diff options
author | bellard <bellard@c046a42c-6fe2-441c-8c8c-71466251a162> | 2004-02-16 21:43:58 +0000 |
---|---|---|
committer | bellard <bellard@c046a42c-6fe2-441c-8c8c-71466251a162> | 2004-02-16 21:43:58 +0000 |
commit | 00406dff19893a4fb9fb582792a249b770eb1d11 (patch) | |
tree | 72cd5c15ecf045fd14f8bbec0f016ec139eb35ca /target-arm | |
parent | 69de927c6cf7e77508c16d13057122398abe20ec (diff) |
added arm nwfpe support (initial patch by Ulrich Hecht)
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@609 c046a42c-6fe2-441c-8c8c-71466251a162
Diffstat (limited to 'target-arm')
-rw-r--r-- | target-arm/nwfpe/ARM-gcc.h | 120 | ||||
-rw-r--r-- | target-arm/nwfpe/double_cpdo.c | 288 | ||||
-rw-r--r-- | target-arm/nwfpe/extended_cpdo.c | 273 | ||||
-rw-r--r-- | target-arm/nwfpe/fpa11.c | 231 | ||||
-rw-r--r-- | target-arm/nwfpe/fpa11.h | 131 | ||||
-rw-r--r-- | target-arm/nwfpe/fpa11.inl | 51 | ||||
-rw-r--r-- | target-arm/nwfpe/fpa11_cpdo.c | 117 | ||||
-rw-r--r-- | target-arm/nwfpe/fpa11_cpdt.c | 358 | ||||
-rw-r--r-- | target-arm/nwfpe/fpa11_cprt.c | 290 | ||||
-rw-r--r-- | target-arm/nwfpe/fpopcode.c | 148 | ||||
-rw-r--r-- | target-arm/nwfpe/fpopcode.h | 390 | ||||
-rw-r--r-- | target-arm/nwfpe/fpsr.h | 108 | ||||
-rw-r--r-- | target-arm/nwfpe/milieu.h | 48 | ||||
-rw-r--r-- | target-arm/nwfpe/single_cpdo.c | 255 | ||||
-rw-r--r-- | target-arm/nwfpe/softfloat-macros | 740 | ||||
-rw-r--r-- | target-arm/nwfpe/softfloat-specialize | 366 | ||||
-rw-r--r-- | target-arm/nwfpe/softfloat.c | 3427 | ||||
-rw-r--r-- | target-arm/nwfpe/softfloat.h | 232 |
18 files changed, 7573 insertions, 0 deletions
diff --git a/target-arm/nwfpe/ARM-gcc.h b/target-arm/nwfpe/ARM-gcc.h new file mode 100644 index 0000000000..e6598470b0 --- /dev/null +++ b/target-arm/nwfpe/ARM-gcc.h @@ -0,0 +1,120 @@ +/* +------------------------------------------------------------------------------- +The macro `BITS64' can be defined to indicate that 64-bit integer types are +supported by the compiler. +------------------------------------------------------------------------------- +*/ +#define BITS64 + +/* +------------------------------------------------------------------------------- +Each of the following `typedef's defines the most convenient type that holds +integers of at least as many bits as specified. For example, `uint8' should +be the most convenient type that can hold unsigned integers of as many as +8 bits. The `flag' type must be able to hold either a 0 or 1. For most +implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed +to the same as `int'. +------------------------------------------------------------------------------- +*/ +typedef char flag; +typedef unsigned char uint8; +typedef signed char int8; +typedef int uint16; +typedef int int16; +typedef unsigned int uint32; +typedef signed int int32; +#ifdef BITS64 +typedef unsigned long long int bits64; +typedef signed long long int sbits64; +#endif + +/* +------------------------------------------------------------------------------- +Each of the following `typedef's defines a type that holds integers +of _exactly_ the number of bits specified. For instance, for most +implementation of C, `bits16' and `sbits16' should be `typedef'ed to +`unsigned short int' and `signed short int' (or `short int'), respectively. +------------------------------------------------------------------------------- +*/ +typedef unsigned char bits8; +typedef signed char sbits8; +typedef unsigned short int bits16; +typedef signed short int sbits16; +typedef unsigned int bits32; +typedef signed int sbits32; +#ifdef BITS64 +typedef unsigned long long int uint64; +typedef signed long long int int64; +#endif + +#ifdef BITS64 +/* +------------------------------------------------------------------------------- +The `LIT64' macro takes as its argument a textual integer literal and if +necessary ``marks'' the literal as having a 64-bit integer type. For +example, the Gnu C Compiler (`gcc') requires that 64-bit literals be +appended with the letters `LL' standing for `long long', which is `gcc's +name for the 64-bit integer type. Some compilers may allow `LIT64' to be +defined as the identity macro: `#define LIT64( a ) a'. +------------------------------------------------------------------------------- +*/ +#define LIT64( a ) a##LL +#endif + +/* +------------------------------------------------------------------------------- +The macro `INLINE' can be used before functions that should be inlined. If +a compiler does not support explicit inlining, this macro should be defined +to be `static'. +------------------------------------------------------------------------------- +*/ +#define INLINE extern __inline__ + + +/* For use as a GCC soft-float library we need some special function names. */ + +#ifdef __LIBFLOAT__ + +/* Some 32-bit ops can be mapped straight across by just changing the name. */ +#define float32_add __addsf3 +#define float32_sub __subsf3 +#define float32_mul __mulsf3 +#define float32_div __divsf3 +#define int32_to_float32 __floatsisf +#define float32_to_int32_round_to_zero __fixsfsi +#define float32_to_uint32_round_to_zero __fixunssfsi + +/* These ones go through the glue code. To avoid namespace pollution + we rename the internal functions too. */ +#define float32_eq ___float32_eq +#define float32_le ___float32_le +#define float32_lt ___float32_lt + +/* All the 64-bit ops have to go through the glue, so we pull the same + trick. */ +#define float64_add ___float64_add +#define float64_sub ___float64_sub +#define float64_mul ___float64_mul +#define float64_div ___float64_div +#define int32_to_float64 ___int32_to_float64 +#define float64_to_int32_round_to_zero ___float64_to_int32_round_to_zero +#define float64_to_uint32_round_to_zero ___float64_to_uint32_round_to_zero +#define float64_to_float32 ___float64_to_float32 +#define float32_to_float64 ___float32_to_float64 +#define float64_eq ___float64_eq +#define float64_le ___float64_le +#define float64_lt ___float64_lt + +#if 0 +#define float64_add __adddf3 +#define float64_sub __subdf3 +#define float64_mul __muldf3 +#define float64_div __divdf3 +#define int32_to_float64 __floatsidf +#define float64_to_int32_round_to_zero __fixdfsi +#define float64_to_uint32_round_to_zero __fixunsdfsi +#define float64_to_float32 __truncdfsf2 +#define float32_to_float64 __extendsfdf2 +#endif + +#endif diff --git a/target-arm/nwfpe/double_cpdo.c b/target-arm/nwfpe/double_cpdo.c new file mode 100644 index 0000000000..0f303ea6f0 --- /dev/null +++ b/target-arm/nwfpe/double_cpdo.c @@ -0,0 +1,288 @@ +/* + NetWinder Floating Point Emulator + (c) Rebel.COM, 1998,1999 + + Direct questions, comments to Scott Bambrough <scottb@netwinder.org> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +*/ + +#include "fpa11.h" +#include "softfloat.h" +#include "fpopcode.h" + +float64 float64_exp(float64 Fm); +float64 float64_ln(float64 Fm); +float64 float64_sin(float64 rFm); +float64 float64_cos(float64 rFm); +float64 float64_arcsin(float64 rFm); +float64 float64_arctan(float64 rFm); +float64 float64_log(float64 rFm); +float64 float64_tan(float64 rFm); +float64 float64_arccos(float64 rFm); +float64 float64_pow(float64 rFn,float64 rFm); +float64 float64_pol(float64 rFn,float64 rFm); + +unsigned int DoubleCPDO(const unsigned int opcode) +{ + FPA11 *fpa11 = GET_FPA11(); + float64 rFm, rFn; + unsigned int Fd, Fm, Fn, nRc = 1; + + //printk("DoubleCPDO(0x%08x)\n",opcode); + + Fm = getFm(opcode); + if (CONSTANT_FM(opcode)) + { + rFm = getDoubleConstant(Fm); + } + else + { + switch (fpa11->fType[Fm]) + { + case typeSingle: + rFm = float32_to_float64(fpa11->fpreg[Fm].fSingle); + break; + + case typeDouble: + rFm = fpa11->fpreg[Fm].fDouble; + break; + + case typeExtended: + // !! patb + //printk("not implemented! why not?\n"); + //!! ScottB + // should never get here, if extended involved + // then other operand should be promoted then + // ExtendedCPDO called. + break; + + default: return 0; + } + } + + if (!MONADIC_INSTRUCTION(opcode)) + { + Fn = getFn(opcode); + switch (fpa11->fType[Fn]) + { + case typeSingle: + rFn = float32_to_float64(fpa11->fpreg[Fn].fSingle); + break; + + case typeDouble: + rFn = fpa11->fpreg[Fn].fDouble; + break; + + default: return 0; + } + } + + Fd = getFd(opcode); + /* !! this switch isn't optimized; better (opcode & MASK_ARITHMETIC_OPCODE)>>24, sort of */ + switch (opcode & MASK_ARITHMETIC_OPCODE) + { + /* dyadic opcodes */ + case ADF_CODE: + fpa11->fpreg[Fd].fDouble = float64_add(rFn,rFm); + break; + + case MUF_CODE: + case FML_CODE: + fpa11->fpreg[Fd].fDouble = float64_mul(rFn,rFm); + break; + + case SUF_CODE: + fpa11->fpreg[Fd].fDouble = float64_sub(rFn,rFm); + break; + + case RSF_CODE: + fpa11->fpreg[Fd].fDouble = float64_sub(rFm,rFn); + break; + + case DVF_CODE: + case FDV_CODE: + fpa11->fpreg[Fd].fDouble = float64_div(rFn,rFm); + break; + + case RDF_CODE: + case FRD_CODE: + fpa11->fpreg[Fd].fDouble = float64_div(rFm,rFn); + break; + +#if 0 + case POW_CODE: + fpa11->fpreg[Fd].fDouble = float64_pow(rFn,rFm); + break; + + case RPW_CODE: + fpa11->fpreg[Fd].fDouble = float64_pow(rFm,rFn); + break; +#endif + + case RMF_CODE: + fpa11->fpreg[Fd].fDouble = float64_rem(rFn,rFm); + break; + +#if 0 + case POL_CODE: + fpa11->fpreg[Fd].fDouble = float64_pol(rFn,rFm); + break; +#endif + + /* monadic opcodes */ + case MVF_CODE: + fpa11->fpreg[Fd].fDouble = rFm; + break; + + case MNF_CODE: + { + unsigned int *p = (unsigned int*)&rFm; + p[1] ^= 0x80000000; + fpa11->fpreg[Fd].fDouble = rFm; + } + break; + + case ABS_CODE: + { + unsigned int *p = (unsigned int*)&rFm; + p[1] &= 0x7fffffff; + fpa11->fpreg[Fd].fDouble = rFm; + } + break; + + case RND_CODE: + case URD_CODE: + fpa11->fpreg[Fd].fDouble = float64_round_to_int(rFm); + break; + + case SQT_CODE: + fpa11->fpreg[Fd].fDouble = float64_sqrt(rFm); + break; + +#if 0 + case LOG_CODE: + fpa11->fpreg[Fd].fDouble = float64_log(rFm); + break; + + case LGN_CODE: + fpa11->fpreg[Fd].fDouble = float64_ln(rFm); + break; + + case EXP_CODE: + fpa11->fpreg[Fd].fDouble = float64_exp(rFm); + break; + + case SIN_CODE: + fpa11->fpreg[Fd].fDouble = float64_sin(rFm); + break; + + case COS_CODE: + fpa11->fpreg[Fd].fDouble = float64_cos(rFm); + break; + + case TAN_CODE: + fpa11->fpreg[Fd].fDouble = float64_tan(rFm); + break; + + case ASN_CODE: + fpa11->fpreg[Fd].fDouble = float64_arcsin(rFm); + break; + + case ACS_CODE: + fpa11->fpreg[Fd].fDouble = float64_arccos(rFm); + break; + + case ATN_CODE: + fpa11->fpreg[Fd].fDouble = float64_arctan(rFm); + break; +#endif + + case NRM_CODE: + break; + + default: + { + nRc = 0; + } + } + + if (0 != nRc) fpa11->fType[Fd] = typeDouble; + return nRc; +} + +#if 0 +float64 float64_exp(float64 rFm) +{ + return rFm; +//series +} + +float64 float64_ln(float64 rFm) +{ + return rFm; +//series +} + +float64 float64_sin(float64 rFm) +{ + return rFm; +//series +} + +float64 float64_cos(float64 rFm) +{ + return rFm; + //series +} + +#if 0 +float64 float64_arcsin(float64 rFm) +{ +//series +} + +float64 float64_arctan(float64 rFm) +{ + //series +} +#endif + +float64 float64_log(float64 rFm) +{ + return float64_div(float64_ln(rFm),getDoubleConstant(7)); +} + +float64 float64_tan(float64 rFm) +{ + return float64_div(float64_sin(rFm),float64_cos(rFm)); +} + +float64 float64_arccos(float64 rFm) +{ +return rFm; + //return float64_sub(halfPi,float64_arcsin(rFm)); +} + +float64 float64_pow(float64 rFn,float64 rFm) +{ + return float64_exp(float64_mul(rFm,float64_ln(rFn))); +} + +float64 float64_pol(float64 rFn,float64 rFm) +{ + return float64_arctan(float64_div(rFn,rFm)); +} +#endif diff --git a/target-arm/nwfpe/extended_cpdo.c b/target-arm/nwfpe/extended_cpdo.c new file mode 100644 index 0000000000..331407596d --- /dev/null +++ b/target-arm/nwfpe/extended_cpdo.c @@ -0,0 +1,273 @@ +/* + NetWinder Floating Point Emulator + (c) Rebel.COM, 1998,1999 + + Direct questions, comments to Scott Bambrough <scottb@netwinder.org> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +*/ + +#include "fpa11.h" +#include "softfloat.h" +#include "fpopcode.h" + +floatx80 floatx80_exp(floatx80 Fm); +floatx80 floatx80_ln(floatx80 Fm); +floatx80 floatx80_sin(floatx80 rFm); +floatx80 floatx80_cos(floatx80 rFm); +floatx80 floatx80_arcsin(floatx80 rFm); +floatx80 floatx80_arctan(floatx80 rFm); +floatx80 floatx80_log(floatx80 rFm); +floatx80 floatx80_tan(floatx80 rFm); +floatx80 floatx80_arccos(floatx80 rFm); +floatx80 floatx80_pow(floatx80 rFn,floatx80 rFm); +floatx80 floatx80_pol(floatx80 rFn,floatx80 rFm); + +unsigned int ExtendedCPDO(const unsigned int opcode) +{ + FPA11 *fpa11 = GET_FPA11(); + floatx80 rFm, rFn; + unsigned int Fd, Fm, Fn, nRc = 1; + + //printk("ExtendedCPDO(0x%08x)\n",opcode); + + Fm = getFm(opcode); + if (CONSTANT_FM(opcode)) + { + rFm = getExtendedConstant(Fm); + } + else + { + switch (fpa11->fType[Fm]) + { + case typeSingle: + rFm = float32_to_floatx80(fpa11->fpreg[Fm].fSingle); + break; + + case typeDouble: + rFm = float64_to_floatx80(fpa11->fpreg[Fm].fDouble); + break; + + case typeExtended: + rFm = fpa11->fpreg[Fm].fExtended; + break; + + default: return 0; + } + } + + if (!MONADIC_INSTRUCTION(opcode)) + { + Fn = getFn(opcode); + switch (fpa11->fType[Fn]) + { + case typeSingle: + rFn = float32_to_floatx80(fpa11->fpreg[Fn].fSingle); + break; + + case typeDouble: + rFn = float64_to_floatx80(fpa11->fpreg[Fn].fDouble); + break; + + case typeExtended: + rFn = fpa11->fpreg[Fn].fExtended; + break; + + default: return 0; + } + } + + Fd = getFd(opcode); + switch (opcode & MASK_ARITHMETIC_OPCODE) + { + /* dyadic opcodes */ + case ADF_CODE: + fpa11->fpreg[Fd].fExtended = floatx80_add(rFn,rFm); + break; + + case MUF_CODE: + case FML_CODE: + fpa11->fpreg[Fd].fExtended = floatx80_mul(rFn,rFm); + break; + + case SUF_CODE: + fpa11->fpreg[Fd].fExtended = floatx80_sub(rFn,rFm); + break; + + case RSF_CODE: + fpa11->fpreg[Fd].fExtended = floatx80_sub(rFm,rFn); + break; + + case DVF_CODE: + case FDV_CODE: + fpa11->fpreg[Fd].fExtended = floatx80_div(rFn,rFm); + break; + + case RDF_CODE: + case FRD_CODE: + fpa11->fpreg[Fd].fExtended = floatx80_div(rFm,rFn); + break; + +#if 0 + case POW_CODE: + fpa11->fpreg[Fd].fExtended = floatx80_pow(rFn,rFm); + break; + + case RPW_CODE: + fpa11->fpreg[Fd].fExtended = floatx80_pow(rFm,rFn); + break; +#endif + + case RMF_CODE: + fpa11->fpreg[Fd].fExtended = floatx80_rem(rFn,rFm); + break; + +#if 0 + case POL_CODE: + fpa11->fpreg[Fd].fExtended = floatx80_pol(rFn,rFm); + break; +#endif + + /* monadic opcodes */ + case MVF_CODE: + fpa11->fpreg[Fd].fExtended = rFm; + break; + + case MNF_CODE: + rFm.high ^= 0x8000; + fpa11->fpreg[Fd].fExtended = rFm; + break; + + case ABS_CODE: + rFm.high &= 0x7fff; + fpa11->fpreg[Fd].fExtended = rFm; + break; + + case RND_CODE: + case URD_CODE: + fpa11->fpreg[Fd].fExtended = floatx80_round_to_int(rFm); + break; + + case SQT_CODE: + fpa11->fpreg[Fd].fExtended = floatx80_sqrt(rFm); + break; + +#if 0 + case LOG_CODE: + fpa11->fpreg[Fd].fExtended = floatx80_log(rFm); + break; + + case LGN_CODE: + fpa11->fpreg[Fd].fExtended = floatx80_ln(rFm); + break; + + case EXP_CODE: + fpa11->fpreg[Fd].fExtended = floatx80_exp(rFm); + break; + + case SIN_CODE: + fpa11->fpreg[Fd].fExtended = floatx80_sin(rFm); + break; + + case COS_CODE: + fpa11->fpreg[Fd].fExtended = floatx80_cos(rFm); + break; + + case TAN_CODE: + fpa11->fpreg[Fd].fExtended = floatx80_tan(rFm); + break; + + case ASN_CODE: + fpa11->fpreg[Fd].fExtended = floatx80_arcsin(rFm); + break; + + case ACS_CODE: + fpa11->fpreg[Fd].fExtended = floatx80_arccos(rFm); + break; + + case ATN_CODE: + fpa11->fpreg[Fd].fExtended = floatx80_arctan(rFm); + break; +#endif + + case NRM_CODE: + break; + + default: + { + nRc = 0; + } + } + + if (0 != nRc) fpa11->fType[Fd] = typeExtended; + return nRc; +} + +#if 0 +floatx80 floatx80_exp(floatx80 Fm) +{ +//series +} + +floatx80 floatx80_ln(floatx80 Fm) +{ +//series +} + +floatx80 floatx80_sin(floatx80 rFm) +{ +//series +} + +floatx80 floatx80_cos(floatx80 rFm) +{ +//series +} + +floatx80 floatx80_arcsin(floatx80 rFm) +{ +//series +} + +floatx80 floatx80_arctan(floatx80 rFm) +{ + //series +} + +floatx80 floatx80_log(floatx80 rFm) +{ + return floatx80_div(floatx80_ln(rFm),getExtendedConstant(7)); +} + +floatx80 floatx80_tan(floatx80 rFm) +{ + return floatx80_div(floatx80_sin(rFm),floatx80_cos(rFm)); +} + +floatx80 floatx80_arccos(floatx80 rFm) +{ + //return floatx80_sub(halfPi,floatx80_arcsin(rFm)); +} + +floatx80 floatx80_pow(floatx80 rFn,floatx80 rFm) +{ + return floatx80_exp(floatx80_mul(rFm,floatx80_ln(rFn))); +} + +floatx80 floatx80_pol(floatx80 rFn,floatx80 rFm) +{ + return floatx80_arctan(floatx80_div(rFn,rFm)); +} +#endif diff --git a/target-arm/nwfpe/fpa11.c b/target-arm/nwfpe/fpa11.c new file mode 100644 index 0000000000..143bcd3994 --- /dev/null +++ b/target-arm/nwfpe/fpa11.c @@ -0,0 +1,231 @@ +/* + NetWinder Floating Point Emulator + (c) Rebel.COM, 1998,1999 + + Direct questions, comments to Scott Bambrough <scottb@netwinder.org> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +*/ + +#include "fpa11.h" + +#include "fpopcode.h" + +//#include "fpmodule.h" +//#include "fpmodule.inl" + +//#include <asm/system.h> + +#include <stdio.h> + +/* forward declarations */ +unsigned int EmulateCPDO(const unsigned int); +unsigned int EmulateCPDT(const unsigned int); +unsigned int EmulateCPRT(const unsigned int); + +FPA11* qemufpa=0; +unsigned int* user_registers=0; + +/* Reset the FPA11 chip. Called to initialize and reset the emulator. */ +void resetFPA11(void) +{ + int i; + FPA11 *fpa11 = GET_FPA11(); + + /* initialize the register type array */ + for (i=0;i<=7;i++) + { + fpa11->fType[i] = typeNone; + } + + /* FPSR: set system id to FP_EMULATOR, set AC, clear all other bits */ + fpa11->fpsr = FP_EMULATOR | BIT_AC; + + /* FPCR: set SB, AB and DA bits, clear all others */ +#if MAINTAIN_FPCR + fpa11->fpcr = MASK_RESET; +#endif +} + +void SetRoundingMode(const unsigned int opcode) +{ +#if MAINTAIN_FPCR + FPA11 *fpa11 = GET_FPA11(); + fpa11->fpcr &= ~MASK_ROUNDING_MODE; +#endif + switch (opcode & MASK_ROUNDING_MODE) + { + default: + case ROUND_TO_NEAREST: + float_rounding_mode = float_round_nearest_even; +#if MAINTAIN_FPCR + fpa11->fpcr |= ROUND_TO_NEAREST; +#endif + break; + + case ROUND_TO_PLUS_INFINITY: + float_rounding_mode = float_round_up; +#if MAINTAIN_FPCR + fpa11->fpcr |= ROUND_TO_PLUS_INFINITY; +#endif + break; + + case ROUND_TO_MINUS_INFINITY: + float_rounding_mode = float_round_down; +#if MAINTAIN_FPCR + fpa11->fpcr |= ROUND_TO_MINUS_INFINITY; +#endif + break; + + case ROUND_TO_ZERO: + float_rounding_mode = float_round_to_zero; +#if MAINTAIN_FPCR + fpa11->fpcr |= ROUND_TO_ZERO; +#endif + break; + } +} + +void SetRoundingPrecision(const unsigned int opcode) +{ +#if MAINTAIN_FPCR + FPA11 *fpa11 = GET_FPA11(); + fpa11->fpcr &= ~MASK_ROUNDING_PRECISION; +#endif + switch (opcode & MASK_ROUNDING_PRECISION) + { + case ROUND_SINGLE: + floatx80_rounding_precision = 32; +#if MAINTAIN_FPCR + fpa11->fpcr |= ROUND_SINGLE; +#endif + break; + + case ROUND_DOUBLE: + floatx80_rounding_precision = 64; +#if MAINTAIN_FPCR + fpa11->fpcr |= ROUND_DOUBLE; +#endif + break; + + case ROUND_EXTENDED: + floatx80_rounding_precision = 80; +#if MAINTAIN_FPCR + fpa11->fpcr |= ROUND_EXTENDED; +#endif + break; + + default: floatx80_rounding_precision = 80; + } +} + +/* Emulate the instruction in the opcode. */ +unsigned int EmulateAll(unsigned int opcode, FPA11* qfpa, unsigned int* qregs) +{ + unsigned int nRc = 0; +// unsigned long flags; + FPA11 *fpa11; +// save_flags(flags); sti(); + + qemufpa=qfpa; + user_registers=qregs; + +#if 0 + fprintf(stderr,"emulating FP insn 0x%08x, PC=0x%08x\n", + opcode, qregs[REG_PC]); +#endif + fpa11 = GET_FPA11(); + + if (fpa11->initflag == 0) /* good place for __builtin_expect */ + { + resetFPA11(); + SetRoundingMode(ROUND_TO_NEAREST); + SetRoundingPrecision(ROUND_EXTENDED); + fpa11->initflag = 1; + } + + if (TEST_OPCODE(opcode,MASK_CPRT)) + { + //fprintf(stderr,"emulating CPRT\n"); + /* Emulate conversion opcodes. */ + /* Emulate register transfer opcodes. */ + /* Emulate comparison opcodes. */ + nRc = EmulateCPRT(opcode); + } + else if (TEST_OPCODE(opcode,MASK_CPDO)) + { + //fprintf(stderr,"emulating CPDO\n"); + /* Emulate monadic arithmetic opcodes. */ + /* Emulate dyadic arithmetic opcodes. */ + nRc = EmulateCPDO(opcode); + } + else if (TEST_OPCODE(opcode,MASK_CPDT)) + { + //fprintf(stderr,"emulating CPDT\n"); + /* Emulate load/store opcodes. */ + /* Emulate load/store multiple opcodes. */ + nRc = EmulateCPDT(opcode); + } + else + { + /* Invalid instruction detected. Return FALSE. */ + nRc = 0; + } + +// restore_flags(flags); + + //printf("returning %d\n",nRc); + return(nRc); +} + +#if 0 +unsigned int EmulateAll1(unsigned int opcode) +{ + switch ((opcode >> 24) & 0xf) + { + case 0xc: + case 0xd: + if ((opcode >> 20) & 0x1) + { + switch ((opcode >> 8) & 0xf) + { + case 0x1: return PerformLDF(opcode); break; + case 0x2: return PerformLFM(opcode); break; + default: return 0; + } + } + else + { + switch ((opcode >> 8) & 0xf) + { + case 0x1: return PerformSTF(opcode); break; + case 0x2: return PerformSFM(opcode); break; + default: return 0; + } + } + break; + + case 0xe: + if (opcode & 0x10) + return EmulateCPDO(opcode); + else + return EmulateCPRT(opcode); + break; + + default: return 0; + } +} +#endif + diff --git a/target-arm/nwfpe/fpa11.h b/target-arm/nwfpe/fpa11.h new file mode 100644 index 0000000000..95ad119367 --- /dev/null +++ b/target-arm/nwfpe/fpa11.h @@ -0,0 +1,131 @@ +/* + NetWinder Floating Point Emulator + (c) Rebel.com, 1998-1999 + + Direct questions, comments to Scott Bambrough <scottb@netwinder.org> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +*/ + +#ifndef __FPA11_H__ +#define __FPA11_H__ + +#define GET_FPA11() (qemufpa) + +/* + * The processes registers are always at the very top of the 8K + * stack+task struct. Use the same method as 'current' uses to + * reach them. + */ +extern unsigned int *user_registers; + +#define GET_USERREG() (user_registers) + +/* Need task_struct */ +//#include <linux/sched.h> + +/* includes */ +#include "fpsr.h" /* FP control and status register definitions */ +#include "softfloat.h" + +#define typeNone 0x00 +#define typeSingle 0x01 +#define typeDouble 0x02 +#define typeExtended 0x03 + +/* + * This must be no more and no less than 12 bytes. + */ +typedef union tagFPREG { + floatx80 fExtended; + float64 fDouble; + float32 fSingle; +} FPREG; + +/* + * FPA11 device model. + * + * This structure is exported to user space. Do not re-order. + * Only add new stuff to the end, and do not change the size of + * any element. Elements of this structure are used by user + * space, and must match struct user_fp in include/asm-arm/user.h. + * We include the byte offsets below for documentation purposes. + * + * The size of this structure and FPREG are checked by fpmodule.c + * on initialisation. If the rules have been broken, NWFPE will + * not initialise. + */ +typedef struct tagFPA11 { +/* 0 */ FPREG fpreg[8]; /* 8 floating point registers */ +/* 96 */ FPSR fpsr; /* floating point status register */ +/* 100 */ FPCR fpcr; /* floating point control register */ +/* 104 */ unsigned char fType[8]; /* type of floating point value held in + floating point registers. One of none + single, double or extended. */ +/* 112 */ int initflag; /* this is special. The kernel guarantees + to set it to 0 when a thread is launched, + so we can use it to detect whether this + instance of the emulator needs to be + initialised. */ +} FPA11; + +extern FPA11* qemufpa; + +extern void resetFPA11(void); +extern void SetRoundingMode(const unsigned int); +extern void SetRoundingPrecision(const unsigned int); + +#define get_user(x,y) ((x)=*(y)) +#define put_user(x,y) (*(y)=(x)) +static inline unsigned int readRegister(unsigned int reg) +{ + return (user_registers[(reg)]); +} + +static inline void writeRegister(unsigned int x, unsigned int y) +{ +#if 0 + printf("writing %d to r%d\n",y,x); +#endif + user_registers[(x)]=(y); +} + +static inline void writeConditionCodes(unsigned int x) +{ +#if 0 +unsigned int y; +unsigned int ZF; + printf("setting flags to %x from %x\n",x,user_registers[16]); +#endif + user_registers[16]=(x); // cpsr + user_registers[17]=(x>>29)&1; // cf + user_registers[18]=(x<<3)&(1<<31); // vf + user_registers[19]=x&(1<<31); // nzf + if(!(x&(1<<30))) user_registers[19]++; // nzf must be non-zero for zf to be cleared + +#if 0 + ZF = (user_registers[19] == 0); + y=user_registers[16] | (user_registers[19] & 0x80000000) | (ZF << 30) | + (user_registers[17] << 29) | ((user_registers[18] & 0x80000000) >> 3); + if(y != x) + printf("GODDAM SHIIIIIIIIIIIIIIIIT! %x %x nzf %x zf %x\n",x,y,user_registers[19],ZF); +#endif +} + +#define REG_PC 15 + +unsigned int EmulateAll(unsigned int opcode, FPA11* qfpa, unsigned int* qregs); + +#endif diff --git a/target-arm/nwfpe/fpa11.inl b/target-arm/nwfpe/fpa11.inl new file mode 100644 index 0000000000..1c45cba2de --- /dev/null +++ b/target-arm/nwfpe/fpa11.inl @@ -0,0 +1,51 @@ +/* + NetWinder Floating Point Emulator + (c) Rebel.COM, 1998,1999 + + Direct questions, comments to Scott Bambrough <scottb@netwinder.org> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +*/ + +#include "fpa11.h" + +/* Read and write floating point status register */ +extern __inline__ unsigned int readFPSR(void) +{ + FPA11 *fpa11 = GET_FPA11(); + return(fpa11->fpsr); +} + +extern __inline__ void writeFPSR(FPSR reg) +{ + FPA11 *fpa11 = GET_FPA11(); + /* the sysid byte in the status register is readonly */ + fpa11->fpsr = (fpa11->fpsr & MASK_SYSID) | (reg & ~MASK_SYSID); +} + +/* Read and write floating point control register */ +extern __inline__ FPCR readFPCR(void) +{ + FPA11 *fpa11 = GET_FPA11(); + /* clear SB, AB and DA bits before returning FPCR */ + return(fpa11->fpcr & ~MASK_RFC); +} + +extern __inline__ void writeFPCR(FPCR reg) +{ + FPA11 *fpa11 = GET_FPA11(); + fpa11->fpcr &= ~MASK_WFC; /* clear SB, AB and DA bits */ + fpa11->fpcr |= (reg & MASK_WFC); /* write SB, AB and DA bits */ +} diff --git a/target-arm/nwfpe/fpa11_cpdo.c b/target-arm/nwfpe/fpa11_cpdo.c new file mode 100644 index 0000000000..343a6b9fd5 --- /dev/null +++ b/target-arm/nwfpe/fpa11_cpdo.c @@ -0,0 +1,117 @@ +/* + NetWinder Floating Point Emulator + (c) Rebel.COM, 1998,1999 + + Direct questions, comments to Scott Bambrough <scottb@netwinder.org> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +*/ + +#include "fpa11.h" +#include "fpopcode.h" + +unsigned int SingleCPDO(const unsigned int opcode); +unsigned int DoubleCPDO(const unsigned int opcode); +unsigned int ExtendedCPDO(const unsigned int opcode); + +unsigned int EmulateCPDO(const unsigned int opcode) +{ + FPA11 *fpa11 = GET_FPA11(); + unsigned int Fd, nType, nDest, nRc = 1; + + //printk("EmulateCPDO(0x%08x)\n",opcode); + + /* Get the destination size. If not valid let Linux perform + an invalid instruction trap. */ + nDest = getDestinationSize(opcode); + if (typeNone == nDest) return 0; + + SetRoundingMode(opcode); + + /* Compare the size of the operands in Fn and Fm. + Choose the largest size and perform operations in that size, + in order to make use of all the precision of the operands. + If Fm is a constant, we just grab a constant of a size + matching the size of the operand in Fn. */ + if (MONADIC_INSTRUCTION(opcode)) + nType = nDest; + else + nType = fpa11->fType[getFn(opcode)]; + + if (!CONSTANT_FM(opcode)) + { + register unsigned int Fm = getFm(opcode); + if (nType < fpa11->fType[Fm]) + { + nType = fpa11->fType[Fm]; + } + } + + switch (nType) + { + case typeSingle : nRc = SingleCPDO(opcode); break; + case typeDouble : nRc = DoubleCPDO(opcode); break; + case typeExtended : nRc = ExtendedCPDO(opcode); break; + default : nRc = 0; + } + + /* If the operation succeeded, check to see if the result in the + destination register is the correct size. If not force it + to be. */ + Fd = getFd(opcode); + nType = fpa11->fType[Fd]; + if ((0 != nRc) && (nDest != nType)) + { + switch (nDest) + { + case typeSingle: + { + if (typeDouble == nType) + fpa11->fpreg[Fd].fSingle = + float64_to_float32(fpa11->fpreg[Fd].fDouble); + else + fpa11->fpreg[Fd].fSingle = + floatx80_to_float32(fpa11->fpreg[Fd].fExtended); + } + break; + + case typeDouble: + { + if (typeSingle == nType) + fpa11->fpreg[Fd].fDouble = + float32_to_float64(fpa11->fpreg[Fd].fSingle); + else + fpa11->fpreg[Fd].fDouble = + floatx80_to_float64(fpa11->fpreg[Fd].fExtended); + } + break; + + case typeExtended: + { + if (typeSingle == nType) + fpa11->fpreg[Fd].fExtended = + float32_to_floatx80(fpa11->fpreg[Fd].fSingle); + else + fpa11->fpreg[Fd].fExtended = + float64_to_floatx80(fpa11->fpreg[Fd].fDouble); + } + break; + } + + fpa11->fType[Fd] = nDest; + } + + return nRc; +} diff --git a/target-arm/nwfpe/fpa11_cpdt.c b/target-arm/nwfpe/fpa11_cpdt.c new file mode 100644 index 0000000000..283e34673c --- /dev/null +++ b/target-arm/nwfpe/fpa11_cpdt.c @@ -0,0 +1,358 @@ +/* + NetWinder Floating Point Emulator + (c) Rebel.com, 1998-1999 + (c) Philip Blundell, 1998 + + Direct questions, comments to Scott Bambrough <scottb@netwinder.org> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +*/ + +#include "fpa11.h" +#include "softfloat.h" +#include "fpopcode.h" +//#include "fpmodule.h" +//#include "fpmodule.inl" + +//#include <asm/uaccess.h> + +static inline +void loadSingle(const unsigned int Fn,const unsigned int *pMem) +{ + FPA11 *fpa11 = GET_FPA11(); + fpa11->fType[Fn] = typeSingle; + get_user(fpa11->fpreg[Fn].fSingle, pMem); +} + +static inline +void loadDouble(const unsigned int Fn,const unsigned int *pMem) +{ + FPA11 *fpa11 = GET_FPA11(); + unsigned int *p; + p = (unsigned int*)&fpa11->fpreg[Fn].fDouble; + fpa11->fType[Fn] = typeDouble; + get_user(p[0], &pMem[1]); + get_user(p[1], &pMem[0]); /* sign & exponent */ +} + +static inline +void loadExtended(const unsigned int Fn,const unsigned int *pMem) +{ + FPA11 *fpa11 = GET_FPA11(); + unsigned int *p; + p = (unsigned int*)&fpa11->fpreg[Fn].fExtended; + fpa11->fType[Fn] = typeExtended; + get_user(p[0], &pMem[0]); /* sign & exponent */ + get_user(p[1], &pMem[2]); /* ls bits */ + get_user(p[2], &pMem[1]); /* ms bits */ +} + +static inline +void loadMultiple(const unsigned int Fn,const unsigned int *pMem) +{ + FPA11 *fpa11 = GET_FPA11(); + register unsigned int *p; + unsigned long x; + + p = (unsigned int*)&(fpa11->fpreg[Fn]); + get_user(x, &pMem[0]); + fpa11->fType[Fn] = (x >> 14) & 0x00000003; + + switch (fpa11->fType[Fn]) + { + case typeSingle: + case typeDouble: + { + get_user(p[0], &pMem[2]); /* Single */ + get_user(p[1], &pMem[1]); /* double msw */ + p[2] = 0; /* empty */ + } + break; + + case typeExtended: + { + get_user(p[1], &pMem[2]); + get_user(p[2], &pMem[1]); /* msw */ + p[0] = (x & 0x80003fff); + } + break; + } +} + +static inline +void storeSingle(const unsigned int Fn,unsigned int *pMem) +{ + FPA11 *fpa11 = GET_FPA11(); + float32 val; + register unsigned int *p = (unsigned int*)&val; + + switch (fpa11->fType[Fn]) + { + case typeDouble: + val = float64_to_float32(fpa11->fpreg[Fn].fDouble); + break; + + case typeExtended: + val = floatx80_to_float32(fpa11->fpreg[Fn].fExtended); + break; + + default: val = fpa11->fpreg[Fn].fSingle; + } + + put_user(p[0], pMem); +} + +static inline +void storeDouble(const unsigned int Fn,unsigned int *pMem) +{ + FPA11 *fpa11 = GET_FPA11(); + float64 val; + register unsigned int *p = (unsigned int*)&val; + + switch (fpa11->fType[Fn]) + { + case typeSingle: + val = float32_to_float64(fpa11->fpreg[Fn].fSingle); + break; + + case typeExtended: + val = floatx80_to_float64(fpa11->fpreg[Fn].fExtended); + break; + + default: val = fpa11->fpreg[Fn].fDouble; + } + put_user(p[1], &pMem[0]); /* msw */ + put_user(p[0], &pMem[1]); /* lsw */ +} + +static inline +void storeExtended(const unsigned int Fn,unsigned int *pMem) +{ + FPA11 *fpa11 = GET_FPA11(); + floatx80 val; + register unsigned int *p = (unsigned int*)&val; + + switch (fpa11->fType[Fn]) + { + case typeSingle: + val = float32_to_floatx80(fpa11->fpreg[Fn].fSingle); + break; + + case typeDouble: + val = float64_to_floatx80(fpa11->fpreg[Fn].fDouble); + break; + + default: val = fpa11->fpreg[Fn].fExtended; + } + + put_user(p[0], &pMem[0]); /* sign & exp */ + put_user(p[1], &pMem[2]); + put_user(p[2], &pMem[1]); /* msw */ +} + +static inline +void storeMultiple(const unsigned int Fn,unsigned int *pMem) +{ + FPA11 *fpa11 = GET_FPA11(); + register unsigned int nType, *p; + + p = (unsigned int*)&(fpa11->fpreg[Fn]); + nType = fpa11->fType[Fn]; + + switch (nType) + { + case typeSingle: + case typeDouble: + { + put_user(p[0], &pMem[2]); /* single */ + put_user(p[1], &pMem[1]); /* double msw */ + put_user(nType << 14, &pMem[0]); + } + break; + + case typeExtended: + { + put_user(p[2], &pMem[1]); /* msw */ + put_user(p[1], &pMem[2]); + put_user((p[0] & 0x80003fff) | (nType << 14), &pMem[0]); + } + break; + } +} + +unsigned int PerformLDF(const unsigned int opcode) +{ + unsigned int *pBase, *pAddress, *pFinal, nRc = 1, + write_back = WRITE_BACK(opcode); + + //printk("PerformLDF(0x%08x), Fd = 0x%08x\n",opcode,getFd(opcode)); + + pBase = (unsigned int*)readRegister(getRn(opcode)); + if (REG_PC == getRn(opcode)) + { + pBase += 2; + write_back = 0; + } + + pFinal = pBase; + if (BIT_UP_SET(opcode)) + pFinal += getOffset(opcode); + else + pFinal -= getOffset(opcode); + + if (PREINDEXED(opcode)) pAddress = pFinal; else pAddress = pBase; + + switch (opcode & MASK_TRANSFER_LENGTH) + { + case TRANSFER_SINGLE : loadSingle(getFd(opcode),pAddress); break; + case TRANSFER_DOUBLE : loadDouble(getFd(opcode),pAddress); break; + case TRANSFER_EXTENDED: loadExtended(getFd(opcode),pAddress); break; + default: nRc = 0; + } + + if (write_back) writeRegister(getRn(opcode),(unsigned int)pFinal); + return nRc; +} + +unsigned int PerformSTF(const unsigned int opcode) +{ + unsigned int *pBase, *pAddress, *pFinal, nRc = 1, + write_back = WRITE_BACK(opcode); + + //printk("PerformSTF(0x%08x), Fd = 0x%08x\n",opcode,getFd(opcode)); + SetRoundingMode(ROUND_TO_NEAREST); + + pBase = (unsigned int*)readRegister(getRn(opcode)); + if (REG_PC == getRn(opcode)) + { + pBase += 2; + write_back = 0; + } + + pFinal = pBase; + if (BIT_UP_SET(opcode)) + pFinal += getOffset(opcode); + else + pFinal -= getOffset(opcode); + + if (PREINDEXED(opcode)) pAddress = pFinal; else pAddress = pBase; + + switch (opcode & MASK_TRANSFER_LENGTH) + { + case TRANSFER_SINGLE : storeSingle(getFd(opcode),pAddress); break; + case TRANSFER_DOUBLE : storeDouble(getFd(opcode),pAddress); break; + case TRANSFER_EXTENDED: storeExtended(getFd(opcode),pAddress); break; + default: nRc = 0; + } + + if (write_back) writeRegister(getRn(opcode),(unsigned int)pFinal); + return nRc; +} + +unsigned int PerformLFM(const unsigned int opcode) +{ + unsigned int i, Fd, *pBase, *pAddress, *pFinal, + write_back = WRITE_BACK(opcode); + + pBase = (unsigned int*)readRegister(getRn(opcode)); + if (REG_PC == getRn(opcode)) + { + pBase += 2; + write_back = 0; + } + + pFinal = pBase; + if (BIT_UP_SET(opcode)) + pFinal += getOffset(opcode); + else + pFinal -= getOffset(opcode); + + if (PREINDEXED(opcode)) pAddress = pFinal; else pAddress = pBase; + + Fd = getFd(opcode); + for (i=getRegisterCount(opcode);i>0;i--) + { + loadMultiple(Fd,pAddress); + pAddress += 3; Fd++; + if (Fd == 8) Fd = 0; + } + + if (write_back) writeRegister(getRn(opcode),(unsigned int)pFinal); + return 1; +} + +unsigned int PerformSFM(const unsigned int opcode) +{ + unsigned int i, Fd, *pBase, *pAddress, *pFinal, + write_back = WRITE_BACK(opcode); + + pBase = (unsigned int*)readRegister(getRn(opcode)); + if (REG_PC == getRn(opcode)) + { + pBase += 2; + write_back = 0; + } + + pFinal = pBase; + if (BIT_UP_SET(opcode)) + pFinal += getOffset(opcode); + else + pFinal -= getOffset(opcode); + + if (PREINDEXED(opcode)) pAddress = pFinal; else pAddress = pBase; + + Fd = getFd(opcode); + for (i=getRegisterCount(opcode);i>0;i--) + { + storeMultiple(Fd,pAddress); + pAddress += 3; Fd++; + if (Fd == 8) Fd = 0; + } + + if (write_back) writeRegister(getRn(opcode),(unsigned int)pFinal); + return 1; +} + +#if 1 +unsigned int EmulateCPDT(const unsigned int opcode) +{ + unsigned int nRc = 0; + + //printk("EmulateCPDT(0x%08x)\n",opcode); + + if (LDF_OP(opcode)) + { + nRc = PerformLDF(opcode); + } + else if (LFM_OP(opcode)) + { + nRc = PerformLFM(opcode); + } + else if (STF_OP(opcode)) + { + nRc = PerformSTF(opcode); + } + else if (SFM_OP(opcode)) + { + nRc = PerformSFM(opcode); + } + else + { + nRc = 0; + } + + return nRc; +} +#endif diff --git a/target-arm/nwfpe/fpa11_cprt.c b/target-arm/nwfpe/fpa11_cprt.c new file mode 100644 index 0000000000..17871c1d70 --- /dev/null +++ b/target-arm/nwfpe/fpa11_cprt.c @@ -0,0 +1,290 @@ +/* + NetWinder Floating Point Emulator + (c) Rebel.COM, 1998,1999 + (c) Philip Blundell, 1999 + + Direct questions, comments to Scott Bambrough <scottb@netwinder.org> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +*/ + +#include "fpa11.h" +#include "milieu.h" +#include "softfloat.h" +#include "fpopcode.h" +#include "fpa11.inl" +//#include "fpmodule.h" +//#include "fpmodule.inl" + +extern flag floatx80_is_nan(floatx80); +extern flag float64_is_nan( float64); +extern flag float32_is_nan( float32); + +void SetRoundingMode(const unsigned int opcode); + +unsigned int PerformFLT(const unsigned int opcode); +unsigned int PerformFIX(const unsigned int opcode); + +static unsigned int +PerformComparison(const unsigned int opcode); + +unsigned int EmulateCPRT(const unsigned int opcode) +{ + unsigned int nRc = 1; + + //printk("EmulateCPRT(0x%08x)\n",opcode); + + if (opcode & 0x800000) + { + /* This is some variant of a comparison (PerformComparison will + sort out which one). Since most of the other CPRT + instructions are oddball cases of some sort or other it makes + sense to pull this out into a fast path. */ + return PerformComparison(opcode); + } + + /* Hint to GCC that we'd like a jump table rather than a load of CMPs */ + switch ((opcode & 0x700000) >> 20) + { + case FLT_CODE >> 20: nRc = PerformFLT(opcode); break; + case FIX_CODE >> 20: nRc = PerformFIX(opcode); break; + + case WFS_CODE >> 20: writeFPSR(readRegister(getRd(opcode))); break; + case RFS_CODE >> 20: writeRegister(getRd(opcode),readFPSR()); break; + +#if 0 /* We currently have no use for the FPCR, so there's no point + in emulating it. */ + case WFC_CODE >> 20: writeFPCR(readRegister(getRd(opcode))); + case RFC_CODE >> 20: writeRegister(getRd(opcode),readFPCR()); break; +#endif + + default: nRc = 0; + } + + return nRc; +} + +unsigned int PerformFLT(const unsigned int opcode) +{ + FPA11 *fpa11 = GET_FPA11(); + + unsigned int nRc = 1; + SetRoundingMode(opcode); + + switch (opcode & MASK_ROUNDING_PRECISION) + { + case ROUND_SINGLE: + { + fpa11->fType[getFn(opcode)] = typeSingle; + fpa11->fpreg[getFn(opcode)].fSingle = + int32_to_float32(readRegister(getRd(opcode))); + } + break; + + case ROUND_DOUBLE: + { + fpa11->fType[getFn(opcode)] = typeDouble; + fpa11->fpreg[getFn(opcode)].fDouble = + int32_to_float64(readRegister(getRd(opcode))); + } + break; + + case ROUND_EXTENDED: + { + fpa11->fType[getFn(opcode)] = typeExtended; + fpa11->fpreg[getFn(opcode)].fExtended = + int32_to_floatx80(readRegister(getRd(opcode))); + } + break; + + default: nRc = 0; + } + + return nRc; +} + +unsigned int PerformFIX(const unsigned int opcode) +{ + FPA11 *fpa11 = GET_FPA11(); + unsigned int nRc = 1; + unsigned int Fn = getFm(opcode); + + SetRoundingMode(opcode); + + switch (fpa11->fType[Fn]) + { + case typeSingle: + { + writeRegister(getRd(opcode), + float32_to_int32(fpa11->fpreg[Fn].fSingle)); + } + break; + + case typeDouble: + { + //printf("F%d is 0x%llx\n",Fn,fpa11->fpreg[Fn].fDouble); + writeRegister(getRd(opcode), + float64_to_int32(fpa11->fpreg[Fn].fDouble)); + } + break; + + case typeExtended: + { + writeRegister(getRd(opcode), + floatx80_to_int32(fpa11->fpreg[Fn].fExtended)); + } + break; + + default: nRc = 0; + } + + return nRc; +} + + +static unsigned int __inline__ +PerformComparisonOperation(floatx80 Fn, floatx80 Fm) +{ + unsigned int flags = 0; + + /* test for less than condition */ + if (floatx80_lt(Fn,Fm)) + { + flags |= CC_NEGATIVE; + } + + /* test for equal condition */ + if (floatx80_eq(Fn,Fm)) + { + flags |= CC_ZERO; + } + + /* test for greater than or equal condition */ + if (floatx80_lt(Fm,Fn)) + { + flags |= CC_CARRY; + } + + writeConditionCodes(flags); + return 1; +} + +/* This instruction sets the flags N, Z, C, V in the FPSR. */ + +static unsigned int PerformComparison(const unsigned int opcode) +{ + FPA11 *fpa11 = GET_FPA11(); + unsigned int Fn, Fm; + floatx80 rFn, rFm; + int e_flag = opcode & 0x400000; /* 1 if CxFE */ + int n_flag = opcode & 0x200000; /* 1 if CNxx */ + unsigned int flags = 0; + + //printk("PerformComparison(0x%08x)\n",opcode); + + Fn = getFn(opcode); + Fm = getFm(opcode); + + /* Check for unordered condition and convert all operands to 80-bit + format. + ?? Might be some mileage in avoiding this conversion if possible. + Eg, if both operands are 32-bit, detect this and do a 32-bit + comparison (cheaper than an 80-bit one). */ + switch (fpa11->fType[Fn]) + { + case typeSingle: + //printk("single.\n"); + if (float32_is_nan(fpa11->fpreg[Fn].fSingle)) + goto unordered; + rFn = float32_to_floatx80(fpa11->fpreg[Fn].fSingle); + break; + + case typeDouble: + //printk("double.\n"); + if (float64_is_nan(fpa11->fpreg[Fn].fDouble)) + goto unordered; + rFn = float64_to_floatx80(fpa11->fpreg[Fn].fDouble); + break; + + case typeExtended: + //printk("extended.\n"); + if (floatx80_is_nan(fpa11->fpreg[Fn].fExtended)) + goto unordered; + rFn = fpa11->fpreg[Fn].fExtended; + break; + + default: return 0; + } + + if (CONSTANT_FM(opcode)) + { + //printk("Fm is a constant: #%d.\n",Fm); + rFm = getExtendedConstant(Fm); + if (floatx80_is_nan(rFm)) + goto unordered; + } + else + { + //printk("Fm = r%d which contains a ",Fm); + switch (fpa11->fType[Fm]) + { + case typeSingle: + //printk("single.\n"); + if (float32_is_nan(fpa11->fpreg[Fm].fSingle)) + goto unordered; + rFm = float32_to_floatx80(fpa11->fpreg[Fm].fSingle); + break; + + case typeDouble: + //printk("double.\n"); + if (float64_is_nan(fpa11->fpreg[Fm].fDouble)) + goto unordered; + rFm = float64_to_floatx80(fpa11->fpreg[Fm].fDouble); + break; + + case typeExtended: + //printk("extended.\n"); + if (floatx80_is_nan(fpa11->fpreg[Fm].fExtended)) + goto unordered; + rFm = fpa11->fpreg[Fm].fExtended; + break; + + default: return 0; + } + } + + if (n_flag) + { + rFm.high ^= 0x8000; + } + + return PerformComparisonOperation(rFn,rFm); + + unordered: + /* ?? The FPA data sheet is pretty vague about this, in particular + about whether the non-E comparisons can ever raise exceptions. + This implementation is based on a combination of what it says in + the data sheet, observation of how the Acorn emulator actually + behaves (and how programs expect it to) and guesswork. */ + flags |= CC_OVERFLOW; + flags &= ~(CC_ZERO | CC_NEGATIVE); + + if (BIT_AC & readFPSR()) flags |= CC_CARRY; + + if (e_flag) float_raise(float_flag_invalid); + + writeConditionCodes(flags); + return 1; +} diff --git a/target-arm/nwfpe/fpopcode.c b/target-arm/nwfpe/fpopcode.c new file mode 100644 index 0000000000..0886a0bdfe --- /dev/null +++ b/target-arm/nwfpe/fpopcode.c @@ -0,0 +1,148 @@ +/* + NetWinder Floating Point Emulator + (c) Rebel.COM, 1998,1999 + + Direct questions, comments to Scott Bambrough <scottb@netwinder.org> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +*/ + +#include "fpa11.h" +#include "softfloat.h" +#include "fpopcode.h" +#include "fpsr.h" +//#include "fpmodule.h" +//#include "fpmodule.inl" + +const floatx80 floatx80Constant[] = { + { 0x0000, 0x0000000000000000ULL}, /* extended 0.0 */ + { 0x3fff, 0x8000000000000000ULL}, /* extended 1.0 */ + { 0x4000, 0x8000000000000000ULL}, /* extended 2.0 */ + { 0x4000, 0xc000000000000000ULL}, /* extended 3.0 */ + { 0x4001, 0x8000000000000000ULL}, /* extended 4.0 */ + { 0x4001, 0xa000000000000000ULL}, /* extended 5.0 */ + { 0x3ffe, 0x8000000000000000ULL}, /* extended 0.5 */ + { 0x4002, 0xa000000000000000ULL} /* extended 10.0 */ +}; + +const float64 float64Constant[] = { + 0x0000000000000000ULL, /* double 0.0 */ + 0x3ff0000000000000ULL, /* double 1.0 */ + 0x4000000000000000ULL, /* double 2.0 */ + 0x4008000000000000ULL, /* double 3.0 */ + 0x4010000000000000ULL, /* double 4.0 */ + 0x4014000000000000ULL, /* double 5.0 */ + 0x3fe0000000000000ULL, /* double 0.5 */ + 0x4024000000000000ULL /* double 10.0 */ +}; + +const float32 float32Constant[] = { + 0x00000000, /* single 0.0 */ + 0x3f800000, /* single 1.0 */ + 0x40000000, /* single 2.0 */ + 0x40400000, /* single 3.0 */ + 0x40800000, /* single 4.0 */ + 0x40a00000, /* single 5.0 */ + 0x3f000000, /* single 0.5 */ + 0x41200000 /* single 10.0 */ +}; + +unsigned int getTransferLength(const unsigned int opcode) +{ + unsigned int nRc; + + switch (opcode & MASK_TRANSFER_LENGTH) + { + case 0x00000000: nRc = 1; break; /* single precision */ + case 0x00008000: nRc = 2; break; /* double precision */ + case 0x00400000: nRc = 3; break; /* extended precision */ + default: nRc = 0; + } + + return(nRc); +} + +unsigned int getRegisterCount(const unsigned int opcode) +{ + unsigned int nRc; + + switch (opcode & MASK_REGISTER_COUNT) + { + case 0x00000000: nRc = 4; break; + case 0x00008000: nRc = 1; break; + case 0x00400000: nRc = 2; break; + case 0x00408000: nRc = 3; break; + default: nRc = 0; + } + + return(nRc); +} + +unsigned int getRoundingPrecision(const unsigned int opcode) +{ + unsigned int nRc; + + switch (opcode & MASK_ROUNDING_PRECISION) + { + case 0x00000000: nRc = 1; break; + case 0x00000080: nRc = 2; break; + case 0x00080000: nRc = 3; break; + default: nRc = 0; + } + + return(nRc); +} + +unsigned int getDestinationSize(const unsigned int opcode) +{ + unsigned int nRc; + + switch (opcode & MASK_DESTINATION_SIZE) + { + case 0x00000000: nRc = typeSingle; break; + case 0x00000080: nRc = typeDouble; break; + case 0x00080000: nRc = typeExtended; break; + default: nRc = typeNone; + } + + return(nRc); +} + +/* condition code lookup table + index into the table is test code: EQ, NE, ... LT, GT, AL, NV + bit position in short is condition code: NZCV */ +static const unsigned short aCC[16] = { + 0xF0F0, // EQ == Z set + 0x0F0F, // NE + 0xCCCC, // CS == C set + 0x3333, // CC + 0xFF00, // MI == N set + 0x00FF, // PL + 0xAAAA, // VS == V set + 0x5555, // VC + 0x0C0C, // HI == C set && Z clear + 0xF3F3, // LS == C clear || Z set + 0xAA55, // GE == (N==V) + 0x55AA, // LT == (N!=V) + 0x0A05, // GT == (!Z && (N==V)) + 0xF5FA, // LE == (Z || (N!=V)) + 0xFFFF, // AL always + 0 // NV +}; + +unsigned int checkCondition(const unsigned int opcode, const unsigned int ccodes) +{ + return (aCC[opcode>>28] >> (ccodes>>28)) & 1; +} diff --git a/target-arm/nwfpe/fpopcode.h b/target-arm/nwfpe/fpopcode.h new file mode 100644 index 0000000000..13c7419262 --- /dev/null +++ b/target-arm/nwfpe/fpopcode.h @@ -0,0 +1,390 @@ +/* + NetWinder Floating Point Emulator + (c) Rebel.COM, 1998,1999 + + Direct questions, comments to Scott Bambrough <scottb@netwinder.org> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +*/ + +#ifndef __FPOPCODE_H__ +#define __FPOPCODE_H__ + +/* +ARM Floating Point Instruction Classes +| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | +|c o n d|1 1 0 P|U|u|W|L| Rn |v| Fd |0|0|0|1| o f f s e t | CPDT +|c o n d|1 1 0 P|U|w|W|L| Rn |x| Fd |0|0|0|1| o f f s e t | CPDT +| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | +|c o n d|1 1 1 0|a|b|c|d|e| Fn |j| Fd |0|0|0|1|f|g|h|0|i| Fm | CPDO +|c o n d|1 1 1 0|a|b|c|L|e| Fn | Rd |0|0|0|1|f|g|h|1|i| Fm | CPRT +|c o n d|1 1 1 0|a|b|c|1|e| Fn |1|1|1|1|0|0|0|1|f|g|h|1|i| Fm | comparisons +| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | + +CPDT data transfer instructions + LDF, STF, LFM, SFM + +CPDO dyadic arithmetic instructions + ADF, MUF, SUF, RSF, DVF, RDF, + POW, RPW, RMF, FML, FDV, FRD, POL + +CPDO monadic arithmetic instructions + MVF, MNF, ABS, RND, SQT, LOG, LGN, EXP, + SIN, COS, TAN, ASN, ACS, ATN, URD, NRM + +CPRT joint arithmetic/data transfer instructions + FIX (arithmetic followed by load/store) + FLT (load/store followed by arithmetic) + CMF, CNF CMFE, CNFE (comparisons) + WFS, RFS (write/read floating point status register) + WFC, RFC (write/read floating point control register) + +cond condition codes +P pre/post index bit: 0 = postindex, 1 = preindex +U up/down bit: 0 = stack grows down, 1 = stack grows up +W write back bit: 1 = update base register (Rn) +L load/store bit: 0 = store, 1 = load +Rn base register +Rd destination/source register +Fd floating point destination register +Fn floating point source register +Fm floating point source register or floating point constant + +uv transfer length (TABLE 1) +wx register count (TABLE 2) +abcd arithmetic opcode (TABLES 3 & 4) +ef destination size (rounding precision) (TABLE 5) +gh rounding mode (TABLE 6) +j dyadic/monadic bit: 0 = dyadic, 1 = monadic +i constant bit: 1 = constant (TABLE 6) +*/ + +/* +TABLE 1 ++-------------------------+---+---+---------+---------+ +| Precision | u | v | FPSR.EP | length | ++-------------------------+---+---+---------+---------+ +| Single | 0 ü 0 | x | 1 words | +| Double | 1 ü 1 | x | 2 words | +| Extended | 1 ü 1 | x | 3 words | +| Packed decimal | 1 ü 1 | 0 | 3 words | +| Expanded packed decimal | 1 ü 1 | 1 | 4 words | ++-------------------------+---+---+---------+---------+ +Note: x = don't care +*/ + +/* +TABLE 2 ++---+---+---------------------------------+ +| w | x | Number of registers to transfer | ++---+---+---------------------------------+ +| 0 ü 1 | 1 | +| 1 ü 0 | 2 | +| 1 ü 1 | 3 | +| 0 ü 0 | 4 | ++---+---+---------------------------------+ +*/ + +/* +TABLE 3: Dyadic Floating Point Opcodes ++---+---+---+---+----------+-----------------------+-----------------------+ +| a | b | c | d | Mnemonic | Description | Operation | ++---+---+---+---+----------+-----------------------+-----------------------+ +| 0 | 0 | 0 | 0 | ADF | Add | Fd := Fn + Fm | +| 0 | 0 | 0 | 1 | MUF | Multiply | Fd := Fn * Fm | +| 0 | 0 | 1 | 0 | SUF | Subtract | Fd := Fn - Fm | +| 0 | 0 | 1 | 1 | RSF | Reverse subtract | Fd := Fm - Fn | +| 0 | 1 | 0 | 0 | DVF | Divide | Fd := Fn / Fm | +| 0 | 1 | 0 | 1 | RDF | Reverse divide | Fd := Fm / Fn | +| 0 | 1 | 1 | 0 | POW | Power | Fd := Fn ^ Fm | +| 0 | 1 | 1 | 1 | RPW | Reverse power | Fd := Fm ^ Fn | +| 1 | 0 | 0 | 0 | RMF | Remainder | Fd := IEEE rem(Fn/Fm) | +| 1 | 0 | 0 | 1 | FML | Fast Multiply | Fd := Fn * Fm | +| 1 | 0 | 1 | 0 | FDV | Fast Divide | Fd := Fn / Fm | +| 1 | 0 | 1 | 1 | FRD | Fast reverse divide | Fd := Fm / Fn | +| 1 | 1 | 0 | 0 | POL | Polar angle (ArcTan2) | Fd := arctan2(Fn,Fm) | +| 1 | 1 | 0 | 1 | | undefined instruction | trap | +| 1 | 1 | 1 | 0 | | undefined instruction | trap | +| 1 | 1 | 1 | 1 | | undefined instruction | trap | ++---+---+---+---+----------+-----------------------+-----------------------+ +Note: POW, RPW, POL are deprecated, and are available for backwards + compatibility only. +*/ + +/* +TABLE 4: Monadic Floating Point Opcodes ++---+---+---+---+----------+-----------------------+-----------------------+ +| a | b | c | d | Mnemonic | Description | Operation | ++---+---+---+---+----------+-----------------------+-----------------------+ +| 0 | 0 | 0 | 0 | MVF | Move | Fd := Fm | +| 0 | 0 | 0 | 1 | MNF | Move negated | Fd := - Fm | +| 0 | 0 | 1 | 0 | ABS | Absolute value | Fd := abs(Fm) | +| 0 | 0 | 1 | 1 | RND | Round to integer | Fd := int(Fm) | +| 0 | 1 | 0 | 0 | SQT | Square root | Fd := sqrt(Fm) | +| 0 | 1 | 0 | 1 | LOG | Log base 10 | Fd := log10(Fm) | +| 0 | 1 | 1 | 0 | LGN | Log base e | Fd := ln(Fm) | +| 0 | 1 | 1 | 1 | EXP | Exponent | Fd := e ^ Fm | +| 1 | 0 | 0 | 0 | SIN | Sine | Fd := sin(Fm) | +| 1 | 0 | 0 | 1 | COS | Cosine | Fd := cos(Fm) | +| 1 | 0 | 1 | 0 | TAN | Tangent | Fd := tan(Fm) | +| 1 | 0 | 1 | 1 | ASN | Arc Sine | Fd := arcsin(Fm) | +| 1 | 1 | 0 | 0 | ACS | Arc Cosine | Fd := arccos(Fm) | +| 1 | 1 | 0 | 1 | ATN | Arc Tangent | Fd := arctan(Fm) | +| 1 | 1 | 1 | 0 | URD | Unnormalized round | Fd := int(Fm) | +| 1 | 1 | 1 | 1 | NRM | Normalize | Fd := norm(Fm) | ++---+---+---+---+----------+-----------------------+-----------------------+ +Note: LOG, LGN, EXP, SIN, COS, TAN, ASN, ACS, ATN are deprecated, and are + available for backwards compatibility only. +*/ + +/* +TABLE 5 ++-------------------------+---+---+ +| Rounding Precision | e | f | ++-------------------------+---+---+ +| IEEE Single precision | 0 ü 0 | +| IEEE Double precision | 0 ü 1 | +| IEEE Extended precision | 1 ü 0 | +| undefined (trap) | 1 ü 1 | ++-------------------------+---+---+ +*/ + +/* +TABLE 5 ++---------------------------------+---+---+ +| Rounding Mode | g | h | ++---------------------------------+---+---+ +| Round to nearest (default) | 0 ü 0 | +| Round toward plus infinity | 0 ü 1 | +| Round toward negative infinity | 1 ü 0 | +| Round toward zero | 1 ü 1 | ++---------------------------------+---+---+ +*/ + +/* +=== +=== Definitions for load and store instructions +=== +*/ + +/* bit masks */ +#define BIT_PREINDEX 0x01000000 +#define BIT_UP 0x00800000 +#define BIT_WRITE_BACK 0x00200000 +#define BIT_LOAD 0x00100000 + +/* masks for load/store */ +#define MASK_CPDT 0x0c000000 /* data processing opcode */ +#define MASK_OFFSET 0x000000ff +#define MASK_TRANSFER_LENGTH 0x00408000 +#define MASK_REGISTER_COUNT MASK_TRANSFER_LENGTH +#define MASK_COPROCESSOR 0x00000f00 + +/* Tests for transfer length */ +#define TRANSFER_SINGLE 0x00000000 +#define TRANSFER_DOUBLE 0x00008000 +#define TRANSFER_EXTENDED 0x00400000 +#define TRANSFER_PACKED MASK_TRANSFER_LENGTH + +/* Get the coprocessor number from the opcode. */ +#define getCoprocessorNumber(opcode) ((opcode & MASK_COPROCESSOR) >> 8) + +/* Get the offset from the opcode. */ +#define getOffset(opcode) (opcode & MASK_OFFSET) + +/* Tests for specific data transfer load/store opcodes. */ +#define TEST_OPCODE(opcode,mask) (((opcode) & (mask)) == (mask)) + +#define LOAD_OP(opcode) TEST_OPCODE((opcode),MASK_CPDT | BIT_LOAD) +#define STORE_OP(opcode) ((opcode & (MASK_CPDT | BIT_LOAD)) == MASK_CPDT) + +#define LDF_OP(opcode) (LOAD_OP(opcode) && (getCoprocessorNumber(opcode) == 1)) +#define LFM_OP(opcode) (LOAD_OP(opcode) && (getCoprocessorNumber(opcode) == 2)) +#define STF_OP(opcode) (STORE_OP(opcode) && (getCoprocessorNumber(opcode) == 1)) +#define SFM_OP(opcode) (STORE_OP(opcode) && (getCoprocessorNumber(opcode) == 2)) + +#define PREINDEXED(opcode) ((opcode & BIT_PREINDEX) != 0) +#define POSTINDEXED(opcode) ((opcode & BIT_PREINDEX) == 0) +#define BIT_UP_SET(opcode) ((opcode & BIT_UP) != 0) +#define BIT_UP_CLEAR(opcode) ((opcode & BIT_DOWN) == 0) +#define WRITE_BACK(opcode) ((opcode & BIT_WRITE_BACK) != 0) +#define LOAD(opcode) ((opcode & BIT_LOAD) != 0) +#define STORE(opcode) ((opcode & BIT_LOAD) == 0) + +/* +=== +=== Definitions for arithmetic instructions +=== +*/ +/* bit masks */ +#define BIT_MONADIC 0x00008000 +#define BIT_CONSTANT 0x00000008 + +#define CONSTANT_FM(opcode) ((opcode & BIT_CONSTANT) != 0) +#define MONADIC_INSTRUCTION(opcode) ((opcode & BIT_MONADIC) != 0) + +/* instruction identification masks */ +#define MASK_CPDO 0x0e000000 /* arithmetic opcode */ +#define MASK_ARITHMETIC_OPCODE 0x00f08000 +#define MASK_DESTINATION_SIZE 0x00080080 + +/* dyadic arithmetic opcodes. */ +#define ADF_CODE 0x00000000 +#define MUF_CODE 0x00100000 +#define SUF_CODE 0x00200000 +#define RSF_CODE 0x00300000 +#define DVF_CODE 0x00400000 +#define RDF_CODE 0x00500000 +#define POW_CODE 0x00600000 +#define RPW_CODE 0x00700000 +#define RMF_CODE 0x00800000 +#define FML_CODE 0x00900000 +#define FDV_CODE 0x00a00000 +#define FRD_CODE 0x00b00000 +#define POL_CODE 0x00c00000 +/* 0x00d00000 is an invalid dyadic arithmetic opcode */ +/* 0x00e00000 is an invalid dyadic arithmetic opcode */ +/* 0x00f00000 is an invalid dyadic arithmetic opcode */ + +/* monadic arithmetic opcodes. */ +#define MVF_CODE 0x00008000 +#define MNF_CODE 0x00108000 +#define ABS_CODE 0x00208000 +#define RND_CODE 0x00308000 +#define SQT_CODE 0x00408000 +#define LOG_CODE 0x00508000 +#define LGN_CODE 0x00608000 +#define EXP_CODE 0x00708000 +#define SIN_CODE 0x00808000 +#define COS_CODE 0x00908000 +#define TAN_CODE 0x00a08000 +#define ASN_CODE 0x00b08000 +#define ACS_CODE 0x00c08000 +#define ATN_CODE 0x00d08000 +#define URD_CODE 0x00e08000 +#define NRM_CODE 0x00f08000 + +/* +=== +=== Definitions for register transfer and comparison instructions +=== +*/ + +#define MASK_CPRT 0x0e000010 /* register transfer opcode */ +#define MASK_CPRT_CODE 0x00f00000 +#define FLT_CODE 0x00000000 +#define FIX_CODE 0x00100000 +#define WFS_CODE 0x00200000 +#define RFS_CODE 0x00300000 +#define WFC_CODE 0x00400000 +#define RFC_CODE 0x00500000 +#define CMF_CODE 0x00900000 +#define CNF_CODE 0x00b00000 +#define CMFE_CODE 0x00d00000 +#define CNFE_CODE 0x00f00000 + +/* +=== +=== Common definitions +=== +*/ + +/* register masks */ +#define MASK_Rd 0x0000f000 +#define MASK_Rn 0x000f0000 +#define MASK_Fd 0x00007000 +#define MASK_Fm 0x00000007 +#define MASK_Fn 0x00070000 + +/* condition code masks */ +#define CC_MASK 0xf0000000 +#define CC_NEGATIVE 0x80000000 +#define CC_ZERO 0x40000000 +#define CC_CARRY 0x20000000 +#define CC_OVERFLOW 0x10000000 +#define CC_EQ 0x00000000 +#define CC_NE 0x10000000 +#define CC_CS 0x20000000 +#define CC_HS CC_CS +#define CC_CC 0x30000000 +#define CC_LO CC_CC +#define CC_MI 0x40000000 +#define CC_PL 0x50000000 +#define CC_VS 0x60000000 +#define CC_VC 0x70000000 +#define CC_HI 0x80000000 +#define CC_LS 0x90000000 +#define CC_GE 0xa0000000 +#define CC_LT 0xb0000000 +#define CC_GT 0xc0000000 +#define CC_LE 0xd0000000 +#define CC_AL 0xe0000000 +#define CC_NV 0xf0000000 + +/* rounding masks/values */ +#define MASK_ROUNDING_MODE 0x00000060 +#define ROUND_TO_NEAREST 0x00000000 +#define ROUND_TO_PLUS_INFINITY 0x00000020 +#define ROUND_TO_MINUS_INFINITY 0x00000040 +#define ROUND_TO_ZERO 0x00000060 + +#define MASK_ROUNDING_PRECISION 0x00080080 +#define ROUND_SINGLE 0x00000000 +#define ROUND_DOUBLE 0x00000080 +#define ROUND_EXTENDED 0x00080000 + +/* Get the condition code from the opcode. */ +#define getCondition(opcode) (opcode >> 28) + +/* Get the source register from the opcode. */ +#define getRn(opcode) ((opcode & MASK_Rn) >> 16) + +/* Get the destination floating point register from the opcode. */ +#define getFd(opcode) ((opcode & MASK_Fd) >> 12) + +/* Get the first source floating point register from the opcode. */ +#define getFn(opcode) ((opcode & MASK_Fn) >> 16) + +/* Get the second source floating point register from the opcode. */ +#define getFm(opcode) (opcode & MASK_Fm) + +/* Get the destination register from the opcode. */ +#define getRd(opcode) ((opcode & MASK_Rd) >> 12) + +/* Get the rounding mode from the opcode. */ +#define getRoundingMode(opcode) ((opcode & MASK_ROUNDING_MODE) >> 5) + +static inline const floatx80 getExtendedConstant(const unsigned int nIndex) +{ + extern const floatx80 floatx80Constant[]; + return floatx80Constant[nIndex]; +} + +static inline const float64 getDoubleConstant(const unsigned int nIndex) +{ + extern const float64 float64Constant[]; + return float64Constant[nIndex]; +} + +static inline const float32 getSingleConstant(const unsigned int nIndex) +{ + extern const float32 float32Constant[]; + return float32Constant[nIndex]; +} + +extern unsigned int getRegisterCount(const unsigned int opcode); +extern unsigned int getDestinationSize(const unsigned int opcode); + +#endif diff --git a/target-arm/nwfpe/fpsr.h b/target-arm/nwfpe/fpsr.h new file mode 100644 index 0000000000..6dafb0f524 --- /dev/null +++ b/target-arm/nwfpe/fpsr.h @@ -0,0 +1,108 @@ +/* + NetWinder Floating Point Emulator + (c) Rebel.com, 1998-1999 + + Direct questions, comments to Scott Bambrough <scottb@netwinder.org> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +*/ + +#ifndef __FPSR_H__ +#define __FPSR_H__ + +/* +The FPSR is a 32 bit register consisting of 4 parts, each exactly +one byte. + + SYSTEM ID + EXCEPTION TRAP ENABLE BYTE + SYSTEM CONTROL BYTE + CUMULATIVE EXCEPTION FLAGS BYTE + +The FPCR is a 32 bit register consisting of bit flags. +*/ + +/* SYSTEM ID +------------ +Note: the system id byte is read only */ + +typedef unsigned int FPSR; /* type for floating point status register */ +typedef unsigned int FPCR; /* type for floating point control register */ + +#define MASK_SYSID 0xff000000 +#define BIT_HARDWARE 0x80000000 +#define FP_EMULATOR 0x01000000 /* System ID for emulator */ +#define FP_ACCELERATOR 0x81000000 /* System ID for FPA11 */ + +/* EXCEPTION TRAP ENABLE BYTE +----------------------------- */ + +#define MASK_TRAP_ENABLE 0x00ff0000 +#define MASK_TRAP_ENABLE_STRICT 0x001f0000 +#define BIT_IXE 0x00100000 /* inexact exception enable */ +#define BIT_UFE 0x00080000 /* underflow exception enable */ +#define BIT_OFE 0x00040000 /* overflow exception enable */ +#define BIT_DZE 0x00020000 /* divide by zero exception enable */ +#define BIT_IOE 0x00010000 /* invalid operation exception enable */ + +/* SYSTEM CONTROL BYTE +---------------------- */ + +#define MASK_SYSTEM_CONTROL 0x0000ff00 +#define MASK_TRAP_STRICT 0x00001f00 + +#define BIT_AC 0x00001000 /* use alternative C-flag definition + for compares */ +#define BIT_EP 0x00000800 /* use expanded packed decimal format */ +#define BIT_SO 0x00000400 /* select synchronous operation of FPA */ +#define BIT_NE 0x00000200 /* NaN exception bit */ +#define BIT_ND 0x00000100 /* no denormalized numbers bit */ + +/* CUMULATIVE EXCEPTION FLAGS BYTE +---------------------------------- */ + +#define MASK_EXCEPTION_FLAGS 0x000000ff +#define MASK_EXCEPTION_FLAGS_STRICT 0x0000001f + +#define BIT_IXC 0x00000010 /* inexact exception flag */ +#define BIT_UFC 0x00000008 /* underflow exception flag */ +#define BIT_OFC 0x00000004 /* overfloat exception flag */ +#define BIT_DZC 0x00000002 /* divide by zero exception flag */ +#define BIT_IOC 0x00000001 /* invalid operation exception flag */ + +/* Floating Point Control Register +----------------------------------*/ + +#define BIT_RU 0x80000000 /* rounded up bit */ +#define BIT_IE 0x10000000 /* inexact bit */ +#define BIT_MO 0x08000000 /* mantissa overflow bit */ +#define BIT_EO 0x04000000 /* exponent overflow bit */ +#define BIT_SB 0x00000800 /* store bounce */ +#define BIT_AB 0x00000400 /* arithmetic bounce */ +#define BIT_RE 0x00000200 /* rounding exception */ +#define BIT_DA 0x00000100 /* disable FPA */ + +#define MASK_OP 0x00f08010 /* AU operation code */ +#define MASK_PR 0x00080080 /* AU precision */ +#define MASK_S1 0x00070000 /* AU source register 1 */ +#define MASK_S2 0x00000007 /* AU source register 2 */ +#define MASK_DS 0x00007000 /* AU destination register */ +#define MASK_RM 0x00000060 /* AU rounding mode */ +#define MASK_ALU 0x9cfff2ff /* only ALU can write these bits */ +#define MASK_RESET 0x00000d00 /* bits set on reset, all others cleared */ +#define MASK_WFC MASK_RESET +#define MASK_RFC ~MASK_RESET + +#endif diff --git a/target-arm/nwfpe/milieu.h b/target-arm/nwfpe/milieu.h new file mode 100644 index 0000000000..a3892ab2dc --- /dev/null +++ b/target-arm/nwfpe/milieu.h @@ -0,0 +1,48 @@ + +/* +=============================================================================== + +This C header file is part of the SoftFloat IEC/IEEE Floating-point +Arithmetic Package, Release 2. + +Written by John R. Hauser. This work was made possible in part by the +International Computer Science Institute, located at Suite 600, 1947 Center +Street, Berkeley, California 94704. Funding was partially provided by the +National Science Foundation under grant MIP-9311980. The original version +of this code was written as part of a project to build a fixed-point vector +processor in collaboration with the University of California at Berkeley, +overseen by Profs. Nelson Morgan and John Wawrzynek. More information +is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ +arithmetic/softfloat.html'. + +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort +has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT +TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO +PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY +AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. + +Derivative works are acceptable, even for commercial purposes, so long as +(1) they include prominent notice that the work is derivative, and (2) they +include prominent notice akin to these three paragraphs for those parts of +this code that are retained. + +=============================================================================== +*/ + +/* +------------------------------------------------------------------------------- +Include common integer types and flags. +------------------------------------------------------------------------------- +*/ +#include "ARM-gcc.h" + +/* +------------------------------------------------------------------------------- +Symbolic Boolean literals. +------------------------------------------------------------------------------- +*/ +enum { + FALSE = 0, + TRUE = 1 +}; + diff --git a/target-arm/nwfpe/single_cpdo.c b/target-arm/nwfpe/single_cpdo.c new file mode 100644 index 0000000000..c38cb01e41 --- /dev/null +++ b/target-arm/nwfpe/single_cpdo.c @@ -0,0 +1,255 @@ +/* + NetWinder Floating Point Emulator + (c) Rebel.COM, 1998,1999 + + Direct questions, comments to Scott Bambrough <scottb@netwinder.org> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. +*/ + +#include "fpa11.h" +#include "softfloat.h" +#include "fpopcode.h" + +float32 float32_exp(float32 Fm); +float32 float32_ln(float32 Fm); +float32 float32_sin(float32 rFm); +float32 float32_cos(float32 rFm); +float32 float32_arcsin(float32 rFm); +float32 float32_arctan(float32 rFm); +float32 float32_log(float32 rFm); +float32 float32_tan(float32 rFm); +float32 float32_arccos(float32 rFm); +float32 float32_pow(float32 rFn,float32 rFm); +float32 float32_pol(float32 rFn,float32 rFm); + +unsigned int SingleCPDO(const unsigned int opcode) +{ + FPA11 *fpa11 = GET_FPA11(); + float32 rFm, rFn; + unsigned int Fd, Fm, Fn, nRc = 1; + + Fm = getFm(opcode); + if (CONSTANT_FM(opcode)) + { + rFm = getSingleConstant(Fm); + } + else + { + switch (fpa11->fType[Fm]) + { + case typeSingle: + rFm = fpa11->fpreg[Fm].fSingle; + break; + + default: return 0; + } + } + + if (!MONADIC_INSTRUCTION(opcode)) + { + Fn = getFn(opcode); + switch (fpa11->fType[Fn]) + { + case typeSingle: + rFn = fpa11->fpreg[Fn].fSingle; + break; + + default: return 0; + } + } + + Fd = getFd(opcode); + switch (opcode & MASK_ARITHMETIC_OPCODE) + { + /* dyadic opcodes */ + case ADF_CODE: + fpa11->fpreg[Fd].fSingle = float32_add(rFn,rFm); + break; + + case MUF_CODE: + case FML_CODE: + fpa11->fpreg[Fd].fSingle = float32_mul(rFn,rFm); + break; + + case SUF_CODE: + fpa11->fpreg[Fd].fSingle = float32_sub(rFn,rFm); + break; + + case RSF_CODE: + fpa11->fpreg[Fd].fSingle = float32_sub(rFm,rFn); + break; + + case DVF_CODE: + case FDV_CODE: + fpa11->fpreg[Fd].fSingle = float32_div(rFn,rFm); + break; + + case RDF_CODE: + case FRD_CODE: + fpa11->fpreg[Fd].fSingle = float32_div(rFm,rFn); + break; + +#if 0 + case POW_CODE: + fpa11->fpreg[Fd].fSingle = float32_pow(rFn,rFm); + break; + + case RPW_CODE: + fpa11->fpreg[Fd].fSingle = float32_pow(rFm,rFn); + break; +#endif + + case RMF_CODE: + fpa11->fpreg[Fd].fSingle = float32_rem(rFn,rFm); + break; + +#if 0 + case POL_CODE: + fpa11->fpreg[Fd].fSingle = float32_pol(rFn,rFm); + break; +#endif + + /* monadic opcodes */ + case MVF_CODE: + fpa11->fpreg[Fd].fSingle = rFm; + break; + + case MNF_CODE: + rFm ^= 0x80000000; + fpa11->fpreg[Fd].fSingle = rFm; + break; + + case ABS_CODE: + rFm &= 0x7fffffff; + fpa11->fpreg[Fd].fSingle = rFm; + break; + + case RND_CODE: + case URD_CODE: + fpa11->fpreg[Fd].fSingle = float32_round_to_int(rFm); + break; + + case SQT_CODE: + fpa11->fpreg[Fd].fSingle = float32_sqrt(rFm); + break; + +#if 0 + case LOG_CODE: + fpa11->fpreg[Fd].fSingle = float32_log(rFm); + break; + + case LGN_CODE: + fpa11->fpreg[Fd].fSingle = float32_ln(rFm); + break; + + case EXP_CODE: + fpa11->fpreg[Fd].fSingle = float32_exp(rFm); + break; + + case SIN_CODE: + fpa11->fpreg[Fd].fSingle = float32_sin(rFm); + break; + + case COS_CODE: + fpa11->fpreg[Fd].fSingle = float32_cos(rFm); + break; + + case TAN_CODE: + fpa11->fpreg[Fd].fSingle = float32_tan(rFm); + break; + + case ASN_CODE: + fpa11->fpreg[Fd].fSingle = float32_arcsin(rFm); + break; + + case ACS_CODE: + fpa11->fpreg[Fd].fSingle = float32_arccos(rFm); + break; + + case ATN_CODE: + fpa11->fpreg[Fd].fSingle = float32_arctan(rFm); + break; +#endif + + case NRM_CODE: + break; + + default: + { + nRc = 0; + } + } + + if (0 != nRc) fpa11->fType[Fd] = typeSingle; + return nRc; +} + +#if 0 +float32 float32_exp(float32 Fm) +{ +//series +} + +float32 float32_ln(float32 Fm) +{ +//series +} + +float32 float32_sin(float32 rFm) +{ +//series +} + +float32 float32_cos(float32 rFm) +{ +//series +} + +float32 float32_arcsin(float32 rFm) +{ +//series +} + +float32 float32_arctan(float32 rFm) +{ + //series +} + +float32 float32_arccos(float32 rFm) +{ + //return float32_sub(halfPi,float32_arcsin(rFm)); +} + +float32 float32_log(float32 rFm) +{ + return float32_div(float32_ln(rFm),getSingleConstant(7)); +} + +float32 float32_tan(float32 rFm) +{ + return float32_div(float32_sin(rFm),float32_cos(rFm)); +} + +float32 float32_pow(float32 rFn,float32 rFm) +{ + return float32_exp(float32_mul(rFm,float32_ln(rFn))); +} + +float32 float32_pol(float32 rFn,float32 rFm) +{ + return float32_arctan(float32_div(rFn,rFm)); +} +#endif diff --git a/target-arm/nwfpe/softfloat-macros b/target-arm/nwfpe/softfloat-macros new file mode 100644 index 0000000000..c245a0ef4e --- /dev/null +++ b/target-arm/nwfpe/softfloat-macros @@ -0,0 +1,740 @@ + +/* +=============================================================================== + +This C source fragment is part of the SoftFloat IEC/IEEE Floating-point +Arithmetic Package, Release 2. + +Written by John R. Hauser. This work was made possible in part by the +International Computer Science Institute, located at Suite 600, 1947 Center +Street, Berkeley, California 94704. Funding was partially provided by the +National Science Foundation under grant MIP-9311980. The original version +of this code was written as part of a project to build a fixed-point vector +processor in collaboration with the University of California at Berkeley, +overseen by Profs. Nelson Morgan and John Wawrzynek. More information +is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ +arithmetic/softfloat.html'. + +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort +has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT +TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO +PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY +AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. + +Derivative works are acceptable, even for commercial purposes, so long as +(1) they include prominent notice that the work is derivative, and (2) they +include prominent notice akin to these three paragraphs for those parts of +this code that are retained. + +=============================================================================== +*/ + +/* +------------------------------------------------------------------------------- +Shifts `a' right by the number of bits given in `count'. If any nonzero +bits are shifted off, they are ``jammed'' into the least significant bit of +the result by setting the least significant bit to 1. The value of `count' +can be arbitrarily large; in particular, if `count' is greater than 32, the +result will be either 0 or 1, depending on whether `a' is zero or nonzero. +The result is stored in the location pointed to by `zPtr'. +------------------------------------------------------------------------------- +*/ +INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr ) +{ + bits32 z; + if ( count == 0 ) { + z = a; + } + else if ( count < 32 ) { + z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 ); + } + else { + z = ( a != 0 ); + } + *zPtr = z; +} + +/* +------------------------------------------------------------------------------- +Shifts `a' right by the number of bits given in `count'. If any nonzero +bits are shifted off, they are ``jammed'' into the least significant bit of +the result by setting the least significant bit to 1. The value of `count' +can be arbitrarily large; in particular, if `count' is greater than 64, the +result will be either 0 or 1, depending on whether `a' is zero or nonzero. +The result is stored in the location pointed to by `zPtr'. +------------------------------------------------------------------------------- +*/ +INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr ) +{ + bits64 z; + +// __asm__("@shift64RightJamming -- start"); + if ( count == 0 ) { + z = a; + } + else if ( count < 64 ) { + z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 ); + } + else { + z = ( a != 0 ); + } +// __asm__("@shift64RightJamming -- end"); + *zPtr = z; +} + +/* +------------------------------------------------------------------------------- +Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64 +_plus_ the number of bits given in `count'. The shifted result is at most +64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The +bits shifted off form a second 64-bit result as follows: The _last_ bit +shifted off is the most-significant bit of the extra result, and the other +63 bits of the extra result are all zero if and only if _all_but_the_last_ +bits shifted off were all zero. This extra result is stored in the location +pointed to by `z1Ptr'. The value of `count' can be arbitrarily large. + (This routine makes more sense if `a0' and `a1' are considered to form a +fixed-point value with binary point between `a0' and `a1'. This fixed-point +value is shifted right by the number of bits given in `count', and the +integer part of the result is returned at the location pointed to by +`z0Ptr'. The fractional part of the result may be slightly corrupted as +described above, and is returned at the location pointed to by `z1Ptr'.) +------------------------------------------------------------------------------- +*/ +INLINE void + shift64ExtraRightJamming( + bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) +{ + bits64 z0, z1; + int8 negCount = ( - count ) & 63; + + if ( count == 0 ) { + z1 = a1; + z0 = a0; + } + else if ( count < 64 ) { + z1 = ( a0<<negCount ) | ( a1 != 0 ); + z0 = a0>>count; + } + else { + if ( count == 64 ) { + z1 = a0 | ( a1 != 0 ); + } + else { + z1 = ( ( a0 | a1 ) != 0 ); + } + z0 = 0; + } + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the +number of bits given in `count'. Any bits shifted off are lost. The value +of `count' can be arbitrarily large; in particular, if `count' is greater +than 128, the result will be 0. The result is broken into two 64-bit pieces +which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void + shift128Right( + bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) +{ + bits64 z0, z1; + int8 negCount = ( - count ) & 63; + + if ( count == 0 ) { + z1 = a1; + z0 = a0; + } + else if ( count < 64 ) { + z1 = ( a0<<negCount ) | ( a1>>count ); + z0 = a0>>count; + } + else { + z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0; + z0 = 0; + } + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the +number of bits given in `count'. If any nonzero bits are shifted off, they +are ``jammed'' into the least significant bit of the result by setting the +least significant bit to 1. The value of `count' can be arbitrarily large; +in particular, if `count' is greater than 128, the result will be either 0 +or 1, depending on whether the concatenation of `a0' and `a1' is zero or +nonzero. The result is broken into two 64-bit pieces which are stored at +the locations pointed to by `z0Ptr' and `z1Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void + shift128RightJamming( + bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) +{ + bits64 z0, z1; + int8 negCount = ( - count ) & 63; + + if ( count == 0 ) { + z1 = a1; + z0 = a0; + } + else if ( count < 64 ) { + z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 ); + z0 = a0>>count; + } + else { + if ( count == 64 ) { + z1 = a0 | ( a1 != 0 ); + } + else if ( count < 128 ) { + z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 ); + } + else { + z1 = ( ( a0 | a1 ) != 0 ); + } + z0 = 0; + } + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right +by 64 _plus_ the number of bits given in `count'. The shifted result is +at most 128 nonzero bits; these are broken into two 64-bit pieces which are +stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted +off form a third 64-bit result as follows: The _last_ bit shifted off is +the most-significant bit of the extra result, and the other 63 bits of the +extra result are all zero if and only if _all_but_the_last_ bits shifted off +were all zero. This extra result is stored in the location pointed to by +`z2Ptr'. The value of `count' can be arbitrarily large. + (This routine makes more sense if `a0', `a1', and `a2' are considered +to form a fixed-point value with binary point between `a1' and `a2'. This +fixed-point value is shifted right by the number of bits given in `count', +and the integer part of the result is returned at the locations pointed to +by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly +corrupted as described above, and is returned at the location pointed to by +`z2Ptr'.) +------------------------------------------------------------------------------- +*/ +INLINE void + shift128ExtraRightJamming( + bits64 a0, + bits64 a1, + bits64 a2, + int16 count, + bits64 *z0Ptr, + bits64 *z1Ptr, + bits64 *z2Ptr + ) +{ + bits64 z0, z1, z2; + int8 negCount = ( - count ) & 63; + + if ( count == 0 ) { + z2 = a2; + z1 = a1; + z0 = a0; + } + else { + if ( count < 64 ) { + z2 = a1<<negCount; + z1 = ( a0<<negCount ) | ( a1>>count ); + z0 = a0>>count; + } + else { + if ( count == 64 ) { + z2 = a1; + z1 = a0; + } + else { + a2 |= a1; + if ( count < 128 ) { + z2 = a0<<negCount; + z1 = a0>>( count & 63 ); + } + else { + z2 = ( count == 128 ) ? a0 : ( a0 != 0 ); + z1 = 0; + } + } + z0 = 0; + } + z2 |= ( a2 != 0 ); + } + *z2Ptr = z2; + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the +number of bits given in `count'. Any bits shifted off are lost. The value +of `count' must be less than 64. The result is broken into two 64-bit +pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void + shortShift128Left( + bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr ) +{ + + *z1Ptr = a1<<count; + *z0Ptr = + ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) ); + +} + +/* +------------------------------------------------------------------------------- +Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left +by the number of bits given in `count'. Any bits shifted off are lost. +The value of `count' must be less than 64. The result is broken into three +64-bit pieces which are stored at the locations pointed to by `z0Ptr', +`z1Ptr', and `z2Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void + shortShift192Left( + bits64 a0, + bits64 a1, + bits64 a2, + int16 count, + bits64 *z0Ptr, + bits64 *z1Ptr, + bits64 *z2Ptr + ) +{ + bits64 z0, z1, z2; + int8 negCount; + + z2 = a2<<count; + z1 = a1<<count; + z0 = a0<<count; + if ( 0 < count ) { + negCount = ( ( - count ) & 63 ); + z1 |= a2>>negCount; + z0 |= a1>>negCount; + } + *z2Ptr = z2; + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit +value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so +any carry out is lost. The result is broken into two 64-bit pieces which +are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void + add128( + bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) +{ + bits64 z1; + + z1 = a1 + b1; + *z1Ptr = z1; + *z0Ptr = a0 + b0 + ( z1 < a1 ); + +} + +/* +------------------------------------------------------------------------------- +Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the +192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is +modulo 2^192, so any carry out is lost. The result is broken into three +64-bit pieces which are stored at the locations pointed to by `z0Ptr', +`z1Ptr', and `z2Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void + add192( + bits64 a0, + bits64 a1, + bits64 a2, + bits64 b0, + bits64 b1, + bits64 b2, + bits64 *z0Ptr, + bits64 *z1Ptr, + bits64 *z2Ptr + ) +{ + bits64 z0, z1, z2; + int8 carry0, carry1; + + z2 = a2 + b2; + carry1 = ( z2 < a2 ); + z1 = a1 + b1; + carry0 = ( z1 < a1 ); + z0 = a0 + b0; + z1 += carry1; + z0 += ( z1 < carry1 ); + z0 += carry0; + *z2Ptr = z2; + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the +128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo +2^128, so any borrow out (carry out) is lost. The result is broken into two +64-bit pieces which are stored at the locations pointed to by `z0Ptr' and +`z1Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void + sub128( + bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr ) +{ + + *z1Ptr = a1 - b1; + *z0Ptr = a0 - b0 - ( a1 < b1 ); + +} + +/* +------------------------------------------------------------------------------- +Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2' +from the 192-bit value formed by concatenating `a0', `a1', and `a2'. +Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The +result is broken into three 64-bit pieces which are stored at the locations +pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void + sub192( + bits64 a0, + bits64 a1, + bits64 a2, + bits64 b0, + bits64 b1, + bits64 b2, + bits64 *z0Ptr, + bits64 *z1Ptr, + bits64 *z2Ptr + ) +{ + bits64 z0, z1, z2; + int8 borrow0, borrow1; + + z2 = a2 - b2; + borrow1 = ( a2 < b2 ); + z1 = a1 - b1; + borrow0 = ( a1 < b1 ); + z0 = a0 - b0; + z0 -= ( z1 < borrow1 ); + z1 -= borrow1; + z0 -= borrow0; + *z2Ptr = z2; + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Multiplies `a' by `b' to obtain a 128-bit product. The product is broken +into two 64-bit pieces which are stored at the locations pointed to by +`z0Ptr' and `z1Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr ) +{ + bits32 aHigh, aLow, bHigh, bLow; + bits64 z0, zMiddleA, zMiddleB, z1; + + aLow = a; + aHigh = a>>32; + bLow = b; + bHigh = b>>32; + z1 = ( (bits64) aLow ) * bLow; + zMiddleA = ( (bits64) aLow ) * bHigh; + zMiddleB = ( (bits64) aHigh ) * bLow; + z0 = ( (bits64) aHigh ) * bHigh; + zMiddleA += zMiddleB; + z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 ); + zMiddleA <<= 32; + z1 += zMiddleA; + z0 += ( z1 < zMiddleA ); + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Multiplies the 128-bit value formed by concatenating `a0' and `a1' by `b' to +obtain a 192-bit product. The product is broken into three 64-bit pieces +which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and +`z2Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void + mul128By64To192( + bits64 a0, + bits64 a1, + bits64 b, + bits64 *z0Ptr, + bits64 *z1Ptr, + bits64 *z2Ptr + ) +{ + bits64 z0, z1, z2, more1; + + mul64To128( a1, b, &z1, &z2 ); + mul64To128( a0, b, &z0, &more1 ); + add128( z0, more1, 0, z1, &z0, &z1 ); + *z2Ptr = z2; + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the +128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit +product. The product is broken into four 64-bit pieces which are stored at +the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'. +------------------------------------------------------------------------------- +*/ +INLINE void + mul128To256( + bits64 a0, + bits64 a1, + bits64 b0, + bits64 b1, + bits64 *z0Ptr, + bits64 *z1Ptr, + bits64 *z2Ptr, + bits64 *z3Ptr + ) +{ + bits64 z0, z1, z2, z3; + bits64 more1, more2; + + mul64To128( a1, b1, &z2, &z3 ); + mul64To128( a1, b0, &z1, &more2 ); + add128( z1, more2, 0, z2, &z1, &z2 ); + mul64To128( a0, b0, &z0, &more1 ); + add128( z0, more1, 0, z1, &z0, &z1 ); + mul64To128( a0, b1, &more1, &more2 ); + add128( more1, more2, 0, z2, &more1, &z2 ); + add128( z0, z1, 0, more1, &z0, &z1 ); + *z3Ptr = z3; + *z2Ptr = z2; + *z1Ptr = z1; + *z0Ptr = z0; + +} + +/* +------------------------------------------------------------------------------- +Returns an approximation to the 64-bit integer quotient obtained by dividing +`b' into the 128-bit value formed by concatenating `a0' and `a1'. The +divisor `b' must be at least 2^63. If q is the exact quotient truncated +toward zero, the approximation returned lies between q and q + 2 inclusive. +If the exact quotient q is larger than 64 bits, the maximum positive 64-bit +unsigned integer is returned. +------------------------------------------------------------------------------- +*/ +static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b ) +{ + bits64 b0, b1; + bits64 rem0, rem1, term0, term1; + bits64 z; + if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF ); + b0 = b>>32; + z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32; + mul64To128( b, z, &term0, &term1 ); + sub128( a0, a1, term0, term1, &rem0, &rem1 ); + while ( ( (sbits64) rem0 ) < 0 ) { + z -= LIT64( 0x100000000 ); + b1 = b<<32; + add128( rem0, rem1, b0, b1, &rem0, &rem1 ); + } + rem0 = ( rem0<<32 ) | ( rem1>>32 ); + z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns an approximation to the square root of the 32-bit significand given +by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of +`aExp' (the least significant bit) is 1, the integer returned approximates +2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp' +is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either +case, the approximation returned lies strictly within +/-2 of the exact +value. +------------------------------------------------------------------------------- +*/ +static bits32 estimateSqrt32( int16 aExp, bits32 a ) +{ + static const bits16 sqrtOddAdjustments[] = { + 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0, + 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67 + }; + static const bits16 sqrtEvenAdjustments[] = { + 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E, + 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002 + }; + int8 index; + bits32 z; + + index = ( a>>27 ) & 15; + if ( aExp & 1 ) { + z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ]; + z = ( ( a / z )<<14 ) + ( z<<15 ); + a >>= 1; + } + else { + z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ]; + z = a / z + z; + z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 ); + if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 ); + } + return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the number of leading 0 bits before the most-significant 1 bit +of `a'. If `a' is zero, 32 is returned. +------------------------------------------------------------------------------- +*/ +static int8 countLeadingZeros32( bits32 a ) +{ + static const int8 countLeadingZerosHigh[] = { + 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, + 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 + }; + int8 shiftCount; + + shiftCount = 0; + if ( a < 0x10000 ) { + shiftCount += 16; + a <<= 16; + } + if ( a < 0x1000000 ) { + shiftCount += 8; + a <<= 8; + } + shiftCount += countLeadingZerosHigh[ a>>24 ]; + return shiftCount; + +} + +/* +------------------------------------------------------------------------------- +Returns the number of leading 0 bits before the most-significant 1 bit +of `a'. If `a' is zero, 64 is returned. +------------------------------------------------------------------------------- +*/ +static int8 countLeadingZeros64( bits64 a ) +{ + int8 shiftCount; + + shiftCount = 0; + if ( a < ( (bits64) 1 )<<32 ) { + shiftCount += 32; + } + else { + a >>= 32; + } + shiftCount += countLeadingZeros32( a ); + return shiftCount; + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' +is equal to the 128-bit value formed by concatenating `b0' and `b1'. +Otherwise, returns 0. +------------------------------------------------------------------------------- +*/ +INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) +{ + + return ( a0 == b0 ) && ( a1 == b1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less +than or equal to the 128-bit value formed by concatenating `b0' and `b1'. +Otherwise, returns 0. +------------------------------------------------------------------------------- +*/ +INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) +{ + + return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less +than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise, +returns 0. +------------------------------------------------------------------------------- +*/ +INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) +{ + + return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is +not equal to the 128-bit value formed by concatenating `b0' and `b1'. +Otherwise, returns 0. +------------------------------------------------------------------------------- +*/ +INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 ) +{ + + return ( a0 != b0 ) || ( a1 != b1 ); + +} + diff --git a/target-arm/nwfpe/softfloat-specialize b/target-arm/nwfpe/softfloat-specialize new file mode 100644 index 0000000000..a23a8a360d --- /dev/null +++ b/target-arm/nwfpe/softfloat-specialize @@ -0,0 +1,366 @@ + +/* +=============================================================================== + +This C source fragment is part of the SoftFloat IEC/IEEE Floating-point +Arithmetic Package, Release 2. + +Written by John R. Hauser. This work was made possible in part by the +International Computer Science Institute, located at Suite 600, 1947 Center +Street, Berkeley, California 94704. Funding was partially provided by the +National Science Foundation under grant MIP-9311980. The original version +of this code was written as part of a project to build a fixed-point vector +processor in collaboration with the University of California at Berkeley, +overseen by Profs. Nelson Morgan and John Wawrzynek. More information +is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ +arithmetic/softfloat.html'. + +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort +has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT +TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO +PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY +AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. + +Derivative works are acceptable, even for commercial purposes, so long as +(1) they include prominent notice that the work is derivative, and (2) they +include prominent notice akin to these three paragraphs for those parts of +this code that are retained. + +=============================================================================== +*/ + +/* +------------------------------------------------------------------------------- +Underflow tininess-detection mode, statically initialized to default value. +(The declaration in `softfloat.h' must match the `int8' type here.) +------------------------------------------------------------------------------- +*/ +int8 float_detect_tininess = float_tininess_after_rounding; + +/* +------------------------------------------------------------------------------- +Raises the exceptions specified by `flags'. Floating-point traps can be +defined here if desired. It is currently not possible for such a trap to +substitute a result value. If traps are not implemented, this routine +should be simply `float_exception_flags |= flags;'. + +ScottB: November 4, 1998 +Moved this function out of softfloat-specialize into fpmodule.c. +This effectively isolates all the changes required for integrating with the +Linux kernel into fpmodule.c. Porting to NetBSD should only require modifying +fpmodule.c to integrate with the NetBSD kernel (I hope!). +------------------------------------------------------------------------------- +*/ +void float_raise( int8 flags ) +{ + float_exception_flags |= flags; +} + +/* +------------------------------------------------------------------------------- +Internal canonical NaN format. +------------------------------------------------------------------------------- +*/ +typedef struct { + flag sign; + bits64 high, low; +} commonNaNT; + +/* +------------------------------------------------------------------------------- +The pattern for a default generated single-precision NaN. +------------------------------------------------------------------------------- +*/ +#define float32_default_nan 0xFFFFFFFF + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is a NaN; +otherwise returns 0. +------------------------------------------------------------------------------- +*/ +flag float32_is_nan( float32 a ) +{ + + return ( 0xFF000000 < (bits32) ( a<<1 ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is a signaling +NaN; otherwise returns 0. +------------------------------------------------------------------------------- +*/ +flag float32_is_signaling_nan( float32 a ) +{ + + return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point NaN +`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid +exception is raised. +------------------------------------------------------------------------------- +*/ +static commonNaNT float32ToCommonNaN( float32 a ) +{ + commonNaNT z; + + if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); + z.sign = a>>31; + z.low = 0; + z.high = ( (bits64) a )<<41; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the canonical NaN `a' to the single- +precision floating-point format. +------------------------------------------------------------------------------- +*/ +static float32 commonNaNToFloat32( commonNaNT a ) +{ + + return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 ); + +} + +/* +------------------------------------------------------------------------------- +Takes two single-precision floating-point values `a' and `b', one of which +is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a +signaling NaN, the invalid exception is raised. +------------------------------------------------------------------------------- +*/ +static float32 propagateFloat32NaN( float32 a, float32 b ) +{ + flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; + + aIsNaN = float32_is_nan( a ); + aIsSignalingNaN = float32_is_signaling_nan( a ); + bIsNaN = float32_is_nan( b ); + bIsSignalingNaN = float32_is_signaling_nan( b ); + a |= 0x00400000; + b |= 0x00400000; + if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); + if ( aIsNaN ) { + return ( aIsSignalingNaN & bIsNaN ) ? b : a; + } + else { + return b; + } + +} + +/* +------------------------------------------------------------------------------- +The pattern for a default generated double-precision NaN. +------------------------------------------------------------------------------- +*/ +#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF ) + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is a NaN; +otherwise returns 0. +------------------------------------------------------------------------------- +*/ +flag float64_is_nan( float64 a ) +{ + + return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is a signaling +NaN; otherwise returns 0. +------------------------------------------------------------------------------- +*/ +flag float64_is_signaling_nan( float64 a ) +{ + + return + ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) + && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point NaN +`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid +exception is raised. +------------------------------------------------------------------------------- +*/ +static commonNaNT float64ToCommonNaN( float64 a ) +{ + commonNaNT z; + + if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); + z.sign = a>>63; + z.low = 0; + z.high = a<<12; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the canonical NaN `a' to the double- +precision floating-point format. +------------------------------------------------------------------------------- +*/ +static float64 commonNaNToFloat64( commonNaNT a ) +{ + + return + ( ( (bits64) a.sign )<<63 ) + | LIT64( 0x7FF8000000000000 ) + | ( a.high>>12 ); + +} + +/* +------------------------------------------------------------------------------- +Takes two double-precision floating-point values `a' and `b', one of which +is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a +signaling NaN, the invalid exception is raised. +------------------------------------------------------------------------------- +*/ +static float64 propagateFloat64NaN( float64 a, float64 b ) +{ + flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; + + aIsNaN = float64_is_nan( a ); + aIsSignalingNaN = float64_is_signaling_nan( a ); + bIsNaN = float64_is_nan( b ); + bIsSignalingNaN = float64_is_signaling_nan( b ); + a |= LIT64( 0x0008000000000000 ); + b |= LIT64( 0x0008000000000000 ); + if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); + if ( aIsNaN ) { + return ( aIsSignalingNaN & bIsNaN ) ? b : a; + } + else { + return b; + } + +} + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +The pattern for a default generated extended double-precision NaN. The +`high' and `low' values hold the most- and least-significant bits, +respectively. +------------------------------------------------------------------------------- +*/ +#define floatx80_default_nan_high 0xFFFF +#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is a +NaN; otherwise returns 0. +------------------------------------------------------------------------------- +*/ +flag floatx80_is_nan( floatx80 a ) +{ + + return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is a +signaling NaN; otherwise returns 0. +------------------------------------------------------------------------------- +*/ +flag floatx80_is_signaling_nan( floatx80 a ) +{ + //register int lr; + bits64 aLow; + + //__asm__("mov %0, lr" : : "g" (lr)); + //fp_printk("floatx80_is_signalling_nan() called from 0x%08x\n",lr); + aLow = a.low & ~ LIT64( 0x4000000000000000 ); + return + ( ( a.high & 0x7FFF ) == 0x7FFF ) + && (bits64) ( aLow<<1 ) + && ( a.low == aLow ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the extended double-precision floating- +point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the +invalid exception is raised. +------------------------------------------------------------------------------- +*/ +static commonNaNT floatx80ToCommonNaN( floatx80 a ) +{ + commonNaNT z; + + if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); + z.sign = a.high>>15; + z.low = 0; + z.high = a.low<<1; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the canonical NaN `a' to the extended +double-precision floating-point format. +------------------------------------------------------------------------------- +*/ +static floatx80 commonNaNToFloatx80( commonNaNT a ) +{ + floatx80 z; + + z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 ); + z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF; + return z; + +} + +/* +------------------------------------------------------------------------------- +Takes two extended double-precision floating-point values `a' and `b', one +of which is a NaN, and returns the appropriate NaN result. If either `a' or +`b' is a signaling NaN, the invalid exception is raised. +------------------------------------------------------------------------------- +*/ +static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b ) +{ + flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; + + aIsNaN = floatx80_is_nan( a ); + aIsSignalingNaN = floatx80_is_signaling_nan( a ); + bIsNaN = floatx80_is_nan( b ); + bIsSignalingNaN = floatx80_is_signaling_nan( b ); + a.low |= LIT64( 0xC000000000000000 ); + b.low |= LIT64( 0xC000000000000000 ); + if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); + if ( aIsNaN ) { + return ( aIsSignalingNaN & bIsNaN ) ? b : a; + } + else { + return b; + } + +} + +#endif diff --git a/target-arm/nwfpe/softfloat.c b/target-arm/nwfpe/softfloat.c new file mode 100644 index 0000000000..8ffb9a98d4 --- /dev/null +++ b/target-arm/nwfpe/softfloat.c @@ -0,0 +1,3427 @@ +/* +=============================================================================== + +This C source file is part of the SoftFloat IEC/IEEE Floating-point +Arithmetic Package, Release 2. + +Written by John R. Hauser. This work was made possible in part by the +International Computer Science Institute, located at Suite 600, 1947 Center +Street, Berkeley, California 94704. Funding was partially provided by the +National Science Foundation under grant MIP-9311980. The original version +of this code was written as part of a project to build a fixed-point vector +processor in collaboration with the University of California at Berkeley, +overseen by Profs. Nelson Morgan and John Wawrzynek. More information +is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ +arithmetic/softfloat.html'. + +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort +has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT +TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO +PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY +AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. + +Derivative works are acceptable, even for commercial purposes, so long as +(1) they include prominent notice that the work is derivative, and (2) they +include prominent notice akin to these three paragraphs for those parts of +this code that are retained. + +=============================================================================== +*/ + +#include "fpa11.h" +#include "milieu.h" +#include "softfloat.h" + +/* +------------------------------------------------------------------------------- +Floating-point rounding mode, extended double-precision rounding precision, +and exception flags. +------------------------------------------------------------------------------- +*/ +int8 float_rounding_mode = float_round_nearest_even; +int8 floatx80_rounding_precision = 80; +int8 float_exception_flags; + +/* +------------------------------------------------------------------------------- +Primitive arithmetic functions, including multi-word arithmetic, and +division and square root approximations. (Can be specialized to target if +desired.) +------------------------------------------------------------------------------- +*/ +#include "softfloat-macros" + +/* +------------------------------------------------------------------------------- +Functions and definitions to determine: (1) whether tininess for underflow +is detected before or after rounding by default, (2) what (if anything) +happens when exceptions are raised, (3) how signaling NaNs are distinguished +from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs +are propagated from function inputs to output. These details are target- +specific. +------------------------------------------------------------------------------- +*/ +#include "softfloat-specialize" + +/* +------------------------------------------------------------------------------- +Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 +and 7, and returns the properly rounded 32-bit integer corresponding to the +input. If `zSign' is nonzero, the input is negated before being converted +to an integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point +input is simply rounded to an integer, with the inexact exception raised if +the input cannot be represented exactly as an integer. If the fixed-point +input is too large, however, the invalid exception is raised and the largest +positive or negative integer is returned. +------------------------------------------------------------------------------- +*/ +static int32 roundAndPackInt32( flag zSign, bits64 absZ ) +{ + int8 roundingMode; + flag roundNearestEven; + int8 roundIncrement, roundBits; + int32 z; + + roundingMode = float_rounding_mode; + roundNearestEven = ( roundingMode == float_round_nearest_even ); + roundIncrement = 0x40; + if ( ! roundNearestEven ) { + if ( roundingMode == float_round_to_zero ) { + roundIncrement = 0; + } + else { + roundIncrement = 0x7F; + if ( zSign ) { + if ( roundingMode == float_round_up ) roundIncrement = 0; + } + else { + if ( roundingMode == float_round_down ) roundIncrement = 0; + } + } + } + roundBits = absZ & 0x7F; + absZ = ( absZ + roundIncrement )>>7; + absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); + z = absZ; + if ( zSign ) z = - z; + if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { + float_exception_flags |= float_flag_invalid; + return zSign ? 0x80000000 : 0x7FFFFFFF; + } + if ( roundBits ) float_exception_flags |= float_flag_inexact; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the fraction bits of the single-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE bits32 extractFloat32Frac( float32 a ) +{ + + return a & 0x007FFFFF; + +} + +/* +------------------------------------------------------------------------------- +Returns the exponent bits of the single-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE int16 extractFloat32Exp( float32 a ) +{ + + return ( a>>23 ) & 0xFF; + +} + +/* +------------------------------------------------------------------------------- +Returns the sign bit of the single-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE flag extractFloat32Sign( float32 a ) +{ + + return a>>31; + +} + +/* +------------------------------------------------------------------------------- +Normalizes the subnormal single-precision floating-point value represented +by the denormalized significand `aSig'. The normalized exponent and +significand are stored at the locations pointed to by `zExpPtr' and +`zSigPtr', respectively. +------------------------------------------------------------------------------- +*/ +static void + normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr ) +{ + int8 shiftCount; + + shiftCount = countLeadingZeros32( aSig ) - 8; + *zSigPtr = aSig<<shiftCount; + *zExpPtr = 1 - shiftCount; + +} + +/* +------------------------------------------------------------------------------- +Packs the sign `zSign', exponent `zExp', and significand `zSig' into a +single-precision floating-point value, returning the result. After being +shifted into the proper positions, the three fields are simply added +together to form the result. This means that any integer portion of `zSig' +will be added into the exponent. Since a properly normalized significand +will have an integer portion equal to 1, the `zExp' input should be 1 less +than the desired result exponent whenever `zSig' is a complete, normalized +significand. +------------------------------------------------------------------------------- +*/ +INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig ) +{ + return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig; +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and significand `zSig', and returns the proper single-precision floating- +point value corresponding to the abstract input. Ordinarily, the abstract +value is simply rounded and packed into the single-precision format, with +the inexact exception raised if the abstract input cannot be represented +exactly. If the abstract value is too large, however, the overflow and +inexact exceptions are raised and an infinity or maximal finite value is +returned. If the abstract value is too small, the input value is rounded to +a subnormal number, and the underflow and inexact exceptions are raised if +the abstract input cannot be represented exactly as a subnormal single- +precision floating-point number. + The input significand `zSig' has its binary point between bits 30 +and 29, which is 7 bits to the left of the usual location. This shifted +significand must be normalized or smaller. If `zSig' is not normalized, +`zExp' must be 0; in that case, the result returned is a subnormal number, +and it must not require rounding. In the usual case that `zSig' is +normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. +The handling of underflow and overflow follows the IEC/IEEE Standard for +Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) +{ + int8 roundingMode; + flag roundNearestEven; + int8 roundIncrement, roundBits; + flag isTiny; + + roundingMode = float_rounding_mode; + roundNearestEven = ( roundingMode == float_round_nearest_even ); + roundIncrement = 0x40; + if ( ! roundNearestEven ) { + if ( roundingMode == float_round_to_zero ) { + roundIncrement = 0; + } + else { + roundIncrement = 0x7F; + if ( zSign ) { + if ( roundingMode == float_round_up ) roundIncrement = 0; + } + else { + if ( roundingMode == float_round_down ) roundIncrement = 0; + } + } + } + roundBits = zSig & 0x7F; + if ( 0xFD <= (bits16) zExp ) { + if ( ( 0xFD < zExp ) + || ( ( zExp == 0xFD ) + && ( (sbits32) ( zSig + roundIncrement ) < 0 ) ) + ) { + float_raise( float_flag_overflow | float_flag_inexact ); + return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 ); + } + if ( zExp < 0 ) { + isTiny = + ( float_detect_tininess == float_tininess_before_rounding ) + || ( zExp < -1 ) + || ( zSig + roundIncrement < 0x80000000 ); + shift32RightJamming( zSig, - zExp, &zSig ); + zExp = 0; + roundBits = zSig & 0x7F; + if ( isTiny && roundBits ) float_raise( float_flag_underflow ); + } + } + if ( roundBits ) float_exception_flags |= float_flag_inexact; + zSig = ( zSig + roundIncrement )>>7; + zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); + if ( zSig == 0 ) zExp = 0; + return packFloat32( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and significand `zSig', and returns the proper single-precision floating- +point value corresponding to the abstract input. This routine is just like +`roundAndPackFloat32' except that `zSig' does not have to be normalized in +any way. In all cases, `zExp' must be 1 less than the ``true'' floating- +point exponent. +------------------------------------------------------------------------------- +*/ +static float32 + normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) +{ + int8 shiftCount; + + shiftCount = countLeadingZeros32( zSig ) - 1; + return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount ); + +} + +/* +------------------------------------------------------------------------------- +Returns the fraction bits of the double-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE bits64 extractFloat64Frac( float64 a ) +{ + + return a & LIT64( 0x000FFFFFFFFFFFFF ); + +} + +/* +------------------------------------------------------------------------------- +Returns the exponent bits of the double-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE int16 extractFloat64Exp( float64 a ) +{ + + return ( a>>52 ) & 0x7FF; + +} + +/* +------------------------------------------------------------------------------- +Returns the sign bit of the double-precision floating-point value `a'. +------------------------------------------------------------------------------- +*/ +INLINE flag extractFloat64Sign( float64 a ) +{ + + return a>>63; + +} + +/* +------------------------------------------------------------------------------- +Normalizes the subnormal double-precision floating-point value represented +by the denormalized significand `aSig'. The normalized exponent and +significand are stored at the locations pointed to by `zExpPtr' and +`zSigPtr', respectively. +------------------------------------------------------------------------------- +*/ +static void + normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr ) +{ + int8 shiftCount; + + shiftCount = countLeadingZeros64( aSig ) - 11; + *zSigPtr = aSig<<shiftCount; + *zExpPtr = 1 - shiftCount; + +} + +/* +------------------------------------------------------------------------------- +Packs the sign `zSign', exponent `zExp', and significand `zSig' into a +double-precision floating-point value, returning the result. After being +shifted into the proper positions, the three fields are simply added +together to form the result. This means that any integer portion of `zSig' +will be added into the exponent. Since a properly normalized significand +will have an integer portion equal to 1, the `zExp' input should be 1 less +than the desired result exponent whenever `zSig' is a complete, normalized +significand. +------------------------------------------------------------------------------- +*/ +INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig ) +{ + + return ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig; + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and significand `zSig', and returns the proper double-precision floating- +point value corresponding to the abstract input. Ordinarily, the abstract +value is simply rounded and packed into the double-precision format, with +the inexact exception raised if the abstract input cannot be represented +exactly. If the abstract value is too large, however, the overflow and +inexact exceptions are raised and an infinity or maximal finite value is +returned. If the abstract value is too small, the input value is rounded to +a subnormal number, and the underflow and inexact exceptions are raised if +the abstract input cannot be represented exactly as a subnormal double- +precision floating-point number. + The input significand `zSig' has its binary point between bits 62 +and 61, which is 10 bits to the left of the usual location. This shifted +significand must be normalized or smaller. If `zSig' is not normalized, +`zExp' must be 0; in that case, the result returned is a subnormal number, +and it must not require rounding. In the usual case that `zSig' is +normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. +The handling of underflow and overflow follows the IEC/IEEE Standard for +Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig ) +{ + int8 roundingMode; + flag roundNearestEven; + int16 roundIncrement, roundBits; + flag isTiny; + + roundingMode = float_rounding_mode; + roundNearestEven = ( roundingMode == float_round_nearest_even ); + roundIncrement = 0x200; + if ( ! roundNearestEven ) { + if ( roundingMode == float_round_to_zero ) { + roundIncrement = 0; + } + else { + roundIncrement = 0x3FF; + if ( zSign ) { + if ( roundingMode == float_round_up ) roundIncrement = 0; + } + else { + if ( roundingMode == float_round_down ) roundIncrement = 0; + } + } + } + roundBits = zSig & 0x3FF; + if ( 0x7FD <= (bits16) zExp ) { + if ( ( 0x7FD < zExp ) + || ( ( zExp == 0x7FD ) + && ( (sbits64) ( zSig + roundIncrement ) < 0 ) ) + ) { + //register int lr = __builtin_return_address(0); + //printk("roundAndPackFloat64 called from 0x%08x\n",lr); + float_raise( float_flag_overflow | float_flag_inexact ); + return packFloat64( zSign, 0x7FF, 0 ) - ( roundIncrement == 0 ); + } + if ( zExp < 0 ) { + isTiny = + ( float_detect_tininess == float_tininess_before_rounding ) + || ( zExp < -1 ) + || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); + shift64RightJamming( zSig, - zExp, &zSig ); + zExp = 0; + roundBits = zSig & 0x3FF; + if ( isTiny && roundBits ) float_raise( float_flag_underflow ); + } + } + if ( roundBits ) float_exception_flags |= float_flag_inexact; + zSig = ( zSig + roundIncrement )>>10; + zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); + if ( zSig == 0 ) zExp = 0; + return packFloat64( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and significand `zSig', and returns the proper double-precision floating- +point value corresponding to the abstract input. This routine is just like +`roundAndPackFloat64' except that `zSig' does not have to be normalized in +any way. In all cases, `zExp' must be 1 less than the ``true'' floating- +point exponent. +------------------------------------------------------------------------------- +*/ +static float64 + normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig ) +{ + int8 shiftCount; + + shiftCount = countLeadingZeros64( zSig ) - 1; + return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount ); + +} + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +Returns the fraction bits of the extended double-precision floating-point +value `a'. +------------------------------------------------------------------------------- +*/ +INLINE bits64 extractFloatx80Frac( floatx80 a ) +{ + + return a.low; + +} + +/* +------------------------------------------------------------------------------- +Returns the exponent bits of the extended double-precision floating-point +value `a'. +------------------------------------------------------------------------------- +*/ +INLINE int32 extractFloatx80Exp( floatx80 a ) +{ + + return a.high & 0x7FFF; + +} + +/* +------------------------------------------------------------------------------- +Returns the sign bit of the extended double-precision floating-point value +`a'. +------------------------------------------------------------------------------- +*/ +INLINE flag extractFloatx80Sign( floatx80 a ) +{ + + return a.high>>15; + +} + +/* +------------------------------------------------------------------------------- +Normalizes the subnormal extended double-precision floating-point value +represented by the denormalized significand `aSig'. The normalized exponent +and significand are stored at the locations pointed to by `zExpPtr' and +`zSigPtr', respectively. +------------------------------------------------------------------------------- +*/ +static void + normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr ) +{ + int8 shiftCount; + + shiftCount = countLeadingZeros64( aSig ); + *zSigPtr = aSig<<shiftCount; + *zExpPtr = 1 - shiftCount; + +} + +/* +------------------------------------------------------------------------------- +Packs the sign `zSign', exponent `zExp', and significand `zSig' into an +extended double-precision floating-point value, returning the result. +------------------------------------------------------------------------------- +*/ +INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig ) +{ + floatx80 z; + + z.low = zSig; + z.high = ( ( (bits16) zSign )<<15 ) + zExp; + return z; + +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent `zExp', +and extended significand formed by the concatenation of `zSig0' and `zSig1', +and returns the proper extended double-precision floating-point value +corresponding to the abstract input. Ordinarily, the abstract value is +rounded and packed into the extended double-precision format, with the +inexact exception raised if the abstract input cannot be represented +exactly. If the abstract value is too large, however, the overflow and +inexact exceptions are raised and an infinity or maximal finite value is +returned. If the abstract value is too small, the input value is rounded to +a subnormal number, and the underflow and inexact exceptions are raised if +the abstract input cannot be represented exactly as a subnormal extended +double-precision floating-point number. + If `roundingPrecision' is 32 or 64, the result is rounded to the same +number of bits as single or double precision, respectively. Otherwise, the +result is rounded to the full precision of the extended double-precision +format. + The input significand must be normalized or smaller. If the input +significand is not normalized, `zExp' must be 0; in that case, the result +returned is a subnormal number, and it must not require rounding. The +handling of underflow and overflow follows the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +static floatx80 + roundAndPackFloatx80( + int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 + ) +{ + int8 roundingMode; + flag roundNearestEven, increment, isTiny; + int64 roundIncrement, roundMask, roundBits; + + roundingMode = float_rounding_mode; + roundNearestEven = ( roundingMode == float_round_nearest_even ); + if ( roundingPrecision == 80 ) goto precision80; + if ( roundingPrecision == 64 ) { + roundIncrement = LIT64( 0x0000000000000400 ); + roundMask = LIT64( 0x00000000000007FF ); + } + else if ( roundingPrecision == 32 ) { + roundIncrement = LIT64( 0x0000008000000000 ); + roundMask = LIT64( 0x000000FFFFFFFFFF ); + } + else { + goto precision80; + } + zSig0 |= ( zSig1 != 0 ); + if ( ! roundNearestEven ) { + if ( roundingMode == float_round_to_zero ) { + roundIncrement = 0; + } + else { + roundIncrement = roundMask; + if ( zSign ) { + if ( roundingMode == float_round_up ) roundIncrement = 0; + } + else { + if ( roundingMode == float_round_down ) roundIncrement = 0; + } + } + } + roundBits = zSig0 & roundMask; + if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { + if ( ( 0x7FFE < zExp ) + || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) + ) { + goto overflow; + } + if ( zExp <= 0 ) { + isTiny = + ( float_detect_tininess == float_tininess_before_rounding ) + || ( zExp < 0 ) + || ( zSig0 <= zSig0 + roundIncrement ); + shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); + zExp = 0; + roundBits = zSig0 & roundMask; + if ( isTiny && roundBits ) float_raise( float_flag_underflow ); + if ( roundBits ) float_exception_flags |= float_flag_inexact; + zSig0 += roundIncrement; + if ( (sbits64) zSig0 < 0 ) zExp = 1; + roundIncrement = roundMask + 1; + if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { + roundMask |= roundIncrement; + } + zSig0 &= ~ roundMask; + return packFloatx80( zSign, zExp, zSig0 ); + } + } + if ( roundBits ) float_exception_flags |= float_flag_inexact; + zSig0 += roundIncrement; + if ( zSig0 < roundIncrement ) { + ++zExp; + zSig0 = LIT64( 0x8000000000000000 ); + } + roundIncrement = roundMask + 1; + if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { + roundMask |= roundIncrement; + } + zSig0 &= ~ roundMask; + if ( zSig0 == 0 ) zExp = 0; + return packFloatx80( zSign, zExp, zSig0 ); + precision80: + increment = ( (sbits64) zSig1 < 0 ); + if ( ! roundNearestEven ) { + if ( roundingMode == float_round_to_zero ) { + increment = 0; + } + else { + if ( zSign ) { + increment = ( roundingMode == float_round_down ) && zSig1; + } + else { + increment = ( roundingMode == float_round_up ) && zSig1; + } + } + } + if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { + if ( ( 0x7FFE < zExp ) + || ( ( zExp == 0x7FFE ) + && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) + && increment + ) + ) { + roundMask = 0; + overflow: + float_raise( float_flag_overflow | float_flag_inexact ); + if ( ( roundingMode == float_round_to_zero ) + || ( zSign && ( roundingMode == float_round_up ) ) + || ( ! zSign && ( roundingMode == float_round_down ) ) + ) { + return packFloatx80( zSign, 0x7FFE, ~ roundMask ); + } + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( zExp <= 0 ) { + isTiny = + ( float_detect_tininess == float_tininess_before_rounding ) + || ( zExp < 0 ) + || ! increment + || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); + shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); + zExp = 0; + if ( isTiny && zSig1 ) float_raise( float_flag_underflow ); + if ( zSig1 ) float_exception_flags |= float_flag_inexact; + if ( roundNearestEven ) { + increment = ( (sbits64) zSig1 < 0 ); + } + else { + if ( zSign ) { + increment = ( roundingMode == float_round_down ) && zSig1; + } + else { + increment = ( roundingMode == float_round_up ) && zSig1; + } + } + if ( increment ) { + ++zSig0; + zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven ); + if ( (sbits64) zSig0 < 0 ) zExp = 1; + } + return packFloatx80( zSign, zExp, zSig0 ); + } + } + if ( zSig1 ) float_exception_flags |= float_flag_inexact; + if ( increment ) { + ++zSig0; + if ( zSig0 == 0 ) { + ++zExp; + zSig0 = LIT64( 0x8000000000000000 ); + } + else { + zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven ); + } + } + else { + if ( zSig0 == 0 ) zExp = 0; + } + + return packFloatx80( zSign, zExp, zSig0 ); +} + +/* +------------------------------------------------------------------------------- +Takes an abstract floating-point value having sign `zSign', exponent +`zExp', and significand formed by the concatenation of `zSig0' and `zSig1', +and returns the proper extended double-precision floating-point value +corresponding to the abstract input. This routine is just like +`roundAndPackFloatx80' except that the input significand does not have to be +normalized. +------------------------------------------------------------------------------- +*/ +static floatx80 + normalizeRoundAndPackFloatx80( + int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 + ) +{ + int8 shiftCount; + + if ( zSig0 == 0 ) { + zSig0 = zSig1; + zSig1 = 0; + zExp -= 64; + } + shiftCount = countLeadingZeros64( zSig0 ); + shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); + zExp -= shiftCount; + return + roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 ); + +} + +#endif + +/* +------------------------------------------------------------------------------- +Returns the result of converting the 32-bit two's complement integer `a' to +the single-precision floating-point format. The conversion is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 int32_to_float32( int32 a ) +{ + flag zSign; + + if ( a == 0 ) return 0; + if ( a == 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); + zSign = ( a < 0 ); + return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the 32-bit two's complement integer `a' to +the double-precision floating-point format. The conversion is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 int32_to_float64( int32 a ) +{ + flag aSign; + uint32 absA; + int8 shiftCount; + bits64 zSig; + + if ( a == 0 ) return 0; + aSign = ( a < 0 ); + absA = aSign ? - a : a; + shiftCount = countLeadingZeros32( absA ) + 21; + zSig = absA; + return packFloat64( aSign, 0x432 - shiftCount, zSig<<shiftCount ); + +} + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +Returns the result of converting the 32-bit two's complement integer `a' +to the extended double-precision floating-point format. The conversion +is performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 int32_to_floatx80( int32 a ) +{ + flag zSign; + uint32 absA; + int8 shiftCount; + bits64 zSig; + + if ( a == 0 ) return packFloatx80( 0, 0, 0 ); + zSign = ( a < 0 ); + absA = zSign ? - a : a; + shiftCount = countLeadingZeros32( absA ) + 32; + zSig = absA; + return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); + +} + +#endif + +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic---which means in particular that the conversion is rounded +according to the current rounding mode. If `a' is a NaN, the largest +positive integer is returned. Otherwise, if the conversion overflows, the +largest integer with the same sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int32 float32_to_int32( float32 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits32 aSig; + bits64 zSig; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; + if ( aExp ) aSig |= 0x00800000; + shiftCount = 0xAF - aExp; + zSig = aSig; + zSig <<= 32; + if ( 0 < shiftCount ) shift64RightJamming( zSig, shiftCount, &zSig ); + return roundAndPackInt32( aSign, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic, except that the conversion is always rounded toward zero. If +`a' is a NaN, the largest positive integer is returned. Otherwise, if the +conversion overflows, the largest integer with the same sign as `a' is +returned. +------------------------------------------------------------------------------- +*/ +int32 float32_to_int32_round_to_zero( float32 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits32 aSig; + int32 z; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + shiftCount = aExp - 0x9E; + if ( 0 <= shiftCount ) { + if ( a == 0xCF000000 ) return 0x80000000; + float_raise( float_flag_invalid ); + if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; + return 0x80000000; + } + else if ( aExp <= 0x7E ) { + if ( aExp | aSig ) float_exception_flags |= float_flag_inexact; + return 0; + } + aSig = ( aSig | 0x00800000 )<<8; + z = aSig>>( - shiftCount ); + if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) { + float_exception_flags |= float_flag_inexact; + } + return aSign ? - z : z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the double-precision floating-point format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float32_to_float64( float32 a ) +{ + flag aSign; + int16 aExp; + bits32 aSig; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + if ( aExp == 0xFF ) { + if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) ); + return packFloat64( aSign, 0x7FF, 0 ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + --aExp; + } + return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 ); + +} + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +Returns the result of converting the single-precision floating-point value +`a' to the extended double-precision floating-point format. The conversion +is performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 float32_to_floatx80( float32 a ) +{ + flag aSign; + int16 aExp; + bits32 aSig; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + if ( aExp == 0xFF ) { + if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) ); + return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + aSig |= 0x00800000; + return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 ); + +} + +#endif + +/* +------------------------------------------------------------------------------- +Rounds the single-precision floating-point value `a' to an integer, and +returns the result as a single-precision floating-point value. The +operation is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_round_to_int( float32 a ) +{ + flag aSign; + int16 aExp; + bits32 lastBitMask, roundBitsMask; + int8 roundingMode; + float32 z; + + aExp = extractFloat32Exp( a ); + if ( 0x96 <= aExp ) { + if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { + return propagateFloat32NaN( a, a ); + } + return a; + } + if ( aExp <= 0x7E ) { + if ( (bits32) ( a<<1 ) == 0 ) return a; + float_exception_flags |= float_flag_inexact; + aSign = extractFloat32Sign( a ); + switch ( float_rounding_mode ) { + case float_round_nearest_even: + if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { + return packFloat32( aSign, 0x7F, 0 ); + } + break; + case float_round_down: + return aSign ? 0xBF800000 : 0; + case float_round_up: + return aSign ? 0x80000000 : 0x3F800000; + } + return packFloat32( aSign, 0, 0 ); + } + lastBitMask = 1; + lastBitMask <<= 0x96 - aExp; + roundBitsMask = lastBitMask - 1; + z = a; + roundingMode = float_rounding_mode; + if ( roundingMode == float_round_nearest_even ) { + z += lastBitMask>>1; + if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; + } + else if ( roundingMode != float_round_to_zero ) { + if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) { + z += roundBitsMask; + } + } + z &= ~ roundBitsMask; + if ( z != a ) float_exception_flags |= float_flag_inexact; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the absolute values of the single-precision +floating-point values `a' and `b'. If `zSign' is true, the sum is negated +before being returned. `zSign' is ignored if the result is a NaN. The +addition is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float32 addFloat32Sigs( float32 a, float32 b, flag zSign ) +{ + int16 aExp, bExp, zExp; + bits32 aSig, bSig, zSig; + int16 expDiff; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + expDiff = aExp - bExp; + aSig <<= 6; + bSig <<= 6; + if ( 0 < expDiff ) { + if ( aExp == 0xFF ) { + if ( aSig ) return propagateFloat32NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig |= 0x20000000; + } + shift32RightJamming( bSig, expDiff, &bSig ); + zExp = aExp; + } + else if ( expDiff < 0 ) { + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + return packFloat32( zSign, 0xFF, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig |= 0x20000000; + } + shift32RightJamming( aSig, - expDiff, &aSig ); + zExp = bExp; + } + else { + if ( aExp == 0xFF ) { + if ( aSig | bSig ) return propagateFloat32NaN( a, b ); + return a; + } + if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); + zSig = 0x40000000 + aSig + bSig; + zExp = aExp; + goto roundAndPack; + } + aSig |= 0x20000000; + zSig = ( aSig + bSig )<<1; + --zExp; + if ( (sbits32) zSig < 0 ) { + zSig = aSig + bSig; + ++zExp; + } + roundAndPack: + return roundAndPackFloat32( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the absolute values of the single- +precision floating-point values `a' and `b'. If `zSign' is true, the +difference is negated before being returned. `zSign' is ignored if the +result is a NaN. The subtraction is performed according to the IEC/IEEE +Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float32 subFloat32Sigs( float32 a, float32 b, flag zSign ) +{ + int16 aExp, bExp, zExp; + bits32 aSig, bSig, zSig; + int16 expDiff; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + expDiff = aExp - bExp; + aSig <<= 7; + bSig <<= 7; + if ( 0 < expDiff ) goto aExpBigger; + if ( expDiff < 0 ) goto bExpBigger; + if ( aExp == 0xFF ) { + if ( aSig | bSig ) return propagateFloat32NaN( a, b ); + float_raise( float_flag_invalid ); + return float32_default_nan; + } + if ( aExp == 0 ) { + aExp = 1; + bExp = 1; + } + if ( bSig < aSig ) goto aBigger; + if ( aSig < bSig ) goto bBigger; + return packFloat32( float_rounding_mode == float_round_down, 0, 0 ); + bExpBigger: + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + return packFloat32( zSign ^ 1, 0xFF, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig |= 0x40000000; + } + shift32RightJamming( aSig, - expDiff, &aSig ); + bSig |= 0x40000000; + bBigger: + zSig = bSig - aSig; + zExp = bExp; + zSign ^= 1; + goto normalizeRoundAndPack; + aExpBigger: + if ( aExp == 0xFF ) { + if ( aSig ) return propagateFloat32NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig |= 0x40000000; + } + shift32RightJamming( bSig, expDiff, &bSig ); + aSig |= 0x40000000; + aBigger: + zSig = aSig - bSig; + zExp = aExp; + normalizeRoundAndPack: + --zExp; + return normalizeRoundAndPackFloat32( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the single-precision floating-point values `a' +and `b'. The operation is performed according to the IEC/IEEE Standard for +Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_add( float32 a, float32 b ) +{ + flag aSign, bSign; + + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign == bSign ) { + return addFloat32Sigs( a, b, aSign ); + } + else { + return subFloat32Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the single-precision floating-point values +`a' and `b'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_sub( float32 a, float32 b ) +{ + flag aSign, bSign; + + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign == bSign ) { + return subFloat32Sigs( a, b, aSign ); + } + else { + return addFloat32Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of multiplying the single-precision floating-point values +`a' and `b'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_mul( float32 a, float32 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, zExp; + bits32 aSig, bSig; + bits64 zSig64; + bits32 zSig; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + bSign = extractFloat32Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0xFF ) { + if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { + return propagateFloat32NaN( a, b ); + } + if ( ( bExp | bSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float32_default_nan; + } + return packFloat32( zSign, 0xFF, 0 ); + } + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + if ( ( aExp | aSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float32_default_nan; + } + return packFloat32( zSign, 0xFF, 0 ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); + normalizeFloat32Subnormal( bSig, &bExp, &bSig ); + } + zExp = aExp + bExp - 0x7F; + aSig = ( aSig | 0x00800000 )<<7; + bSig = ( bSig | 0x00800000 )<<8; + shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 ); + zSig = zSig64; + if ( 0 <= (sbits32) ( zSig<<1 ) ) { + zSig <<= 1; + --zExp; + } + return roundAndPackFloat32( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of dividing the single-precision floating-point value `a' +by the corresponding value `b'. The operation is performed according to the +IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_div( float32 a, float32 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, zExp; + bits32 aSig, bSig, zSig; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + bSign = extractFloat32Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0xFF ) { + if ( aSig ) return propagateFloat32NaN( a, b ); + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + float_raise( float_flag_invalid ); + return float32_default_nan; + } + return packFloat32( zSign, 0xFF, 0 ); + } + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + return packFloat32( zSign, 0, 0 ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + if ( ( aExp | aSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float32_default_nan; + } + float_raise( float_flag_divbyzero ); + return packFloat32( zSign, 0xFF, 0 ); + } + normalizeFloat32Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + zExp = aExp - bExp + 0x7D; + aSig = ( aSig | 0x00800000 )<<7; + bSig = ( bSig | 0x00800000 )<<8; + if ( bSig <= ( aSig + aSig ) ) { + aSig >>= 1; + ++zExp; + } + zSig = ( ( (bits64) aSig )<<32 ) / bSig; + if ( ( zSig & 0x3F ) == 0 ) { + zSig |= ( ( (bits64) bSig ) * zSig != ( (bits64) aSig )<<32 ); + } + return roundAndPackFloat32( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the remainder of the single-precision floating-point value `a' +with respect to the corresponding value `b'. The operation is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_rem( float32 a, float32 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, expDiff; + bits32 aSig, bSig; + bits32 q; + bits64 aSig64, bSig64, q64; + bits32 alternateASig; + sbits32 sigMean; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + bSig = extractFloat32Frac( b ); + bExp = extractFloat32Exp( b ); + bSign = extractFloat32Sign( b ); + if ( aExp == 0xFF ) { + if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { + return propagateFloat32NaN( a, b ); + } + float_raise( float_flag_invalid ); + return float32_default_nan; + } + if ( bExp == 0xFF ) { + if ( bSig ) return propagateFloat32NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + float_raise( float_flag_invalid ); + return float32_default_nan; + } + normalizeFloat32Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return a; + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + expDiff = aExp - bExp; + aSig |= 0x00800000; + bSig |= 0x00800000; + if ( expDiff < 32 ) { + aSig <<= 8; + bSig <<= 8; + if ( expDiff < 0 ) { + if ( expDiff < -1 ) return a; + aSig >>= 1; + } + q = ( bSig <= aSig ); + if ( q ) aSig -= bSig; + if ( 0 < expDiff ) { + q = ( ( (bits64) aSig )<<32 ) / bSig; + q >>= 32 - expDiff; + bSig >>= 2; + aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; + } + else { + aSig >>= 2; + bSig >>= 2; + } + } + else { + if ( bSig <= aSig ) aSig -= bSig; + aSig64 = ( (bits64) aSig )<<40; + bSig64 = ( (bits64) bSig )<<40; + expDiff -= 64; + while ( 0 < expDiff ) { + q64 = estimateDiv128To64( aSig64, 0, bSig64 ); + q64 = ( 2 < q64 ) ? q64 - 2 : 0; + aSig64 = - ( ( bSig * q64 )<<38 ); + expDiff -= 62; + } + expDiff += 64; + q64 = estimateDiv128To64( aSig64, 0, bSig64 ); + q64 = ( 2 < q64 ) ? q64 - 2 : 0; + q = q64>>( 64 - expDiff ); + bSig <<= 6; + aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; + } + do { + alternateASig = aSig; + ++q; + aSig -= bSig; + } while ( 0 <= (sbits32) aSig ); + sigMean = aSig + alternateASig; + if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { + aSig = alternateASig; + } + zSign = ( (sbits32) aSig < 0 ); + if ( zSign ) aSig = - aSig; + return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the square root of the single-precision floating-point value `a'. +The operation is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float32_sqrt( float32 a ) +{ + flag aSign; + int16 aExp, zExp; + bits32 aSig, zSig; + bits64 rem, term; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + if ( aExp == 0xFF ) { + if ( aSig ) return propagateFloat32NaN( a, 0 ); + if ( ! aSign ) return a; + float_raise( float_flag_invalid ); + return float32_default_nan; + } + if ( aSign ) { + if ( ( aExp | aSig ) == 0 ) return a; + float_raise( float_flag_invalid ); + return float32_default_nan; + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return 0; + normalizeFloat32Subnormal( aSig, &aExp, &aSig ); + } + zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; + aSig = ( aSig | 0x00800000 )<<8; + zSig = estimateSqrt32( aExp, aSig ) + 2; + if ( ( zSig & 0x7F ) <= 5 ) { + if ( zSig < 2 ) { + zSig = 0xFFFFFFFF; + } + else { + aSig >>= aExp & 1; + term = ( (bits64) zSig ) * zSig; + rem = ( ( (bits64) aSig )<<32 ) - term; + while ( (sbits64) rem < 0 ) { + --zSig; + rem += ( ( (bits64) zSig )<<1 ) | 1; + } + zSig |= ( rem != 0 ); + } + } + shift32RightJamming( zSig, 1, &zSig ); + return roundAndPackFloat32( 0, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is equal to the +corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_eq( float32 a, float32 b ) +{ + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is less than or +equal to the corresponding value `b', and 0 otherwise. The comparison is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_le( float32 a, float32 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); + return ( a == b ) || ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_lt( float32 a, float32 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); + return ( a != b ) && ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is equal to the +corresponding value `b', and 0 otherwise. The invalid exception is raised +if either operand is a NaN. Otherwise, the comparison is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_eq_signaling( float32 a, float32 b ) +{ + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is less than or +equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not +cause an exception. Otherwise, the comparison is performed according to the +IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_le_quiet( float32 a, float32 b ) +{ + flag aSign, bSign; + //int16 aExp, bExp; + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); + return ( a == b ) || ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the single-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an +exception. Otherwise, the comparison is performed according to the IEC/IEEE +Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float32_lt_quiet( float32 a, float32 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) + || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) + ) { + if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat32Sign( a ); + bSign = extractFloat32Sign( b ); + if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); + return ( a != b ) && ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic---which means in particular that the conversion is rounded +according to the current rounding mode. If `a' is a NaN, the largest +positive integer is returned. Otherwise, if the conversion overflows, the +largest integer with the same sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int32 float64_to_int32( float64 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits64 aSig; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; + if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); + shiftCount = 0x42C - aExp; + if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); + return roundAndPackInt32( aSign, aSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic, except that the conversion is always rounded toward zero. If +`a' is a NaN, the largest positive integer is returned. Otherwise, if the +conversion overflows, the largest integer with the same sign as `a' is +returned. +------------------------------------------------------------------------------- +*/ +int32 float64_to_int32_round_to_zero( float64 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits64 aSig, savedASig; + int32 z; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + shiftCount = 0x433 - aExp; + if ( shiftCount < 21 ) { + if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; + goto invalid; + } + else if ( 52 < shiftCount ) { + if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; + return 0; + } + aSig |= LIT64( 0x0010000000000000 ); + savedASig = aSig; + aSig >>= shiftCount; + z = aSig; + if ( aSign ) z = - z; + if ( ( z < 0 ) ^ aSign ) { + invalid: + float_exception_flags |= float_flag_invalid; + return aSign ? 0x80000000 : 0x7FFFFFFF; + } + if ( ( aSig<<shiftCount ) != savedASig ) { + float_exception_flags |= float_flag_inexact; + } + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the 32-bit two's complement unsigned integer format. The conversion +is performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic---which means in particular that the conversion is rounded +according to the current rounding mode. If `a' is a NaN, the largest +positive integer is returned. Otherwise, if the conversion overflows, the +largest positive integer is returned. +------------------------------------------------------------------------------- +*/ +int32 float64_to_uint32( float64 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits64 aSig; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = 0; //extractFloat64Sign( a ); + //if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; + if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); + shiftCount = 0x42C - aExp; + if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); + return roundAndPackInt32( aSign, aSig ); +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the 32-bit two's complement integer format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic, except that the conversion is always rounded toward zero. If +`a' is a NaN, the largest positive integer is returned. Otherwise, if the +conversion overflows, the largest positive integer is returned. +------------------------------------------------------------------------------- +*/ +int32 float64_to_uint32_round_to_zero( float64 a ) +{ + flag aSign; + int16 aExp, shiftCount; + bits64 aSig, savedASig; + int32 z; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + shiftCount = 0x433 - aExp; + if ( shiftCount < 21 ) { + if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; + goto invalid; + } + else if ( 52 < shiftCount ) { + if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; + return 0; + } + aSig |= LIT64( 0x0010000000000000 ); + savedASig = aSig; + aSig >>= shiftCount; + z = aSig; + if ( aSign ) z = - z; + if ( ( z < 0 ) ^ aSign ) { + invalid: + float_exception_flags |= float_flag_invalid; + return aSign ? 0x80000000 : 0x7FFFFFFF; + } + if ( ( aSig<<shiftCount ) != savedASig ) { + float_exception_flags |= float_flag_inexact; + } + return z; +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the single-precision floating-point format. The conversion is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 float64_to_float32( float64 a ) +{ + flag aSign; + int16 aExp; + bits64 aSig; + bits32 zSig; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + if ( aExp == 0x7FF ) { + if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) ); + return packFloat32( aSign, 0xFF, 0 ); + } + shift64RightJamming( aSig, 22, &aSig ); + zSig = aSig; + if ( aExp || zSig ) { + zSig |= 0x40000000; + aExp -= 0x381; + } + return roundAndPackFloat32( aSign, aExp, zSig ); + +} + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +Returns the result of converting the double-precision floating-point value +`a' to the extended double-precision floating-point format. The conversion +is performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 float64_to_floatx80( float64 a ) +{ + flag aSign; + int16 aExp; + bits64 aSig; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + if ( aExp == 0x7FF ) { + if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) ); + return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); + } + return + packFloatx80( + aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); + +} + +#endif + +/* +------------------------------------------------------------------------------- +Rounds the double-precision floating-point value `a' to an integer, and +returns the result as a double-precision floating-point value. The +operation is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_round_to_int( float64 a ) +{ + flag aSign; + int16 aExp; + bits64 lastBitMask, roundBitsMask; + int8 roundingMode; + float64 z; + + aExp = extractFloat64Exp( a ); + if ( 0x433 <= aExp ) { + if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { + return propagateFloat64NaN( a, a ); + } + return a; + } + if ( aExp <= 0x3FE ) { + if ( (bits64) ( a<<1 ) == 0 ) return a; + float_exception_flags |= float_flag_inexact; + aSign = extractFloat64Sign( a ); + switch ( float_rounding_mode ) { + case float_round_nearest_even: + if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { + return packFloat64( aSign, 0x3FF, 0 ); + } + break; + case float_round_down: + return aSign ? LIT64( 0xBFF0000000000000 ) : 0; + case float_round_up: + return + aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ); + } + return packFloat64( aSign, 0, 0 ); + } + lastBitMask = 1; + lastBitMask <<= 0x433 - aExp; + roundBitsMask = lastBitMask - 1; + z = a; + roundingMode = float_rounding_mode; + if ( roundingMode == float_round_nearest_even ) { + z += lastBitMask>>1; + if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; + } + else if ( roundingMode != float_round_to_zero ) { + if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) { + z += roundBitsMask; + } + } + z &= ~ roundBitsMask; + if ( z != a ) float_exception_flags |= float_flag_inexact; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the absolute values of the double-precision +floating-point values `a' and `b'. If `zSign' is true, the sum is negated +before being returned. `zSign' is ignored if the result is a NaN. The +addition is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float64 addFloat64Sigs( float64 a, float64 b, flag zSign ) +{ + int16 aExp, bExp, zExp; + bits64 aSig, bSig, zSig; + int16 expDiff; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + bSig = extractFloat64Frac( b ); + bExp = extractFloat64Exp( b ); + expDiff = aExp - bExp; + aSig <<= 9; + bSig <<= 9; + if ( 0 < expDiff ) { + if ( aExp == 0x7FF ) { + if ( aSig ) return propagateFloat64NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig |= LIT64( 0x2000000000000000 ); + } + shift64RightJamming( bSig, expDiff, &bSig ); + zExp = aExp; + } + else if ( expDiff < 0 ) { + if ( bExp == 0x7FF ) { + if ( bSig ) return propagateFloat64NaN( a, b ); + return packFloat64( zSign, 0x7FF, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig |= LIT64( 0x2000000000000000 ); + } + shift64RightJamming( aSig, - expDiff, &aSig ); + zExp = bExp; + } + else { + if ( aExp == 0x7FF ) { + if ( aSig | bSig ) return propagateFloat64NaN( a, b ); + return a; + } + if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); + zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; + zExp = aExp; + goto roundAndPack; + } + aSig |= LIT64( 0x2000000000000000 ); + zSig = ( aSig + bSig )<<1; + --zExp; + if ( (sbits64) zSig < 0 ) { + zSig = aSig + bSig; + ++zExp; + } + roundAndPack: + return roundAndPackFloat64( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the absolute values of the double- +precision floating-point values `a' and `b'. If `zSign' is true, the +difference is negated before being returned. `zSign' is ignored if the +result is a NaN. The subtraction is performed according to the IEC/IEEE +Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +static float64 subFloat64Sigs( float64 a, float64 b, flag zSign ) +{ + int16 aExp, bExp, zExp; + bits64 aSig, bSig, zSig; + int16 expDiff; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + bSig = extractFloat64Frac( b ); + bExp = extractFloat64Exp( b ); + expDiff = aExp - bExp; + aSig <<= 10; + bSig <<= 10; + if ( 0 < expDiff ) goto aExpBigger; + if ( expDiff < 0 ) goto bExpBigger; + if ( aExp == 0x7FF ) { + if ( aSig | bSig ) return propagateFloat64NaN( a, b ); + float_raise( float_flag_invalid ); + return float64_default_nan; + } + if ( aExp == 0 ) { + aExp = 1; + bExp = 1; + } + if ( bSig < aSig ) goto aBigger; + if ( aSig < bSig ) goto bBigger; + return packFloat64( float_rounding_mode == float_round_down, 0, 0 ); + bExpBigger: + if ( bExp == 0x7FF ) { + if ( bSig ) return propagateFloat64NaN( a, b ); + return packFloat64( zSign ^ 1, 0x7FF, 0 ); + } + if ( aExp == 0 ) { + ++expDiff; + } + else { + aSig |= LIT64( 0x4000000000000000 ); + } + shift64RightJamming( aSig, - expDiff, &aSig ); + bSig |= LIT64( 0x4000000000000000 ); + bBigger: + zSig = bSig - aSig; + zExp = bExp; + zSign ^= 1; + goto normalizeRoundAndPack; + aExpBigger: + if ( aExp == 0x7FF ) { + if ( aSig ) return propagateFloat64NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + --expDiff; + } + else { + bSig |= LIT64( 0x4000000000000000 ); + } + shift64RightJamming( bSig, expDiff, &bSig ); + aSig |= LIT64( 0x4000000000000000 ); + aBigger: + zSig = aSig - bSig; + zExp = aExp; + normalizeRoundAndPack: + --zExp; + return normalizeRoundAndPackFloat64( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the double-precision floating-point values `a' +and `b'. The operation is performed according to the IEC/IEEE Standard for +Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_add( float64 a, float64 b ) +{ + flag aSign, bSign; + + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign == bSign ) { + return addFloat64Sigs( a, b, aSign ); + } + else { + return subFloat64Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the double-precision floating-point values +`a' and `b'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_sub( float64 a, float64 b ) +{ + flag aSign, bSign; + + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign == bSign ) { + return subFloat64Sigs( a, b, aSign ); + } + else { + return addFloat64Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of multiplying the double-precision floating-point values +`a' and `b'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_mul( float64 a, float64 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, zExp; + bits64 aSig, bSig, zSig0, zSig1; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + bSig = extractFloat64Frac( b ); + bExp = extractFloat64Exp( b ); + bSign = extractFloat64Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0x7FF ) { + if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { + return propagateFloat64NaN( a, b ); + } + if ( ( bExp | bSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float64_default_nan; + } + return packFloat64( zSign, 0x7FF, 0 ); + } + if ( bExp == 0x7FF ) { + if ( bSig ) return propagateFloat64NaN( a, b ); + if ( ( aExp | aSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float64_default_nan; + } + return packFloat64( zSign, 0x7FF, 0 ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); + normalizeFloat64Subnormal( bSig, &bExp, &bSig ); + } + zExp = aExp + bExp - 0x3FF; + aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; + bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; + mul64To128( aSig, bSig, &zSig0, &zSig1 ); + zSig0 |= ( zSig1 != 0 ); + if ( 0 <= (sbits64) ( zSig0<<1 ) ) { + zSig0 <<= 1; + --zExp; + } + return roundAndPackFloat64( zSign, zExp, zSig0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of dividing the double-precision floating-point value `a' +by the corresponding value `b'. The operation is performed according to +the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_div( float64 a, float64 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, zExp; + bits64 aSig, bSig, zSig; + bits64 rem0, rem1; + bits64 term0, term1; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + bSig = extractFloat64Frac( b ); + bExp = extractFloat64Exp( b ); + bSign = extractFloat64Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0x7FF ) { + if ( aSig ) return propagateFloat64NaN( a, b ); + if ( bExp == 0x7FF ) { + if ( bSig ) return propagateFloat64NaN( a, b ); + float_raise( float_flag_invalid ); + return float64_default_nan; + } + return packFloat64( zSign, 0x7FF, 0 ); + } + if ( bExp == 0x7FF ) { + if ( bSig ) return propagateFloat64NaN( a, b ); + return packFloat64( zSign, 0, 0 ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + if ( ( aExp | aSig ) == 0 ) { + float_raise( float_flag_invalid ); + return float64_default_nan; + } + float_raise( float_flag_divbyzero ); + return packFloat64( zSign, 0x7FF, 0 ); + } + normalizeFloat64Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); + } + zExp = aExp - bExp + 0x3FD; + aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; + bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; + if ( bSig <= ( aSig + aSig ) ) { + aSig >>= 1; + ++zExp; + } + zSig = estimateDiv128To64( aSig, 0, bSig ); + if ( ( zSig & 0x1FF ) <= 2 ) { + mul64To128( bSig, zSig, &term0, &term1 ); + sub128( aSig, 0, term0, term1, &rem0, &rem1 ); + while ( (sbits64) rem0 < 0 ) { + --zSig; + add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); + } + zSig |= ( rem1 != 0 ); + } + return roundAndPackFloat64( zSign, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the remainder of the double-precision floating-point value `a' +with respect to the corresponding value `b'. The operation is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_rem( float64 a, float64 b ) +{ + flag aSign, bSign, zSign; + int16 aExp, bExp, expDiff; + bits64 aSig, bSig; + bits64 q, alternateASig; + sbits64 sigMean; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + bSig = extractFloat64Frac( b ); + bExp = extractFloat64Exp( b ); + bSign = extractFloat64Sign( b ); + if ( aExp == 0x7FF ) { + if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { + return propagateFloat64NaN( a, b ); + } + float_raise( float_flag_invalid ); + return float64_default_nan; + } + if ( bExp == 0x7FF ) { + if ( bSig ) return propagateFloat64NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + float_raise( float_flag_invalid ); + return float64_default_nan; + } + normalizeFloat64Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return a; + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); + } + expDiff = aExp - bExp; + aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; + bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; + if ( expDiff < 0 ) { + if ( expDiff < -1 ) return a; + aSig >>= 1; + } + q = ( bSig <= aSig ); + if ( q ) aSig -= bSig; + expDiff -= 64; + while ( 0 < expDiff ) { + q = estimateDiv128To64( aSig, 0, bSig ); + q = ( 2 < q ) ? q - 2 : 0; + aSig = - ( ( bSig>>2 ) * q ); + expDiff -= 62; + } + expDiff += 64; + if ( 0 < expDiff ) { + q = estimateDiv128To64( aSig, 0, bSig ); + q = ( 2 < q ) ? q - 2 : 0; + q >>= 64 - expDiff; + bSig >>= 2; + aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; + } + else { + aSig >>= 2; + bSig >>= 2; + } + do { + alternateASig = aSig; + ++q; + aSig -= bSig; + } while ( 0 <= (sbits64) aSig ); + sigMean = aSig + alternateASig; + if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { + aSig = alternateASig; + } + zSign = ( (sbits64) aSig < 0 ); + if ( zSign ) aSig = - aSig; + return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the square root of the double-precision floating-point value `a'. +The operation is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 float64_sqrt( float64 a ) +{ + flag aSign; + int16 aExp, zExp; + bits64 aSig, zSig; + bits64 rem0, rem1, term0, term1; //, shiftedRem; + //float64 z; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + if ( aExp == 0x7FF ) { + if ( aSig ) return propagateFloat64NaN( a, a ); + if ( ! aSign ) return a; + float_raise( float_flag_invalid ); + return float64_default_nan; + } + if ( aSign ) { + if ( ( aExp | aSig ) == 0 ) return a; + float_raise( float_flag_invalid ); + return float64_default_nan; + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return 0; + normalizeFloat64Subnormal( aSig, &aExp, &aSig ); + } + zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; + aSig |= LIT64( 0x0010000000000000 ); + zSig = estimateSqrt32( aExp, aSig>>21 ); + zSig <<= 31; + aSig <<= 9 - ( aExp & 1 ); + zSig = estimateDiv128To64( aSig, 0, zSig ) + zSig + 2; + if ( ( zSig & 0x3FF ) <= 5 ) { + if ( zSig < 2 ) { + zSig = LIT64( 0xFFFFFFFFFFFFFFFF ); + } + else { + aSig <<= 2; + mul64To128( zSig, zSig, &term0, &term1 ); + sub128( aSig, 0, term0, term1, &rem0, &rem1 ); + while ( (sbits64) rem0 < 0 ) { + --zSig; + shortShift128Left( 0, zSig, 1, &term0, &term1 ); + term1 |= 1; + add128( rem0, rem1, term0, term1, &rem0, &rem1 ); + } + zSig |= ( ( rem0 | rem1 ) != 0 ); + } + } + shift64RightJamming( zSig, 1, &zSig ); + return roundAndPackFloat64( 0, zExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is equal to the +corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_eq( float64 a, float64 b ) +{ + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) + ) { + if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is less than or +equal to the corresponding value `b', and 0 otherwise. The comparison is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_le( float64 a, float64 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); + return ( a == b ) || ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. The comparison is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_lt( float64 a, float64 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); + return ( a != b ) && ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is equal to the +corresponding value `b', and 0 otherwise. The invalid exception is raised +if either operand is a NaN. Otherwise, the comparison is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_eq_signaling( float64 a, float64 b ) +{ + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is less than or +equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not +cause an exception. Otherwise, the comparison is performed according to the +IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_le_quiet( float64 a, float64 b ) +{ + flag aSign, bSign; + //int16 aExp, bExp; + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) + ) { + if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); + return ( a == b ) || ( aSign ^ ( a < b ) ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the double-precision floating-point value `a' is less than +the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an +exception. Otherwise, the comparison is performed according to the IEC/IEEE +Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag float64_lt_quiet( float64 a, float64 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) + || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) + ) { + if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloat64Sign( a ); + bSign = extractFloat64Sign( b ); + if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); + return ( a != b ) && ( aSign ^ ( a < b ) ); + +} + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +Returns the result of converting the extended double-precision floating- +point value `a' to the 32-bit two's complement integer format. The +conversion is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic---which means in particular that the conversion +is rounded according to the current rounding mode. If `a' is a NaN, the +largest positive integer is returned. Otherwise, if the conversion +overflows, the largest integer with the same sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int32 floatx80_to_int32( floatx80 a ) +{ + flag aSign; + int32 aExp, shiftCount; + bits64 aSig; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; + shiftCount = 0x4037 - aExp; + if ( shiftCount <= 0 ) shiftCount = 1; + shift64RightJamming( aSig, shiftCount, &aSig ); + return roundAndPackInt32( aSign, aSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the extended double-precision floating- +point value `a' to the 32-bit two's complement integer format. The +conversion is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic, except that the conversion is always rounded +toward zero. If `a' is a NaN, the largest positive integer is returned. +Otherwise, if the conversion overflows, the largest integer with the same +sign as `a' is returned. +------------------------------------------------------------------------------- +*/ +int32 floatx80_to_int32_round_to_zero( floatx80 a ) +{ + flag aSign; + int32 aExp, shiftCount; + bits64 aSig, savedASig; + int32 z; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + shiftCount = 0x403E - aExp; + if ( shiftCount < 32 ) { + if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; + goto invalid; + } + else if ( 63 < shiftCount ) { + if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; + return 0; + } + savedASig = aSig; + aSig >>= shiftCount; + z = aSig; + if ( aSign ) z = - z; + if ( ( z < 0 ) ^ aSign ) { + invalid: + float_exception_flags |= float_flag_invalid; + return aSign ? 0x80000000 : 0x7FFFFFFF; + } + if ( ( aSig<<shiftCount ) != savedASig ) { + float_exception_flags |= float_flag_inexact; + } + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the extended double-precision floating- +point value `a' to the single-precision floating-point format. The +conversion is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float32 floatx80_to_float32( floatx80 a ) +{ + flag aSign; + int32 aExp; + bits64 aSig; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig<<1 ) ) { + return commonNaNToFloat32( floatx80ToCommonNaN( a ) ); + } + return packFloat32( aSign, 0xFF, 0 ); + } + shift64RightJamming( aSig, 33, &aSig ); + if ( aExp || aSig ) aExp -= 0x3F81; + return roundAndPackFloat32( aSign, aExp, aSig ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of converting the extended double-precision floating- +point value `a' to the double-precision floating-point format. The +conversion is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +float64 floatx80_to_float64( floatx80 a ) +{ + flag aSign; + int32 aExp; + bits64 aSig, zSig; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig<<1 ) ) { + return commonNaNToFloat64( floatx80ToCommonNaN( a ) ); + } + return packFloat64( aSign, 0x7FF, 0 ); + } + shift64RightJamming( aSig, 1, &zSig ); + if ( aExp || aSig ) aExp -= 0x3C01; + return roundAndPackFloat64( aSign, aExp, zSig ); + +} + +/* +------------------------------------------------------------------------------- +Rounds the extended double-precision floating-point value `a' to an integer, +and returns the result as an extended quadruple-precision floating-point +value. The operation is performed according to the IEC/IEEE Standard for +Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_round_to_int( floatx80 a ) +{ + flag aSign; + int32 aExp; + bits64 lastBitMask, roundBitsMask; + int8 roundingMode; + floatx80 z; + + aExp = extractFloatx80Exp( a ); + if ( 0x403E <= aExp ) { + if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) { + return propagateFloatx80NaN( a, a ); + } + return a; + } + if ( aExp <= 0x3FFE ) { + if ( ( aExp == 0 ) + && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { + return a; + } + float_exception_flags |= float_flag_inexact; + aSign = extractFloatx80Sign( a ); + switch ( float_rounding_mode ) { + case float_round_nearest_even: + if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 ) + ) { + return + packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); + } + break; + case float_round_down: + return + aSign ? + packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) + : packFloatx80( 0, 0, 0 ); + case float_round_up: + return + aSign ? packFloatx80( 1, 0, 0 ) + : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); + } + return packFloatx80( aSign, 0, 0 ); + } + lastBitMask = 1; + lastBitMask <<= 0x403E - aExp; + roundBitsMask = lastBitMask - 1; + z = a; + roundingMode = float_rounding_mode; + if ( roundingMode == float_round_nearest_even ) { + z.low += lastBitMask>>1; + if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; + } + else if ( roundingMode != float_round_to_zero ) { + if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) { + z.low += roundBitsMask; + } + } + z.low &= ~ roundBitsMask; + if ( z.low == 0 ) { + ++z.high; + z.low = LIT64( 0x8000000000000000 ); + } + if ( z.low != a.low ) float_exception_flags |= float_flag_inexact; + return z; + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the absolute values of the extended double- +precision floating-point values `a' and `b'. If `zSign' is true, the sum is +negated before being returned. `zSign' is ignored if the result is a NaN. +The addition is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) +{ + int32 aExp, bExp, zExp; + bits64 aSig, bSig, zSig0, zSig1; + int32 expDiff; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + bSig = extractFloatx80Frac( b ); + bExp = extractFloatx80Exp( b ); + expDiff = aExp - bExp; + if ( 0 < expDiff ) { + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); + return a; + } + if ( bExp == 0 ) --expDiff; + shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); + zExp = aExp; + } + else if ( expDiff < 0 ) { + if ( bExp == 0x7FFF ) { + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( aExp == 0 ) ++expDiff; + shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); + zExp = bExp; + } + else { + if ( aExp == 0x7FFF ) { + if ( (bits64) ( ( aSig | bSig )<<1 ) ) { + return propagateFloatx80NaN( a, b ); + } + return a; + } + zSig1 = 0; + zSig0 = aSig + bSig; + if ( aExp == 0 ) { + normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); + goto roundAndPack; + } + zExp = aExp; + goto shiftRight1; + } + + zSig0 = aSig + bSig; + + if ( (sbits64) zSig0 < 0 ) goto roundAndPack; + shiftRight1: + shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); + zSig0 |= LIT64( 0x8000000000000000 ); + ++zExp; + roundAndPack: + return + roundAndPackFloatx80( + floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the absolute values of the extended +double-precision floating-point values `a' and `b'. If `zSign' is true, +the difference is negated before being returned. `zSign' is ignored if the +result is a NaN. The subtraction is performed according to the IEC/IEEE +Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) +{ + int32 aExp, bExp, zExp; + bits64 aSig, bSig, zSig0, zSig1; + int32 expDiff; + floatx80 z; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + bSig = extractFloatx80Frac( b ); + bExp = extractFloatx80Exp( b ); + expDiff = aExp - bExp; + if ( 0 < expDiff ) goto aExpBigger; + if ( expDiff < 0 ) goto bExpBigger; + if ( aExp == 0x7FFF ) { + if ( (bits64) ( ( aSig | bSig )<<1 ) ) { + return propagateFloatx80NaN( a, b ); + } + float_raise( float_flag_invalid ); + z.low = floatx80_default_nan_low; + z.high = floatx80_default_nan_high; + return z; + } + if ( aExp == 0 ) { + aExp = 1; + bExp = 1; + } + zSig1 = 0; + if ( bSig < aSig ) goto aBigger; + if ( aSig < bSig ) goto bBigger; + return packFloatx80( float_rounding_mode == float_round_down, 0, 0 ); + bExpBigger: + if ( bExp == 0x7FFF ) { + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); + return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( aExp == 0 ) ++expDiff; + shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); + bBigger: + sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); + zExp = bExp; + zSign ^= 1; + goto normalizeRoundAndPack; + aExpBigger: + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); + return a; + } + if ( bExp == 0 ) --expDiff; + shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); + aBigger: + sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); + zExp = aExp; + normalizeRoundAndPack: + return + normalizeRoundAndPackFloatx80( + floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of adding the extended double-precision floating-point +values `a' and `b'. The operation is performed according to the IEC/IEEE +Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_add( floatx80 a, floatx80 b ) +{ + flag aSign, bSign; + + aSign = extractFloatx80Sign( a ); + bSign = extractFloatx80Sign( b ); + if ( aSign == bSign ) { + return addFloatx80Sigs( a, b, aSign ); + } + else { + return subFloatx80Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of subtracting the extended double-precision floating- +point values `a' and `b'. The operation is performed according to the +IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_sub( floatx80 a, floatx80 b ) +{ + flag aSign, bSign; + + aSign = extractFloatx80Sign( a ); + bSign = extractFloatx80Sign( b ); + if ( aSign == bSign ) { + return subFloatx80Sigs( a, b, aSign ); + } + else { + return addFloatx80Sigs( a, b, aSign ); + } + +} + +/* +------------------------------------------------------------------------------- +Returns the result of multiplying the extended double-precision floating- +point values `a' and `b'. The operation is performed according to the +IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_mul( floatx80 a, floatx80 b ) +{ + flag aSign, bSign, zSign; + int32 aExp, bExp, zExp; + bits64 aSig, bSig, zSig0, zSig1; + floatx80 z; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + bSig = extractFloatx80Frac( b ); + bExp = extractFloatx80Exp( b ); + bSign = extractFloatx80Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig<<1 ) + || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { + return propagateFloatx80NaN( a, b ); + } + if ( ( bExp | bSig ) == 0 ) goto invalid; + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( bExp == 0x7FFF ) { + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); + if ( ( aExp | aSig ) == 0 ) { + invalid: + float_raise( float_flag_invalid ); + z.low = floatx80_default_nan_low; + z.high = floatx80_default_nan_high; + return z; + } + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); + normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); + normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); + } + zExp = aExp + bExp - 0x3FFE; + mul64To128( aSig, bSig, &zSig0, &zSig1 ); + if ( 0 < (sbits64) zSig0 ) { + shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); + --zExp; + } + return + roundAndPackFloatx80( + floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the result of dividing the extended double-precision floating-point +value `a' by the corresponding value `b'. The operation is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_div( floatx80 a, floatx80 b ) +{ + flag aSign, bSign, zSign; + int32 aExp, bExp, zExp; + bits64 aSig, bSig, zSig0, zSig1; + bits64 rem0, rem1, rem2, term0, term1, term2; + floatx80 z; + + aSig = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + bSig = extractFloatx80Frac( b ); + bExp = extractFloatx80Exp( b ); + bSign = extractFloatx80Sign( b ); + zSign = aSign ^ bSign; + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); + if ( bExp == 0x7FFF ) { + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); + goto invalid; + } + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + if ( bExp == 0x7FFF ) { + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); + return packFloatx80( zSign, 0, 0 ); + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + if ( ( aExp | aSig ) == 0 ) { + invalid: + float_raise( float_flag_invalid ); + z.low = floatx80_default_nan_low; + z.high = floatx80_default_nan_high; + return z; + } + float_raise( float_flag_divbyzero ); + return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); + } + normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); + normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); + } + zExp = aExp - bExp + 0x3FFE; + rem1 = 0; + if ( bSig <= aSig ) { + shift128Right( aSig, 0, 1, &aSig, &rem1 ); + ++zExp; + } + zSig0 = estimateDiv128To64( aSig, rem1, bSig ); + mul64To128( bSig, zSig0, &term0, &term1 ); + sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); + while ( (sbits64) rem0 < 0 ) { + --zSig0; + add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); + } + zSig1 = estimateDiv128To64( rem1, 0, bSig ); + if ( (bits64) ( zSig1<<1 ) <= 8 ) { + mul64To128( bSig, zSig1, &term1, &term2 ); + sub128( rem1, 0, term1, term2, &rem1, &rem2 ); + while ( (sbits64) rem1 < 0 ) { + --zSig1; + add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); + } + zSig1 |= ( ( rem1 | rem2 ) != 0 ); + } + return + roundAndPackFloatx80( + floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the remainder of the extended double-precision floating-point value +`a' with respect to the corresponding value `b'. The operation is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_rem( floatx80 a, floatx80 b ) +{ + flag aSign, bSign, zSign; + int32 aExp, bExp, expDiff; + bits64 aSig0, aSig1, bSig; + bits64 q, term0, term1, alternateASig0, alternateASig1; + floatx80 z; + + aSig0 = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + bSig = extractFloatx80Frac( b ); + bExp = extractFloatx80Exp( b ); + bSign = extractFloatx80Sign( b ); + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig0<<1 ) + || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { + return propagateFloatx80NaN( a, b ); + } + goto invalid; + } + if ( bExp == 0x7FFF ) { + if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); + return a; + } + if ( bExp == 0 ) { + if ( bSig == 0 ) { + invalid: + float_raise( float_flag_invalid ); + z.low = floatx80_default_nan_low; + z.high = floatx80_default_nan_high; + return z; + } + normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); + } + if ( aExp == 0 ) { + if ( (bits64) ( aSig0<<1 ) == 0 ) return a; + normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); + } + bSig |= LIT64( 0x8000000000000000 ); + zSign = aSign; + expDiff = aExp - bExp; + aSig1 = 0; + if ( expDiff < 0 ) { + if ( expDiff < -1 ) return a; + shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); + expDiff = 0; + } + q = ( bSig <= aSig0 ); + if ( q ) aSig0 -= bSig; + expDiff -= 64; + while ( 0 < expDiff ) { + q = estimateDiv128To64( aSig0, aSig1, bSig ); + q = ( 2 < q ) ? q - 2 : 0; + mul64To128( bSig, q, &term0, &term1 ); + sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); + shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); + expDiff -= 62; + } + expDiff += 64; + if ( 0 < expDiff ) { + q = estimateDiv128To64( aSig0, aSig1, bSig ); + q = ( 2 < q ) ? q - 2 : 0; + q >>= 64 - expDiff; + mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); + sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); + shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); + while ( le128( term0, term1, aSig0, aSig1 ) ) { + ++q; + sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); + } + } + else { + term1 = 0; + term0 = bSig; + } + sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); + if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) + || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) + && ( q & 1 ) ) + ) { + aSig0 = alternateASig0; + aSig1 = alternateASig1; + zSign = ! zSign; + } + return + normalizeRoundAndPackFloatx80( + 80, zSign, bExp + expDiff, aSig0, aSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns the square root of the extended double-precision floating-point +value `a'. The operation is performed according to the IEC/IEEE Standard +for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_sqrt( floatx80 a ) +{ + flag aSign; + int32 aExp, zExp; + bits64 aSig0, aSig1, zSig0, zSig1; + bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; + bits64 shiftedRem0, shiftedRem1; + floatx80 z; + + aSig0 = extractFloatx80Frac( a ); + aExp = extractFloatx80Exp( a ); + aSign = extractFloatx80Sign( a ); + if ( aExp == 0x7FFF ) { + if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a ); + if ( ! aSign ) return a; + goto invalid; + } + if ( aSign ) { + if ( ( aExp | aSig0 ) == 0 ) return a; + invalid: + float_raise( float_flag_invalid ); + z.low = floatx80_default_nan_low; + z.high = floatx80_default_nan_high; + return z; + } + if ( aExp == 0 ) { + if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); + normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); + } + zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; + zSig0 = estimateSqrt32( aExp, aSig0>>32 ); + zSig0 <<= 31; + aSig1 = 0; + shift128Right( aSig0, 0, ( aExp & 1 ) + 2, &aSig0, &aSig1 ); + zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0 ) + zSig0 + 4; + if ( 0 <= (sbits64) zSig0 ) zSig0 = LIT64( 0xFFFFFFFFFFFFFFFF ); + shortShift128Left( aSig0, aSig1, 2, &aSig0, &aSig1 ); + mul64To128( zSig0, zSig0, &term0, &term1 ); + sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); + while ( (sbits64) rem0 < 0 ) { + --zSig0; + shortShift128Left( 0, zSig0, 1, &term0, &term1 ); + term1 |= 1; + add128( rem0, rem1, term0, term1, &rem0, &rem1 ); + } + shortShift128Left( rem0, rem1, 63, &shiftedRem0, &shiftedRem1 ); + zSig1 = estimateDiv128To64( shiftedRem0, shiftedRem1, zSig0 ); + if ( (bits64) ( zSig1<<1 ) <= 10 ) { + if ( zSig1 == 0 ) zSig1 = 1; + mul64To128( zSig0, zSig1, &term1, &term2 ); + shortShift128Left( term1, term2, 1, &term1, &term2 ); + sub128( rem1, 0, term1, term2, &rem1, &rem2 ); + mul64To128( zSig1, zSig1, &term2, &term3 ); + sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); + while ( (sbits64) rem1 < 0 ) { + --zSig1; + shortShift192Left( 0, zSig0, zSig1, 1, &term1, &term2, &term3 ); + term3 |= 1; + add192( + rem1, rem2, rem3, term1, term2, term3, &rem1, &rem2, &rem3 ); + } + zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); + } + return + roundAndPackFloatx80( + floatx80_rounding_precision, 0, zExp, zSig0, zSig1 ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is +equal to the corresponding value `b', and 0 otherwise. The comparison is +performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic. +------------------------------------------------------------------------------- +*/ +flag floatx80_eq( floatx80 a, floatx80 b ) +{ + + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) + ) { + if ( floatx80_is_signaling_nan( a ) + || floatx80_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + return + ( a.low == b.low ) + && ( ( a.high == b.high ) + || ( ( a.low == 0 ) + && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) + ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is +less than or equal to the corresponding value `b', and 0 otherwise. The +comparison is performed according to the IEC/IEEE Standard for Binary +Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag floatx80_le( floatx80 a, floatx80 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloatx80Sign( a ); + bSign = extractFloatx80Sign( b ); + if ( aSign != bSign ) { + return + aSign + || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) + == 0 ); + } + return + aSign ? le128( b.high, b.low, a.high, a.low ) + : le128( a.high, a.low, b.high, b.low ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is +less than the corresponding value `b', and 0 otherwise. The comparison +is performed according to the IEC/IEEE Standard for Binary Floating-point +Arithmetic. +------------------------------------------------------------------------------- +*/ +flag floatx80_lt( floatx80 a, floatx80 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + aSign = extractFloatx80Sign( a ); + bSign = extractFloatx80Sign( b ); + if ( aSign != bSign ) { + return + aSign + && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) + != 0 ); + } + return + aSign ? lt128( b.high, b.low, a.high, a.low ) + : lt128( a.high, a.low, b.high, b.low ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is equal +to the corresponding value `b', and 0 otherwise. The invalid exception is +raised if either operand is a NaN. Otherwise, the comparison is performed +according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag floatx80_eq_signaling( floatx80 a, floatx80 b ) +{ + + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) + ) { + float_raise( float_flag_invalid ); + return 0; + } + return + ( a.low == b.low ) + && ( ( a.high == b.high ) + || ( ( a.low == 0 ) + && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) + ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is less +than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs +do not cause an exception. Otherwise, the comparison is performed according +to the IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag floatx80_le_quiet( floatx80 a, floatx80 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) + ) { + if ( floatx80_is_signaling_nan( a ) + || floatx80_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloatx80Sign( a ); + bSign = extractFloatx80Sign( b ); + if ( aSign != bSign ) { + return + aSign + || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) + == 0 ); + } + return + aSign ? le128( b.high, b.low, a.high, a.low ) + : le128( a.high, a.low, b.high, b.low ); + +} + +/* +------------------------------------------------------------------------------- +Returns 1 if the extended double-precision floating-point value `a' is less +than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause +an exception. Otherwise, the comparison is performed according to the +IEC/IEEE Standard for Binary Floating-point Arithmetic. +------------------------------------------------------------------------------- +*/ +flag floatx80_lt_quiet( floatx80 a, floatx80 b ) +{ + flag aSign, bSign; + + if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( a )<<1 ) ) + || ( ( extractFloatx80Exp( b ) == 0x7FFF ) + && (bits64) ( extractFloatx80Frac( b )<<1 ) ) + ) { + if ( floatx80_is_signaling_nan( a ) + || floatx80_is_signaling_nan( b ) ) { + float_raise( float_flag_invalid ); + } + return 0; + } + aSign = extractFloatx80Sign( a ); + bSign = extractFloatx80Sign( b ); + if ( aSign != bSign ) { + return + aSign + && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) + != 0 ); + } + return + aSign ? lt128( b.high, b.low, a.high, a.low ) + : lt128( a.high, a.low, b.high, b.low ); + +} + +#endif + diff --git a/target-arm/nwfpe/softfloat.h b/target-arm/nwfpe/softfloat.h new file mode 100644 index 0000000000..22c2193a49 --- /dev/null +++ b/target-arm/nwfpe/softfloat.h @@ -0,0 +1,232 @@ + +/* +=============================================================================== + +This C header file is part of the SoftFloat IEC/IEEE Floating-point +Arithmetic Package, Release 2. + +Written by John R. Hauser. This work was made possible in part by the +International Computer Science Institute, located at Suite 600, 1947 Center +Street, Berkeley, California 94704. Funding was partially provided by the +National Science Foundation under grant MIP-9311980. The original version +of this code was written as part of a project to build a fixed-point vector +processor in collaboration with the University of California at Berkeley, +overseen by Profs. Nelson Morgan and John Wawrzynek. More information +is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ +arithmetic/softfloat.html'. + +THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort +has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT +TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO +PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY +AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. + +Derivative works are acceptable, even for commercial purposes, so long as +(1) they include prominent notice that the work is derivative, and (2) they +include prominent notice akin to these three paragraphs for those parts of +this code that are retained. + +=============================================================================== +*/ + +#ifndef __SOFTFLOAT_H__ +#define __SOFTFLOAT_H__ + +/* +------------------------------------------------------------------------------- +The macro `FLOATX80' must be defined to enable the extended double-precision +floating-point format `floatx80'. If this macro is not defined, the +`floatx80' type will not be defined, and none of the functions that either +input or output the `floatx80' type will be defined. +------------------------------------------------------------------------------- +*/ +#define FLOATX80 + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE floating-point types. +------------------------------------------------------------------------------- +*/ +typedef unsigned long int float32; +typedef unsigned long long float64; +typedef struct { + unsigned short high; + unsigned long long low; +} floatx80; + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE floating-point underflow tininess-detection mode. +------------------------------------------------------------------------------- +*/ +extern signed char float_detect_tininess; +enum { + float_tininess_after_rounding = 0, + float_tininess_before_rounding = 1 +}; + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE floating-point rounding mode. +------------------------------------------------------------------------------- +*/ +extern signed char float_rounding_mode; +enum { + float_round_nearest_even = 0, + float_round_to_zero = 1, + float_round_down = 2, + float_round_up = 3 +}; + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE floating-point exception flags. +------------------------------------------------------------------------------- +extern signed char float_exception_flags; +enum { + float_flag_inexact = 1, + float_flag_underflow = 2, + float_flag_overflow = 4, + float_flag_divbyzero = 8, + float_flag_invalid = 16 +}; + +ScottB: November 4, 1998 +Changed the enumeration to match the bit order in the FPA11. +*/ + +extern signed char float_exception_flags; +enum { + float_flag_invalid = 1, + float_flag_divbyzero = 2, + float_flag_overflow = 4, + float_flag_underflow = 8, + float_flag_inexact = 16 +}; + +/* +------------------------------------------------------------------------------- +Routine to raise any or all of the software IEC/IEEE floating-point +exception flags. +------------------------------------------------------------------------------- +*/ +void float_raise( signed char ); + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE integer-to-floating-point conversion routines. +------------------------------------------------------------------------------- +*/ +float32 int32_to_float32( signed int ); +float64 int32_to_float64( signed int ); +#ifdef FLOATX80 +floatx80 int32_to_floatx80( signed int ); +#endif + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE single-precision conversion routines. +------------------------------------------------------------------------------- +*/ +signed int float32_to_int32( float32 ); +signed int float32_to_int32_round_to_zero( float32 ); +float64 float32_to_float64( float32 ); +#ifdef FLOATX80 +floatx80 float32_to_floatx80( float32 ); +#endif + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE single-precision operations. +------------------------------------------------------------------------------- +*/ +float32 float32_round_to_int( float32 ); +float32 float32_add( float32, float32 ); +float32 float32_sub( float32, float32 ); +float32 float32_mul( float32, float32 ); +float32 float32_div( float32, float32 ); +float32 float32_rem( float32, float32 ); +float32 float32_sqrt( float32 ); +char float32_eq( float32, float32 ); +char float32_le( float32, float32 ); +char float32_lt( float32, float32 ); +char float32_eq_signaling( float32, float32 ); +char float32_le_quiet( float32, float32 ); +char float32_lt_quiet( float32, float32 ); +char float32_is_signaling_nan( float32 ); + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE double-precision conversion routines. +------------------------------------------------------------------------------- +*/ +signed int float64_to_int32( float64 ); +signed int float64_to_int32_round_to_zero( float64 ); +float32 float64_to_float32( float64 ); +#ifdef FLOATX80 +floatx80 float64_to_floatx80( float64 ); +#endif + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE double-precision operations. +------------------------------------------------------------------------------- +*/ +float64 float64_round_to_int( float64 ); +float64 float64_add( float64, float64 ); +float64 float64_sub( float64, float64 ); +float64 float64_mul( float64, float64 ); +float64 float64_div( float64, float64 ); +float64 float64_rem( float64, float64 ); +float64 float64_sqrt( float64 ); +char float64_eq( float64, float64 ); +char float64_le( float64, float64 ); +char float64_lt( float64, float64 ); +char float64_eq_signaling( float64, float64 ); +char float64_le_quiet( float64, float64 ); +char float64_lt_quiet( float64, float64 ); +char float64_is_signaling_nan( float64 ); + +#ifdef FLOATX80 + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE extended double-precision conversion routines. +------------------------------------------------------------------------------- +*/ +signed int floatx80_to_int32( floatx80 ); +signed int floatx80_to_int32_round_to_zero( floatx80 ); +float32 floatx80_to_float32( floatx80 ); +float64 floatx80_to_float64( floatx80 ); + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE extended double-precision rounding precision. Valid +values are 32, 64, and 80. +------------------------------------------------------------------------------- +*/ +extern signed char floatx80_rounding_precision; + +/* +------------------------------------------------------------------------------- +Software IEC/IEEE extended double-precision operations. +------------------------------------------------------------------------------- +*/ +floatx80 floatx80_round_to_int( floatx80 ); +floatx80 floatx80_add( floatx80, floatx80 ); +floatx80 floatx80_sub( floatx80, floatx80 ); +floatx80 floatx80_mul( floatx80, floatx80 ); +floatx80 floatx80_div( floatx80, floatx80 ); +floatx80 floatx80_rem( floatx80, floatx80 ); +floatx80 floatx80_sqrt( floatx80 ); +char floatx80_eq( floatx80, floatx80 ); +char floatx80_le( floatx80, floatx80 ); +char floatx80_lt( floatx80, floatx80 ); +char floatx80_eq_signaling( floatx80, floatx80 ); +char floatx80_le_quiet( floatx80, floatx80 ); +char floatx80_lt_quiet( floatx80, floatx80 ); +char floatx80_is_signaling_nan( floatx80 ); + +#endif + +#endif |