aboutsummaryrefslogtreecommitdiff
path: root/target-ppc/int_helper.c
diff options
context:
space:
mode:
authorBlue Swirl <blauwirbel@gmail.com>2012-05-30 04:23:28 +0000
committerAlexander Graf <agraf@suse.de>2012-06-24 01:04:41 +0200
commit64654ded79762878a6207ccb9b299c69e9a90acf (patch)
treee5bc037aa5896b1f58f084d554cebf6c8e677214 /target-ppc/int_helper.c
parent8e70394950ed55dd7f0a5f9b5f831cf70089d0df (diff)
ppc: Split integer and vector ops
Move integer and vector ops to int_helper.c. Signed-off-by: Blue Swirl <blauwirbel@gmail.com> Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Andreas Färber <afaerber@suse.de> Signed-off-by: Alexander Graf <agraf@suse.de>
Diffstat (limited to 'target-ppc/int_helper.c')
-rw-r--r--target-ppc/int_helper.c1538
1 files changed, 1538 insertions, 0 deletions
diff --git a/target-ppc/int_helper.c b/target-ppc/int_helper.c
new file mode 100644
index 0000000000..71c7304b57
--- /dev/null
+++ b/target-ppc/int_helper.c
@@ -0,0 +1,1538 @@
+/*
+ * PowerPC integer and vector emulation helpers for QEMU.
+ *
+ * Copyright (c) 2003-2007 Jocelyn Mayer
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+#include "cpu.h"
+#include "dyngen-exec.h"
+#include "host-utils.h"
+#include "helper.h"
+
+#include "helper_regs.h"
+/*****************************************************************************/
+/* Fixed point operations helpers */
+#if defined(TARGET_PPC64)
+
+/* multiply high word */
+uint64_t helper_mulhd(uint64_t arg1, uint64_t arg2)
+{
+ uint64_t tl, th;
+
+ muls64(&tl, &th, arg1, arg2);
+ return th;
+}
+
+/* multiply high word unsigned */
+uint64_t helper_mulhdu(uint64_t arg1, uint64_t arg2)
+{
+ uint64_t tl, th;
+
+ mulu64(&tl, &th, arg1, arg2);
+ return th;
+}
+
+uint64_t helper_mulldo(uint64_t arg1, uint64_t arg2)
+{
+ int64_t th;
+ uint64_t tl;
+
+ muls64(&tl, (uint64_t *)&th, arg1, arg2);
+ /* If th != 0 && th != -1, then we had an overflow */
+ if (likely((uint64_t)(th + 1) <= 1)) {
+ env->xer &= ~(1 << XER_OV);
+ } else {
+ env->xer |= (1 << XER_OV) | (1 << XER_SO);
+ }
+ return (int64_t)tl;
+}
+#endif
+
+target_ulong helper_cntlzw(target_ulong t)
+{
+ return clz32(t);
+}
+
+#if defined(TARGET_PPC64)
+target_ulong helper_cntlzd(target_ulong t)
+{
+ return clz64(t);
+}
+#endif
+
+/* shift right arithmetic helper */
+target_ulong helper_sraw(target_ulong value, target_ulong shift)
+{
+ int32_t ret;
+
+ if (likely(!(shift & 0x20))) {
+ if (likely((uint32_t)shift != 0)) {
+ shift &= 0x1f;
+ ret = (int32_t)value >> shift;
+ if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
+ env->xer &= ~(1 << XER_CA);
+ } else {
+ env->xer |= (1 << XER_CA);
+ }
+ } else {
+ ret = (int32_t)value;
+ env->xer &= ~(1 << XER_CA);
+ }
+ } else {
+ ret = (int32_t)value >> 31;
+ if (ret) {
+ env->xer |= (1 << XER_CA);
+ } else {
+ env->xer &= ~(1 << XER_CA);
+ }
+ }
+ return (target_long)ret;
+}
+
+#if defined(TARGET_PPC64)
+target_ulong helper_srad(target_ulong value, target_ulong shift)
+{
+ int64_t ret;
+
+ if (likely(!(shift & 0x40))) {
+ if (likely((uint64_t)shift != 0)) {
+ shift &= 0x3f;
+ ret = (int64_t)value >> shift;
+ if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
+ env->xer &= ~(1 << XER_CA);
+ } else {
+ env->xer |= (1 << XER_CA);
+ }
+ } else {
+ ret = (int64_t)value;
+ env->xer &= ~(1 << XER_CA);
+ }
+ } else {
+ ret = (int64_t)value >> 63;
+ if (ret) {
+ env->xer |= (1 << XER_CA);
+ } else {
+ env->xer &= ~(1 << XER_CA);
+ }
+ }
+ return ret;
+}
+#endif
+
+#if defined(TARGET_PPC64)
+target_ulong helper_popcntb(target_ulong val)
+{
+ val = (val & 0x5555555555555555ULL) + ((val >> 1) &
+ 0x5555555555555555ULL);
+ val = (val & 0x3333333333333333ULL) + ((val >> 2) &
+ 0x3333333333333333ULL);
+ val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
+ 0x0f0f0f0f0f0f0f0fULL);
+ return val;
+}
+
+target_ulong helper_popcntw(target_ulong val)
+{
+ val = (val & 0x5555555555555555ULL) + ((val >> 1) &
+ 0x5555555555555555ULL);
+ val = (val & 0x3333333333333333ULL) + ((val >> 2) &
+ 0x3333333333333333ULL);
+ val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
+ 0x0f0f0f0f0f0f0f0fULL);
+ val = (val & 0x00ff00ff00ff00ffULL) + ((val >> 8) &
+ 0x00ff00ff00ff00ffULL);
+ val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) &
+ 0x0000ffff0000ffffULL);
+ return val;
+}
+
+target_ulong helper_popcntd(target_ulong val)
+{
+ return ctpop64(val);
+}
+#else
+target_ulong helper_popcntb(target_ulong val)
+{
+ val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
+ val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
+ val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
+ return val;
+}
+
+target_ulong helper_popcntw(target_ulong val)
+{
+ val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
+ val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
+ val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
+ val = (val & 0x00ff00ff) + ((val >> 8) & 0x00ff00ff);
+ val = (val & 0x0000ffff) + ((val >> 16) & 0x0000ffff);
+ return val;
+}
+#endif
+
+/*****************************************************************************/
+/* PowerPC 601 specific instructions (POWER bridge) */
+target_ulong helper_div(target_ulong arg1, target_ulong arg2)
+{
+ uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
+
+ if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
+ (int32_t)arg2 == 0) {
+ env->spr[SPR_MQ] = 0;
+ return INT32_MIN;
+ } else {
+ env->spr[SPR_MQ] = tmp % arg2;
+ return tmp / (int32_t)arg2;
+ }
+}
+
+target_ulong helper_divo(target_ulong arg1, target_ulong arg2)
+{
+ uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
+
+ if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
+ (int32_t)arg2 == 0) {
+ env->xer |= (1 << XER_OV) | (1 << XER_SO);
+ env->spr[SPR_MQ] = 0;
+ return INT32_MIN;
+ } else {
+ env->spr[SPR_MQ] = tmp % arg2;
+ tmp /= (int32_t)arg2;
+ if ((int32_t)tmp != tmp) {
+ env->xer |= (1 << XER_OV) | (1 << XER_SO);
+ } else {
+ env->xer &= ~(1 << XER_OV);
+ }
+ return tmp;
+ }
+}
+
+target_ulong helper_divs(target_ulong arg1, target_ulong arg2)
+{
+ if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
+ (int32_t)arg2 == 0) {
+ env->spr[SPR_MQ] = 0;
+ return INT32_MIN;
+ } else {
+ env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
+ return (int32_t)arg1 / (int32_t)arg2;
+ }
+}
+
+target_ulong helper_divso(target_ulong arg1, target_ulong arg2)
+{
+ if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
+ (int32_t)arg2 == 0) {
+ env->xer |= (1 << XER_OV) | (1 << XER_SO);
+ env->spr[SPR_MQ] = 0;
+ return INT32_MIN;
+ } else {
+ env->xer &= ~(1 << XER_OV);
+ env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
+ return (int32_t)arg1 / (int32_t)arg2;
+ }
+}
+
+/*****************************************************************************/
+/* 602 specific instructions */
+/* mfrom is the most crazy instruction ever seen, imho ! */
+/* Real implementation uses a ROM table. Do the same */
+/* Extremely decomposed:
+ * -arg / 256
+ * return 256 * log10(10 + 1.0) + 0.5
+ */
+#if !defined(CONFIG_USER_ONLY)
+target_ulong helper_602_mfrom(target_ulong arg)
+{
+ if (likely(arg < 602)) {
+#include "mfrom_table.c"
+ return mfrom_ROM_table[arg];
+ } else {
+ return 0;
+ }
+}
+#endif
+
+/*****************************************************************************/
+/* Altivec extension helpers */
+#if defined(HOST_WORDS_BIGENDIAN)
+#define HI_IDX 0
+#define LO_IDX 1
+#else
+#define HI_IDX 1
+#define LO_IDX 0
+#endif
+
+#if defined(HOST_WORDS_BIGENDIAN)
+#define VECTOR_FOR_INORDER_I(index, element) \
+ for (index = 0; index < ARRAY_SIZE(r->element); index++)
+#else
+#define VECTOR_FOR_INORDER_I(index, element) \
+ for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
+#endif
+
+/* If X is a NaN, store the corresponding QNaN into RESULT. Otherwise,
+ * execute the following block. */
+#define DO_HANDLE_NAN(result, x) \
+ if (float32_is_any_nan(x)) { \
+ CPU_FloatU __f; \
+ __f.f = x; \
+ __f.l = __f.l | (1 << 22); /* Set QNaN bit. */ \
+ result = __f.f; \
+ } else
+
+#define HANDLE_NAN1(result, x) \
+ DO_HANDLE_NAN(result, x)
+#define HANDLE_NAN2(result, x, y) \
+ DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y)
+#define HANDLE_NAN3(result, x, y, z) \
+ DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) DO_HANDLE_NAN(result, z)
+
+/* Saturating arithmetic helpers. */
+#define SATCVT(from, to, from_type, to_type, min, max) \
+ static inline to_type cvt##from##to(from_type x, int *sat) \
+ { \
+ to_type r; \
+ \
+ if (x < (from_type)min) { \
+ r = min; \
+ *sat = 1; \
+ } else if (x > (from_type)max) { \
+ r = max; \
+ *sat = 1; \
+ } else { \
+ r = x; \
+ } \
+ return r; \
+ }
+#define SATCVTU(from, to, from_type, to_type, min, max) \
+ static inline to_type cvt##from##to(from_type x, int *sat) \
+ { \
+ to_type r; \
+ \
+ if (x > (from_type)max) { \
+ r = max; \
+ *sat = 1; \
+ } else { \
+ r = x; \
+ } \
+ return r; \
+ }
+SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX)
+SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX)
+SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX)
+
+SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX)
+SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX)
+SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX)
+SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX)
+SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX)
+SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX)
+#undef SATCVT
+#undef SATCVTU
+
+void helper_lvsl(ppc_avr_t *r, target_ulong sh)
+{
+ int i, j = (sh & 0xf);
+
+ VECTOR_FOR_INORDER_I(i, u8) {
+ r->u8[i] = j++;
+ }
+}
+
+void helper_lvsr(ppc_avr_t *r, target_ulong sh)
+{
+ int i, j = 0x10 - (sh & 0xf);
+
+ VECTOR_FOR_INORDER_I(i, u8) {
+ r->u8[i] = j++;
+ }
+}
+
+void helper_mtvscr(ppc_avr_t *r)
+{
+#if defined(HOST_WORDS_BIGENDIAN)
+ env->vscr = r->u32[3];
+#else
+ env->vscr = r->u32[0];
+#endif
+ set_flush_to_zero(vscr_nj, &env->vec_status);
+}
+
+void helper_vaddcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
+ r->u32[i] = ~a->u32[i] < b->u32[i];
+ }
+}
+
+#define VARITH_DO(name, op, element) \
+ void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
+ r->element[i] = a->element[i] op b->element[i]; \
+ } \
+ }
+#define VARITH(suffix, element) \
+ VARITH_DO(add##suffix, +, element) \
+ VARITH_DO(sub##suffix, -, element)
+VARITH(ubm, u8)
+VARITH(uhm, u16)
+VARITH(uwm, u32)
+#undef VARITH_DO
+#undef VARITH
+
+#define VARITHFP(suffix, func) \
+ void helper_v##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
+ HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \
+ r->f[i] = func(a->f[i], b->f[i], &env->vec_status); \
+ } \
+ } \
+ }
+VARITHFP(addfp, float32_add)
+VARITHFP(subfp, float32_sub)
+#undef VARITHFP
+
+#define VARITHSAT_CASE(type, op, cvt, element) \
+ { \
+ type result = (type)a->element[i] op (type)b->element[i]; \
+ r->element[i] = cvt(result, &sat); \
+ }
+
+#define VARITHSAT_DO(name, op, optype, cvt, element) \
+ void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int sat = 0; \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
+ switch (sizeof(r->element[0])) { \
+ case 1: \
+ VARITHSAT_CASE(optype, op, cvt, element); \
+ break; \
+ case 2: \
+ VARITHSAT_CASE(optype, op, cvt, element); \
+ break; \
+ case 4: \
+ VARITHSAT_CASE(optype, op, cvt, element); \
+ break; \
+ } \
+ } \
+ if (sat) { \
+ env->vscr |= (1 << VSCR_SAT); \
+ } \
+ }
+#define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
+ VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
+ VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
+#define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
+ VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
+ VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
+VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb)
+VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh)
+VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw)
+VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub)
+VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh)
+VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw)
+#undef VARITHSAT_CASE
+#undef VARITHSAT_DO
+#undef VARITHSAT_SIGNED
+#undef VARITHSAT_UNSIGNED
+
+#define VAVG_DO(name, element, etype) \
+ void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
+ etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
+ r->element[i] = x >> 1; \
+ } \
+ }
+
+#define VAVG(type, signed_element, signed_type, unsigned_element, \
+ unsigned_type) \
+ VAVG_DO(avgs##type, signed_element, signed_type) \
+ VAVG_DO(avgu##type, unsigned_element, unsigned_type)
+VAVG(b, s8, int16_t, u8, uint16_t)
+VAVG(h, s16, int32_t, u16, uint32_t)
+VAVG(w, s32, int64_t, u32, uint64_t)
+#undef VAVG_DO
+#undef VAVG
+
+#define VCF(suffix, cvt, element) \
+ void helper_vcf##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \
+ { \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
+ float32 t = cvt(b->element[i], &env->vec_status); \
+ r->f[i] = float32_scalbn(t, -uim, &env->vec_status); \
+ } \
+ }
+VCF(ux, uint32_to_float32, u32)
+VCF(sx, int32_to_float32, s32)
+#undef VCF
+
+#define VCMP_DO(suffix, compare, element, record) \
+ void helper_vcmp##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ uint32_t ones = (uint32_t)-1; \
+ uint32_t all = ones; \
+ uint32_t none = 0; \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
+ uint32_t result = (a->element[i] compare b->element[i] ? \
+ ones : 0x0); \
+ switch (sizeof(a->element[0])) { \
+ case 4: \
+ r->u32[i] = result; \
+ break; \
+ case 2: \
+ r->u16[i] = result; \
+ break; \
+ case 1: \
+ r->u8[i] = result; \
+ break; \
+ } \
+ all &= result; \
+ none |= result; \
+ } \
+ if (record) { \
+ env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
+ } \
+ }
+#define VCMP(suffix, compare, element) \
+ VCMP_DO(suffix, compare, element, 0) \
+ VCMP_DO(suffix##_dot, compare, element, 1)
+VCMP(equb, ==, u8)
+VCMP(equh, ==, u16)
+VCMP(equw, ==, u32)
+VCMP(gtub, >, u8)
+VCMP(gtuh, >, u16)
+VCMP(gtuw, >, u32)
+VCMP(gtsb, >, s8)
+VCMP(gtsh, >, s16)
+VCMP(gtsw, >, s32)
+#undef VCMP_DO
+#undef VCMP
+
+#define VCMPFP_DO(suffix, compare, order, record) \
+ void helper_vcmp##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ uint32_t ones = (uint32_t)-1; \
+ uint32_t all = ones; \
+ uint32_t none = 0; \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
+ uint32_t result; \
+ int rel = float32_compare_quiet(a->f[i], b->f[i], \
+ &env->vec_status); \
+ if (rel == float_relation_unordered) { \
+ result = 0; \
+ } else if (rel compare order) { \
+ result = ones; \
+ } else { \
+ result = 0; \
+ } \
+ r->u32[i] = result; \
+ all &= result; \
+ none |= result; \
+ } \
+ if (record) { \
+ env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
+ } \
+ }
+#define VCMPFP(suffix, compare, order) \
+ VCMPFP_DO(suffix, compare, order, 0) \
+ VCMPFP_DO(suffix##_dot, compare, order, 1)
+VCMPFP(eqfp, ==, float_relation_equal)
+VCMPFP(gefp, !=, float_relation_less)
+VCMPFP(gtfp, ==, float_relation_greater)
+#undef VCMPFP_DO
+#undef VCMPFP
+
+static inline void vcmpbfp_internal(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
+ int record)
+{
+ int i;
+ int all_in = 0;
+
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) {
+ int le_rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status);
+ if (le_rel == float_relation_unordered) {
+ r->u32[i] = 0xc0000000;
+ /* ALL_IN does not need to be updated here. */
+ } else {
+ float32 bneg = float32_chs(b->f[i]);
+ int ge_rel = float32_compare_quiet(a->f[i], bneg, &env->vec_status);
+ int le = le_rel != float_relation_greater;
+ int ge = ge_rel != float_relation_less;
+
+ r->u32[i] = ((!le) << 31) | ((!ge) << 30);
+ all_in |= (!le | !ge);
+ }
+ }
+ if (record) {
+ env->crf[6] = (all_in == 0) << 1;
+ }
+}
+
+void helper_vcmpbfp(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ vcmpbfp_internal(r, a, b, 0);
+}
+
+void helper_vcmpbfp_dot(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ vcmpbfp_internal(r, a, b, 1);
+}
+
+#define VCT(suffix, satcvt, element) \
+ void helper_vct##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \
+ { \
+ int i; \
+ int sat = 0; \
+ float_status s = env->vec_status; \
+ \
+ set_float_rounding_mode(float_round_to_zero, &s); \
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
+ if (float32_is_any_nan(b->f[i])) { \
+ r->element[i] = 0; \
+ } else { \
+ float64 t = float32_to_float64(b->f[i], &s); \
+ int64_t j; \
+ \
+ t = float64_scalbn(t, uim, &s); \
+ j = float64_to_int64(t, &s); \
+ r->element[i] = satcvt(j, &sat); \
+ } \
+ } \
+ if (sat) { \
+ env->vscr |= (1 << VSCR_SAT); \
+ } \
+ }
+VCT(uxs, cvtsduw, u32)
+VCT(sxs, cvtsdsw, s32)
+#undef VCT
+
+void helper_vmaddfp(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) {
+ HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) {
+ /* Need to do the computation in higher precision and round
+ * once at the end. */
+ float64 af, bf, cf, t;
+
+ af = float32_to_float64(a->f[i], &env->vec_status);
+ bf = float32_to_float64(b->f[i], &env->vec_status);
+ cf = float32_to_float64(c->f[i], &env->vec_status);
+ t = float64_mul(af, cf, &env->vec_status);
+ t = float64_add(t, bf, &env->vec_status);
+ r->f[i] = float64_to_float32(t, &env->vec_status);
+ }
+ }
+}
+
+void helper_vmhaddshs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ int sat = 0;
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
+ int32_t prod = a->s16[i] * b->s16[i];
+ int32_t t = (int32_t)c->s16[i] + (prod >> 15);
+
+ r->s16[i] = cvtswsh(t, &sat);
+ }
+
+ if (sat) {
+ env->vscr |= (1 << VSCR_SAT);
+ }
+}
+
+void helper_vmhraddshs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ int sat = 0;
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
+ int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
+ int32_t t = (int32_t)c->s16[i] + (prod >> 15);
+ r->s16[i] = cvtswsh(t, &sat);
+ }
+
+ if (sat) {
+ env->vscr |= (1 << VSCR_SAT);
+ }
+}
+
+#define VMINMAX_DO(name, compare, element) \
+ void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
+ if (a->element[i] compare b->element[i]) { \
+ r->element[i] = b->element[i]; \
+ } else { \
+ r->element[i] = a->element[i]; \
+ } \
+ } \
+ }
+#define VMINMAX(suffix, element) \
+ VMINMAX_DO(min##suffix, >, element) \
+ VMINMAX_DO(max##suffix, <, element)
+VMINMAX(sb, s8)
+VMINMAX(sh, s16)
+VMINMAX(sw, s32)
+VMINMAX(ub, u8)
+VMINMAX(uh, u16)
+VMINMAX(uw, u32)
+#undef VMINMAX_DO
+#undef VMINMAX
+
+#define VMINMAXFP(suffix, rT, rF) \
+ void helper_v##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
+ HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \
+ if (float32_lt_quiet(a->f[i], b->f[i], \
+ &env->vec_status)) { \
+ r->f[i] = rT->f[i]; \
+ } else { \
+ r->f[i] = rF->f[i]; \
+ } \
+ } \
+ } \
+ }
+VMINMAXFP(minfp, a, b)
+VMINMAXFP(maxfp, b, a)
+#undef VMINMAXFP
+
+void helper_vmladduhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
+ int32_t prod = a->s16[i] * b->s16[i];
+ r->s16[i] = (int16_t) (prod + c->s16[i]);
+ }
+}
+
+#define VMRG_DO(name, element, highp) \
+ void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ ppc_avr_t result; \
+ int i; \
+ size_t n_elems = ARRAY_SIZE(r->element); \
+ \
+ for (i = 0; i < n_elems / 2; i++) { \
+ if (highp) { \
+ result.element[i*2+HI_IDX] = a->element[i]; \
+ result.element[i*2+LO_IDX] = b->element[i]; \
+ } else { \
+ result.element[n_elems - i * 2 - (1 + HI_IDX)] = \
+ b->element[n_elems - i - 1]; \
+ result.element[n_elems - i * 2 - (1 + LO_IDX)] = \
+ a->element[n_elems - i - 1]; \
+ } \
+ } \
+ *r = result; \
+ }
+#if defined(HOST_WORDS_BIGENDIAN)
+#define MRGHI 0
+#define MRGLO 1
+#else
+#define MRGHI 1
+#define MRGLO 0
+#endif
+#define VMRG(suffix, element) \
+ VMRG_DO(mrgl##suffix, element, MRGHI) \
+ VMRG_DO(mrgh##suffix, element, MRGLO)
+VMRG(b, u8)
+VMRG(h, u16)
+VMRG(w, u32)
+#undef VMRG_DO
+#undef VMRG
+#undef MRGHI
+#undef MRGLO
+
+void helper_vmsummbm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ int32_t prod[16];
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
+ prod[i] = (int32_t)a->s8[i] * b->u8[i];
+ }
+
+ VECTOR_FOR_INORDER_I(i, s32) {
+ r->s32[i] = c->s32[i] + prod[4 * i] + prod[4 * i + 1] +
+ prod[4 * i + 2] + prod[4 * i + 3];
+ }
+}
+
+void helper_vmsumshm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ int32_t prod[8];
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
+ prod[i] = a->s16[i] * b->s16[i];
+ }
+
+ VECTOR_FOR_INORDER_I(i, s32) {
+ r->s32[i] = c->s32[i] + prod[2 * i] + prod[2 * i + 1];
+ }
+}
+
+void helper_vmsumshs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ int32_t prod[8];
+ int i;
+ int sat = 0;
+
+ for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
+ prod[i] = (int32_t)a->s16[i] * b->s16[i];
+ }
+
+ VECTOR_FOR_INORDER_I(i, s32) {
+ int64_t t = (int64_t)c->s32[i] + prod[2 * i] + prod[2 * i + 1];
+
+ r->u32[i] = cvtsdsw(t, &sat);
+ }
+
+ if (sat) {
+ env->vscr |= (1 << VSCR_SAT);
+ }
+}
+
+void helper_vmsumubm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ uint16_t prod[16];
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
+ prod[i] = a->u8[i] * b->u8[i];
+ }
+
+ VECTOR_FOR_INORDER_I(i, u32) {
+ r->u32[i] = c->u32[i] + prod[4 * i] + prod[4 * i + 1] +
+ prod[4 * i + 2] + prod[4 * i + 3];
+ }
+}
+
+void helper_vmsumuhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ uint32_t prod[8];
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
+ prod[i] = a->u16[i] * b->u16[i];
+ }
+
+ VECTOR_FOR_INORDER_I(i, u32) {
+ r->u32[i] = c->u32[i] + prod[2 * i] + prod[2 * i + 1];
+ }
+}
+
+void helper_vmsumuhs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ uint32_t prod[8];
+ int i;
+ int sat = 0;
+
+ for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
+ prod[i] = a->u16[i] * b->u16[i];
+ }
+
+ VECTOR_FOR_INORDER_I(i, s32) {
+ uint64_t t = (uint64_t)c->u32[i] + prod[2 * i] + prod[2 * i + 1];
+
+ r->u32[i] = cvtuduw(t, &sat);
+ }
+
+ if (sat) {
+ env->vscr |= (1 << VSCR_SAT);
+ }
+}
+
+#define VMUL_DO(name, mul_element, prod_element, evenp) \
+ void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int i; \
+ \
+ VECTOR_FOR_INORDER_I(i, prod_element) { \
+ if (evenp) { \
+ r->prod_element[i] = a->mul_element[i * 2 + HI_IDX] * \
+ b->mul_element[i * 2 + HI_IDX]; \
+ } else { \
+ r->prod_element[i] = a->mul_element[i * 2 + LO_IDX] * \
+ b->mul_element[i * 2 + LO_IDX]; \
+ } \
+ } \
+ }
+#define VMUL(suffix, mul_element, prod_element) \
+ VMUL_DO(mule##suffix, mul_element, prod_element, 1) \
+ VMUL_DO(mulo##suffix, mul_element, prod_element, 0)
+VMUL(sb, s8, s16)
+VMUL(sh, s16, s32)
+VMUL(ub, u8, u16)
+VMUL(uh, u16, u32)
+#undef VMUL_DO
+#undef VMUL
+
+void helper_vnmsubfp(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) {
+ HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) {
+ /* Need to do the computation is higher precision and round
+ * once at the end. */
+ float64 af, bf, cf, t;
+
+ af = float32_to_float64(a->f[i], &env->vec_status);
+ bf = float32_to_float64(b->f[i], &env->vec_status);
+ cf = float32_to_float64(c->f[i], &env->vec_status);
+ t = float64_mul(af, cf, &env->vec_status);
+ t = float64_sub(t, bf, &env->vec_status);
+ t = float64_chs(t);
+ r->f[i] = float64_to_float32(t, &env->vec_status);
+ }
+ }
+}
+
+void helper_vperm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ ppc_avr_t result;
+ int i;
+
+ VECTOR_FOR_INORDER_I(i, u8) {
+ int s = c->u8[i] & 0x1f;
+#if defined(HOST_WORDS_BIGENDIAN)
+ int index = s & 0xf;
+#else
+ int index = 15 - (s & 0xf);
+#endif
+
+ if (s & 0x10) {
+ result.u8[i] = b->u8[index];
+ } else {
+ result.u8[i] = a->u8[index];
+ }
+ }
+ *r = result;
+}
+
+#if defined(HOST_WORDS_BIGENDIAN)
+#define PKBIG 1
+#else
+#define PKBIG 0
+#endif
+void helper_vpkpx(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ int i, j;
+ ppc_avr_t result;
+#if defined(HOST_WORDS_BIGENDIAN)
+ const ppc_avr_t *x[2] = { a, b };
+#else
+ const ppc_avr_t *x[2] = { b, a };
+#endif
+
+ VECTOR_FOR_INORDER_I(i, u64) {
+ VECTOR_FOR_INORDER_I(j, u32) {
+ uint32_t e = x[i]->u32[j];
+
+ result.u16[4*i+j] = (((e >> 9) & 0xfc00) |
+ ((e >> 6) & 0x3e0) |
+ ((e >> 3) & 0x1f));
+ }
+ }
+ *r = result;
+}
+
+#define VPK(suffix, from, to, cvt, dosat) \
+ void helper_vpk##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int i; \
+ int sat = 0; \
+ ppc_avr_t result; \
+ ppc_avr_t *a0 = PKBIG ? a : b; \
+ ppc_avr_t *a1 = PKBIG ? b : a; \
+ \
+ VECTOR_FOR_INORDER_I(i, from) { \
+ result.to[i] = cvt(a0->from[i], &sat); \
+ result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \
+ } \
+ *r = result; \
+ if (dosat && sat) { \
+ env->vscr |= (1 << VSCR_SAT); \
+ } \
+ }
+#define I(x, y) (x)
+VPK(shss, s16, s8, cvtshsb, 1)
+VPK(shus, s16, u8, cvtshub, 1)
+VPK(swss, s32, s16, cvtswsh, 1)
+VPK(swus, s32, u16, cvtswuh, 1)
+VPK(uhus, u16, u8, cvtuhub, 1)
+VPK(uwus, u32, u16, cvtuwuh, 1)
+VPK(uhum, u16, u8, I, 0)
+VPK(uwum, u32, u16, I, 0)
+#undef I
+#undef VPK
+#undef PKBIG
+
+void helper_vrefp(ppc_avr_t *r, ppc_avr_t *b)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) {
+ HANDLE_NAN1(r->f[i], b->f[i]) {
+ r->f[i] = float32_div(float32_one, b->f[i], &env->vec_status);
+ }
+ }
+}
+
+#define VRFI(suffix, rounding) \
+ void helper_vrfi##suffix(ppc_avr_t *r, ppc_avr_t *b) \
+ { \
+ int i; \
+ float_status s = env->vec_status; \
+ \
+ set_float_rounding_mode(rounding, &s); \
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
+ HANDLE_NAN1(r->f[i], b->f[i]) { \
+ r->f[i] = float32_round_to_int (b->f[i], &s); \
+ } \
+ } \
+ }
+VRFI(n, float_round_nearest_even)
+VRFI(m, float_round_down)
+VRFI(p, float_round_up)
+VRFI(z, float_round_to_zero)
+#undef VRFI
+
+#define VROTATE(suffix, element) \
+ void helper_vrl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
+ unsigned int mask = ((1 << \
+ (3 + (sizeof(a->element[0]) >> 1))) \
+ - 1); \
+ unsigned int shift = b->element[i] & mask; \
+ r->element[i] = (a->element[i] << shift) | \
+ (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
+ } \
+ }
+VROTATE(b, u8)
+VROTATE(h, u16)
+VROTATE(w, u32)
+#undef VROTATE
+
+void helper_vrsqrtefp(ppc_avr_t *r, ppc_avr_t *b)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) {
+ HANDLE_NAN1(r->f[i], b->f[i]) {
+ float32 t = float32_sqrt(b->f[i], &env->vec_status);
+
+ r->f[i] = float32_div(float32_one, t, &env->vec_status);
+ }
+ }
+}
+
+void helper_vsel(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
+ r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
+}
+
+void helper_vexptefp(ppc_avr_t *r, ppc_avr_t *b)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) {
+ HANDLE_NAN1(r->f[i], b->f[i]) {
+ r->f[i] = float32_exp2(b->f[i], &env->vec_status);
+ }
+ }
+}
+
+void helper_vlogefp(ppc_avr_t *r, ppc_avr_t *b)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) {
+ HANDLE_NAN1(r->f[i], b->f[i]) {
+ r->f[i] = float32_log2(b->f[i], &env->vec_status);
+ }
+ }
+}
+
+#if defined(HOST_WORDS_BIGENDIAN)
+#define LEFT 0
+#define RIGHT 1
+#else
+#define LEFT 1
+#define RIGHT 0
+#endif
+/* The specification says that the results are undefined if all of the
+ * shift counts are not identical. We check to make sure that they are
+ * to conform to what real hardware appears to do. */
+#define VSHIFT(suffix, leftp) \
+ void helper_vs##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int shift = b->u8[LO_IDX*15] & 0x7; \
+ int doit = 1; \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \
+ doit = doit && ((b->u8[i] & 0x7) == shift); \
+ } \
+ if (doit) { \
+ if (shift == 0) { \
+ *r = *a; \
+ } else if (leftp) { \
+ uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \
+ \
+ r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \
+ r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \
+ } else { \
+ uint64_t carry = a->u64[HI_IDX] << (64 - shift); \
+ \
+ r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \
+ r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \
+ } \
+ } \
+ }
+VSHIFT(l, LEFT)
+VSHIFT(r, RIGHT)
+#undef VSHIFT
+#undef LEFT
+#undef RIGHT
+
+#define VSL(suffix, element) \
+ void helper_vsl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
+ unsigned int mask = ((1 << \
+ (3 + (sizeof(a->element[0]) >> 1))) \
+ - 1); \
+ unsigned int shift = b->element[i] & mask; \
+ \
+ r->element[i] = a->element[i] << shift; \
+ } \
+ }
+VSL(b, u8)
+VSL(h, u16)
+VSL(w, u32)
+#undef VSL
+
+void helper_vsldoi(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
+{
+ int sh = shift & 0xf;
+ int i;
+ ppc_avr_t result;
+
+#if defined(HOST_WORDS_BIGENDIAN)
+ for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
+ int index = sh + i;
+ if (index > 0xf) {
+ result.u8[i] = b->u8[index - 0x10];
+ } else {
+ result.u8[i] = a->u8[index];
+ }
+ }
+#else
+ for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
+ int index = (16 - sh) + i;
+ if (index > 0xf) {
+ result.u8[i] = a->u8[index - 0x10];
+ } else {
+ result.u8[i] = b->u8[index];
+ }
+ }
+#endif
+ *r = result;
+}
+
+void helper_vslo(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
+
+#if defined(HOST_WORDS_BIGENDIAN)
+ memmove(&r->u8[0], &a->u8[sh], 16 - sh);
+ memset(&r->u8[16-sh], 0, sh);
+#else
+ memmove(&r->u8[sh], &a->u8[0], 16 - sh);
+ memset(&r->u8[0], 0, sh);
+#endif
+}
+
+/* Experimental testing shows that hardware masks the immediate. */
+#define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
+#if defined(HOST_WORDS_BIGENDIAN)
+#define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
+#else
+#define SPLAT_ELEMENT(element) \
+ (ARRAY_SIZE(r->element) - 1 - _SPLAT_MASKED(element))
+#endif
+#define VSPLT(suffix, element) \
+ void helper_vsplt##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
+ { \
+ uint32_t s = b->element[SPLAT_ELEMENT(element)]; \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
+ r->element[i] = s; \
+ } \
+ }
+VSPLT(b, u8)
+VSPLT(h, u16)
+VSPLT(w, u32)
+#undef VSPLT
+#undef SPLAT_ELEMENT
+#undef _SPLAT_MASKED
+
+#define VSPLTI(suffix, element, splat_type) \
+ void helper_vspltis##suffix(ppc_avr_t *r, uint32_t splat) \
+ { \
+ splat_type x = (int8_t)(splat << 3) >> 3; \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
+ r->element[i] = x; \
+ } \
+ }
+VSPLTI(b, s8, int8_t)
+VSPLTI(h, s16, int16_t)
+VSPLTI(w, s32, int32_t)
+#undef VSPLTI
+
+#define VSR(suffix, element) \
+ void helper_vsr##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
+ unsigned int mask = ((1 << \
+ (3 + (sizeof(a->element[0]) >> 1))) \
+ - 1); \
+ unsigned int shift = b->element[i] & mask; \
+ \
+ r->element[i] = a->element[i] >> shift; \
+ } \
+ }
+VSR(ab, s8)
+VSR(ah, s16)
+VSR(aw, s32)
+VSR(b, u8)
+VSR(h, u16)
+VSR(w, u32)
+#undef VSR
+
+void helper_vsro(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ int sh = (b->u8[LO_IDX * 0xf] >> 3) & 0xf;
+
+#if defined(HOST_WORDS_BIGENDIAN)
+ memmove(&r->u8[sh], &a->u8[0], 16 - sh);
+ memset(&r->u8[0], 0, sh);
+#else
+ memmove(&r->u8[0], &a->u8[sh], 16 - sh);
+ memset(&r->u8[16 - sh], 0, sh);
+#endif
+}
+
+void helper_vsubcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
+ r->u32[i] = a->u32[i] >= b->u32[i];
+ }
+}
+
+void helper_vsumsws(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ int64_t t;
+ int i, upper;
+ ppc_avr_t result;
+ int sat = 0;
+
+#if defined(HOST_WORDS_BIGENDIAN)
+ upper = ARRAY_SIZE(r->s32)-1;
+#else
+ upper = 0;
+#endif
+ t = (int64_t)b->s32[upper];
+ for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
+ t += a->s32[i];
+ result.s32[i] = 0;
+ }
+ result.s32[upper] = cvtsdsw(t, &sat);
+ *r = result;
+
+ if (sat) {
+ env->vscr |= (1 << VSCR_SAT);
+ }
+}
+
+void helper_vsum2sws(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ int i, j, upper;
+ ppc_avr_t result;
+ int sat = 0;
+
+#if defined(HOST_WORDS_BIGENDIAN)
+ upper = 1;
+#else
+ upper = 0;
+#endif
+ for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
+ int64_t t = (int64_t)b->s32[upper + i * 2];
+
+ result.u64[i] = 0;
+ for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
+ t += a->s32[2 * i + j];
+ }
+ result.s32[upper + i * 2] = cvtsdsw(t, &sat);
+ }
+
+ *r = result;
+ if (sat) {
+ env->vscr |= (1 << VSCR_SAT);
+ }
+}
+
+void helper_vsum4sbs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ int i, j;
+ int sat = 0;
+
+ for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
+ int64_t t = (int64_t)b->s32[i];
+
+ for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
+ t += a->s8[4 * i + j];
+ }
+ r->s32[i] = cvtsdsw(t, &sat);
+ }
+
+ if (sat) {
+ env->vscr |= (1 << VSCR_SAT);
+ }
+}
+
+void helper_vsum4shs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ int sat = 0;
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
+ int64_t t = (int64_t)b->s32[i];
+
+ t += a->s16[2 * i] + a->s16[2 * i + 1];
+ r->s32[i] = cvtsdsw(t, &sat);
+ }
+
+ if (sat) {
+ env->vscr |= (1 << VSCR_SAT);
+ }
+}
+
+void helper_vsum4ubs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ int i, j;
+ int sat = 0;
+
+ for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
+ uint64_t t = (uint64_t)b->u32[i];
+
+ for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
+ t += a->u8[4 * i + j];
+ }
+ r->u32[i] = cvtuduw(t, &sat);
+ }
+
+ if (sat) {
+ env->vscr |= (1 << VSCR_SAT);
+ }
+}
+
+#if defined(HOST_WORDS_BIGENDIAN)
+#define UPKHI 1
+#define UPKLO 0
+#else
+#define UPKHI 0
+#define UPKLO 1
+#endif
+#define VUPKPX(suffix, hi) \
+ void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
+ { \
+ int i; \
+ ppc_avr_t result; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
+ uint16_t e = b->u16[hi ? i : i+4]; \
+ uint8_t a = (e >> 15) ? 0xff : 0; \
+ uint8_t r = (e >> 10) & 0x1f; \
+ uint8_t g = (e >> 5) & 0x1f; \
+ uint8_t b = e & 0x1f; \
+ \
+ result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
+ } \
+ *r = result; \
+ }
+VUPKPX(lpx, UPKLO)
+VUPKPX(hpx, UPKHI)
+#undef VUPKPX
+
+#define VUPK(suffix, unpacked, packee, hi) \
+ void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
+ { \
+ int i; \
+ ppc_avr_t result; \
+ \
+ if (hi) { \
+ for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
+ result.unpacked[i] = b->packee[i]; \
+ } \
+ } else { \
+ for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \
+ i++) { \
+ result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
+ } \
+ } \
+ *r = result; \
+ }
+VUPK(hsb, s16, s8, UPKHI)
+VUPK(hsh, s32, s16, UPKHI)
+VUPK(lsb, s16, s8, UPKLO)
+VUPK(lsh, s32, s16, UPKLO)
+#undef VUPK
+#undef UPKHI
+#undef UPKLO
+
+#undef DO_HANDLE_NAN
+#undef HANDLE_NAN1
+#undef HANDLE_NAN2
+#undef HANDLE_NAN3
+#undef VECTOR_FOR_INORDER_I
+#undef HI_IDX
+#undef LO_IDX
+
+/*****************************************************************************/
+/* SPE extension helpers */
+/* Use a table to make this quicker */
+static uint8_t hbrev[16] = {
+ 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
+ 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
+};
+
+static inline uint8_t byte_reverse(uint8_t val)
+{
+ return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
+}
+
+static inline uint32_t word_reverse(uint32_t val)
+{
+ return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
+ (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
+}
+
+#define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */
+target_ulong helper_brinc(target_ulong arg1, target_ulong arg2)
+{
+ uint32_t a, b, d, mask;
+
+ mask = UINT32_MAX >> (32 - MASKBITS);
+ a = arg1 & mask;
+ b = arg2 & mask;
+ d = word_reverse(1 + word_reverse(a | ~b));
+ return (arg1 & ~mask) | (d & b);
+}
+
+uint32_t helper_cntlsw32(uint32_t val)
+{
+ if (val & 0x80000000) {
+ return clz32(~val);
+ } else {
+ return clz32(val);
+ }
+}
+
+uint32_t helper_cntlzw32(uint32_t val)
+{
+ return clz32(val);
+}
+
+/* 440 specific */
+target_ulong helper_dlmzb(target_ulong high, target_ulong low,
+ uint32_t update_Rc)
+{
+ target_ulong mask;
+ int i;
+
+ i = 1;
+ for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
+ if ((high & mask) == 0) {
+ if (update_Rc) {
+ env->crf[0] = 0x4;
+ }
+ goto done;
+ }
+ i++;
+ }
+ for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
+ if ((low & mask) == 0) {
+ if (update_Rc) {
+ env->crf[0] = 0x8;
+ }
+ goto done;
+ }
+ i++;
+ }
+ if (update_Rc) {
+ env->crf[0] = 0x2;
+ }
+ done:
+ env->xer = (env->xer & ~0x7F) | i;
+ if (update_Rc) {
+ env->crf[0] |= xer_so;
+ }
+ return i;
+}