - 7)); -} -#endif - -bool kvmppc_spapr_use_multitce(void) -{ - return cap_spapr_multitce; -} - -void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd, - bool need_vfio) -{ - struct kvm_create_spapr_tce args = { - .liobn = liobn, - .window_size = window_size, - }; - long len; - int fd; - void *table; - - /* Must set fd to -1 so we don't try to munmap when called for - * destroying the table, which the upper layers -will- do - */ - *pfd = -1; - if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) { - return NULL; - } - - fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args); - if (fd < 0) { - fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n", - liobn); - return NULL; - } - - len = (window_size / SPAPR_TCE_PAGE_SIZE) * sizeof(uint64_t); - /* FIXME: round this up to page size */ - - table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); - if (table == MAP_FAILED) { - fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n", - liobn); - close(fd); - return NULL; - } - - *pfd = fd; - return table; -} - -int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table) -{ - long len; - - if (fd < 0) { - return -1; - } - - len = nb_table * sizeof(uint64_t); - if ((munmap(table, len) < 0) || - (close(fd) < 0)) { - fprintf(stderr, "KVM: Unexpected error removing TCE table: %s", - strerror(errno)); - /* Leak the table */ - } - - return 0; -} - -int kvmppc_reset_htab(int shift_hint) -{ - uint32_t shift = shift_hint; - - if (!kvm_enabled()) { - /* Full emulation, tell caller to allocate htab itself */ - return 0; - } - if (kvm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) { - int ret; - ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift); - if (ret == -ENOTTY) { - /* At least some versions of PR KVM advertise the - * capability, but don't implement the ioctl(). Oops. - * Return 0 so that we allocate the htab in qemu, as is - * correct for PR. */ - return 0; - } else if (ret < 0) { - return ret; - } - return shift; - } - - /* We have a kernel that predates the htab reset calls. For PR - * KVM, we need to allocate the htab ourselves, for an HV KVM of - * this era, it has allocated a 16MB fixed size hash table already. */ - if (kvmppc_is_pr(kvm_state)) { - /* PR - tell caller to allocate htab */ - return 0; - } else { - /* HV - assume 16MB kernel allocated htab */ - return 24; - } -} - -static inline uint32_t mfpvr(void) -{ - uint32_t pvr; - - asm ("mfpvr %0" - : "=r"(pvr)); - return pvr; -} - -static void alter_insns(uint64_t *word, uint64_t flags, bool on) -{ - if (on) { - *word |= flags; - } else { - *word &= ~flags; - } -} - -static void kvmppc_host_cpu_initfn(Object *obj) -{ - assert(kvm_enabled()); -} - -static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data) -{ - DeviceClass *dc = DEVICE_CLASS(oc); - PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc); - uint32_t vmx = kvmppc_get_vmx(); - uint32_t dfp = kvmppc_get_dfp(); - uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size"); - uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size"); - - /* Now fix up the class with information we can query from the host */ - pcc->pvr = mfpvr(); - - if (vmx != -1) { - /* Only override when we know what the host supports */ - alter_insns(&pcc->insns_flags, PPC_ALTIVEC, vmx > 0); - alter_insns(&pcc->insns_flags2, PPC2_VSX, vmx > 1); - } - if (dfp != -1) { - /* Only override when we know what the host supports */ - alter_insns(&pcc->insns_flags2, PPC2_DFP, dfp); - } - - if (dcache_size != -1) { - pcc->l1_dcache_size = dcache_size; - } - - if (icache_size != -1) { - pcc->l1_icache_size = icache_size; - } - - /* Reason: kvmppc_host_cpu_initfn() dies when !kvm_enabled() */ - dc->cannot_destroy_with_object_finalize_yet = true; -} - -bool kvmppc_has_cap_epr(void) -{ - return cap_epr; -} - -bool kvmppc_has_cap_htab_fd(void) -{ - return cap_htab_fd; -} - -bool kvmppc_has_cap_fixup_hcalls(void) -{ - return cap_fixup_hcalls; -} - -bool kvmppc_has_cap_htm(void) -{ - return cap_htm; -} - -static PowerPCCPUClass *ppc_cpu_get_family_class(PowerPCCPUClass *pcc) -{ - ObjectClass *oc = OBJECT_CLASS(pcc); - - while (oc && !object_class_is_abstract(oc)) { - oc = object_class_get_parent(oc); - } - assert(oc); - - return POWERPC_CPU_CLASS(oc); -} - -PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void) -{ - uint32_t host_pvr = mfpvr(); - PowerPCCPUClass *pvr_pcc; - - pvr_pcc = ppc_cpu_class_by_pvr(host_pvr); - if (pvr_pcc == NULL) { - pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr); - } - - return pvr_pcc; -} - -static int kvm_ppc_register_host_cpu_type(void) -{ - TypeInfo type_info = { - .name = TYPE_HOST_POWERPC_CPU, - .instance_init = kvmppc_host_cpu_initfn, - .class_init = kvmppc_host_cpu_class_init, - }; - PowerPCCPUClass *pvr_pcc; - DeviceClass *dc; - - pvr_pcc = kvm_ppc_get_host_cpu_class(); - if (pvr_pcc == NULL) { - return -1; - } - type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc)); - type_register(&type_info); - - /* Register generic family CPU class for a family */ - pvr_pcc = ppc_cpu_get_family_class(pvr_pcc); - dc = DEVICE_CLASS(pvr_pcc); - type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc)); - type_info.name = g_strdup_printf("%s-"TYPE_POWERPC_CPU, dc->desc); - type_register(&type_info); - -#if defined(TARGET_PPC64) - type_info.name = g_strdup_printf("%s-"TYPE_SPAPR_CPU_CORE, "host"); - type_info.parent = TYPE_SPAPR_CPU_CORE, - type_info.instance_size = sizeof(sPAPRCPUCore); - type_info.instance_init = NULL; - type_info.class_init = spapr_cpu_core_class_init; - type_info.class_data = (void *) "host"; - type_register(&type_info); - g_free((void *)type_info.name); - - /* Register generic spapr CPU family class for current host CPU type */ - type_info.name = g_strdup_printf("%s-"TYPE_SPAPR_CPU_CORE, dc->desc); - type_info.class_data = (void *) dc->desc; - type_register(&type_info); - g_free((void *)type_info.name); -#endif - - return 0; -} - -int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function) -{ - struct kvm_rtas_token_args args = { - .token = token, - }; - - if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) { - return -ENOENT; - } - - strncpy(args.name, function, sizeof(args.name)); - - return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args); -} - -int kvmppc_get_htab_fd(bool write) -{ - struct kvm_get_htab_fd s = { - .flags = write ? KVM_GET_HTAB_WRITE : 0, - .start_index = 0, - }; - - if (!cap_htab_fd) { - fprintf(stderr, "KVM version doesn't support saving the hash table\n"); - return -1; - } - - return kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s); -} - -int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns) -{ - int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); - uint8_t buf[bufsize]; - ssize_t rc; - - do { - rc = read(fd, buf, bufsize); - if (rc < 0) { - fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n", - strerror(errno)); - return rc; - } else if (rc) { - uint8_t *buffer = buf; - ssize_t n = rc; - while (n) { - struct kvm_get_htab_header *head = - (struct kvm_get_htab_header *) buffer; - size_t chunksize = sizeof(*head) + - HASH_PTE_SIZE_64 * head->n_valid; - - qemu_put_be32(f, head->index); - qemu_put_be16(f, head->n_valid); - qemu_put_be16(f, head->n_invalid); - qemu_put_buffer(f, (void *)(head + 1), - HASH_PTE_SIZE_64 * head->n_valid); - - buffer += chunksize; - n -= chunksize; - } - } - } while ((rc != 0) - && ((max_ns < 0) - || ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns))); - - return (rc == 0) ? 1 : 0; -} - -int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index, - uint16_t n_valid, uint16_t n_invalid) -{ - struct kvm_get_htab_header *buf; - size_t chunksize = sizeof(*buf) + n_valid*HASH_PTE_SIZE_64; - ssize_t rc; - - buf = alloca(chunksize); - buf->index = index; - buf->n_valid = n_valid; - buf->n_invalid = n_invalid; - - qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64*n_valid); - - rc = write(fd, buf, chunksize); - if (rc < 0) { - fprintf(stderr, "Error writing KVM hash table: %s\n", - strerror(errno)); - return rc; - } - if (rc != chunksize) { - /* We should never get a short write on a single chunk */ - fprintf(stderr, "Short write, restoring KVM hash table\n"); - return -1; - } - return 0; -} - -bool kvm_arch_stop_on_emulation_error(CPUState *cpu) -{ - return true; -} - -int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) -{ - return 1; -} - -int kvm_arch_on_sigbus(int code, void *addr) -{ - return 1; -} - -void kvm_arch_init_irq_routing(KVMState *s) -{ -} - -struct kvm_get_htab_buf { - struct kvm_get_htab_header header; - /* - * We require one extra byte for read - */ - target_ulong hpte[(HPTES_PER_GROUP * 2) + 1]; -}; - -uint64_t kvmppc_hash64_read_pteg(PowerPCCPU *cpu, target_ulong pte_index) -{ - int htab_fd; - struct kvm_get_htab_fd ghf; - struct kvm_get_htab_buf *hpte_buf; - - ghf.flags = 0; - ghf.start_index = pte_index; - htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf); - if (htab_fd < 0) { - goto error_out; - } - - hpte_buf = g_malloc0(sizeof(*hpte_buf)); - /* - * Read the hpte group - */ - if (read(htab_fd, hpte_buf, sizeof(*hpte_buf)) < 0) { - goto out_close; - } - - close(htab_fd); - return (uint64_t)(uintptr_t) hpte_buf->hpte; - -out_close: - g_free(hpte_buf); - close(htab_fd); -error_out: - return 0; -} - -void kvmppc_hash64_free_pteg(uint64_t token) -{ - struct kvm_get_htab_buf *htab_buf; - - htab_buf = container_of((void *)(uintptr_t) token, struct kvm_get_htab_buf, - hpte); - g_free(htab_buf); - return; -} - -void kvmppc_hash64_write_pte(CPUPPCState *env, target_ulong pte_index, - target_ulong pte0, target_ulong pte1) -{ - int htab_fd; - struct kvm_get_htab_fd ghf; - struct kvm_get_htab_buf hpte_buf; - - ghf.flags = 0; - ghf.start_index = 0; /* Ignored */ - htab_fd = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &ghf); - if (htab_fd < 0) { - goto error_out; - } - - hpte_buf.header.n_valid = 1; - hpte_buf.header.n_invalid = 0; - hpte_buf.header.index = pte_index; - hpte_buf.hpte[0] = pte0; - hpte_buf.hpte[1] = pte1; - /* - * Write the hpte entry. - * CAUTION: write() has the warn_unused_result attribute. Hence we - * need to check the return value, even though we do nothing. - */ - if (write(htab_fd, &hpte_buf, sizeof(hpte_buf)) < 0) { - goto out_close; - } - -out_close: - close(htab_fd); - return; - -error_out: - return; -} - -int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, - uint64_t address, uint32_t data, PCIDevice *dev) -{ - return 0; -} - -int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, - int vector, PCIDevice *dev) -{ - return 0; -} - -int kvm_arch_release_virq_post(int virq) -{ - return 0; -} - -int kvm_arch_msi_data_to_gsi(uint32_t data) -{ - return data & 0xffff; -} - -int kvmppc_enable_hwrng(void) -{ - if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) { - return -1; - } - - return kvmppc_enable_hcall(kvm_state, H_RANDOM); -} |