aboutsummaryrefslogtreecommitdiff
path: root/target-arm/op_helper.c
diff options
context:
space:
mode:
authorThomas Huth <thuth@redhat.com>2016-10-11 08:56:52 +0200
committerThomas Huth <thuth@redhat.com>2016-12-20 21:52:12 +0100
commitfcf5ef2ab52c621a4617ebbef36bf43b4003f4c0 (patch)
tree2b450d96b01455df8ed908bf8f26ddc388a03380 /target-arm/op_helper.c
parent82ecffa8c050bf5bbc13329e9b65eac1caa5b55c (diff)
Move target-* CPU file into a target/ folder
We've currently got 18 architectures in QEMU, and thus 18 target-xxx folders in the root folder of the QEMU source tree. More architectures (e.g. RISC-V, AVR) are likely to be included soon, too, so the main folder of the QEMU sources slowly gets quite overcrowded with the target-xxx folders. To disburden the main folder a little bit, let's move the target-xxx folders into a dedicated target/ folder, so that target-xxx/ simply becomes target/xxx/ instead. Acked-by: Laurent Vivier <laurent@vivier.eu> [m68k part] Acked-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> [tricore part] Acked-by: Michael Walle <michael@walle.cc> [lm32 part] Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> [s390x part] Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> [s390x part] Acked-by: Eduardo Habkost <ehabkost@redhat.com> [i386 part] Acked-by: Artyom Tarasenko <atar4qemu@gmail.com> [sparc part] Acked-by: Richard Henderson <rth@twiddle.net> [alpha part] Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa part] Reviewed-by: David Gibson <david@gibson.dropbear.id.au> [ppc part] Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> [cris&microblaze part] Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn> [unicore32 part] Signed-off-by: Thomas Huth <thuth@redhat.com>
Diffstat (limited to 'target-arm/op_helper.c')
-rw-r--r--target-arm/op_helper.c1335
1 files changed, 0 insertions, 1335 deletions
diff --git a/target-arm/op_helper.c b/target-arm/op_helper.c
deleted file mode 100644
index cd94216591..0000000000
--- a/target-arm/op_helper.c
+++ /dev/null
@@ -1,1335 +0,0 @@
-/*
- * ARM helper routines
- *
- * Copyright (c) 2005-2007 CodeSourcery, LLC
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, see <http://www.gnu.org/licenses/>.
- */
-#include "qemu/osdep.h"
-#include "cpu.h"
-#include "exec/helper-proto.h"
-#include "internals.h"
-#include "exec/exec-all.h"
-#include "exec/cpu_ldst.h"
-
-#define SIGNBIT (uint32_t)0x80000000
-#define SIGNBIT64 ((uint64_t)1 << 63)
-
-static void raise_exception(CPUARMState *env, uint32_t excp,
- uint32_t syndrome, uint32_t target_el)
-{
- CPUState *cs = CPU(arm_env_get_cpu(env));
-
- assert(!excp_is_internal(excp));
- cs->exception_index = excp;
- env->exception.syndrome = syndrome;
- env->exception.target_el = target_el;
- cpu_loop_exit(cs);
-}
-
-static int exception_target_el(CPUARMState *env)
-{
- int target_el = MAX(1, arm_current_el(env));
-
- /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
- * to EL3 in this case.
- */
- if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
- target_el = 3;
- }
-
- return target_el;
-}
-
-uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def,
- uint32_t rn, uint32_t maxindex)
-{
- uint32_t val;
- uint32_t tmp;
- int index;
- int shift;
- uint64_t *table;
- table = (uint64_t *)&env->vfp.regs[rn];
- val = 0;
- for (shift = 0; shift < 32; shift += 8) {
- index = (ireg >> shift) & 0xff;
- if (index < maxindex) {
- tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
- val |= tmp << shift;
- } else {
- val |= def & (0xff << shift);
- }
- }
- return val;
-}
-
-#if !defined(CONFIG_USER_ONLY)
-
-static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
- unsigned int target_el,
- bool same_el,
- bool s1ptw, bool is_write,
- int fsc)
-{
- uint32_t syn;
-
- /* ISV is only set for data aborts routed to EL2 and
- * never for stage-1 page table walks faulting on stage 2.
- *
- * Furthermore, ISV is only set for certain kinds of load/stores.
- * If the template syndrome does not have ISV set, we should leave
- * it cleared.
- *
- * See ARMv8 specs, D7-1974:
- * ISS encoding for an exception from a Data Abort, the
- * ISV field.
- */
- if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
- syn = syn_data_abort_no_iss(same_el,
- 0, 0, s1ptw, is_write, fsc);
- } else {
- /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
- * syndrome created at translation time.
- * Now we create the runtime syndrome with the remaining fields.
- */
- syn = syn_data_abort_with_iss(same_el,
- 0, 0, 0, 0, 0,
- 0, 0, s1ptw, is_write, fsc,
- false);
- /* Merge the runtime syndrome with the template syndrome. */
- syn |= template_syn;
- }
- return syn;
-}
-
-/* try to fill the TLB and return an exception if error. If retaddr is
- * NULL, it means that the function was called in C code (i.e. not
- * from generated code or from helper.c)
- */
-void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
- int mmu_idx, uintptr_t retaddr)
-{
- bool ret;
- uint32_t fsr = 0;
- ARMMMUFaultInfo fi = {};
-
- ret = arm_tlb_fill(cs, addr, access_type, mmu_idx, &fsr, &fi);
- if (unlikely(ret)) {
- ARMCPU *cpu = ARM_CPU(cs);
- CPUARMState *env = &cpu->env;
- uint32_t syn, exc;
- unsigned int target_el;
- bool same_el;
-
- if (retaddr) {
- /* now we have a real cpu fault */
- cpu_restore_state(cs, retaddr);
- }
-
- target_el = exception_target_el(env);
- if (fi.stage2) {
- target_el = 2;
- env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
- }
- same_el = arm_current_el(env) == target_el;
- /* AArch64 syndrome does not have an LPAE bit */
- syn = fsr & ~(1 << 9);
-
- /* For insn and data aborts we assume there is no instruction syndrome
- * information; this is always true for exceptions reported to EL1.
- */
- if (access_type == MMU_INST_FETCH) {
- syn = syn_insn_abort(same_el, 0, fi.s1ptw, syn);
- exc = EXCP_PREFETCH_ABORT;
- } else {
- syn = merge_syn_data_abort(env->exception.syndrome, target_el,
- same_el, fi.s1ptw,
- access_type == MMU_DATA_STORE, syn);
- if (access_type == MMU_DATA_STORE
- && arm_feature(env, ARM_FEATURE_V6)) {
- fsr |= (1 << 11);
- }
- exc = EXCP_DATA_ABORT;
- }
-
- env->exception.vaddress = addr;
- env->exception.fsr = fsr;
- raise_exception(env, exc, syn, target_el);
- }
-}
-
-/* Raise a data fault alignment exception for the specified virtual address */
-void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
- MMUAccessType access_type,
- int mmu_idx, uintptr_t retaddr)
-{
- ARMCPU *cpu = ARM_CPU(cs);
- CPUARMState *env = &cpu->env;
- int target_el;
- bool same_el;
- uint32_t syn;
-
- if (retaddr) {
- /* now we have a real cpu fault */
- cpu_restore_state(cs, retaddr);
- }
-
- target_el = exception_target_el(env);
- same_el = (arm_current_el(env) == target_el);
-
- env->exception.vaddress = vaddr;
-
- /* the DFSR for an alignment fault depends on whether we're using
- * the LPAE long descriptor format, or the short descriptor format
- */
- if (arm_s1_regime_using_lpae_format(env, cpu_mmu_index(env, false))) {
- env->exception.fsr = (1 << 9) | 0x21;
- } else {
- env->exception.fsr = 0x1;
- }
-
- if (access_type == MMU_DATA_STORE && arm_feature(env, ARM_FEATURE_V6)) {
- env->exception.fsr |= (1 << 11);
- }
-
- syn = merge_syn_data_abort(env->exception.syndrome, target_el,
- same_el, 0, access_type == MMU_DATA_STORE,
- 0x21);
- raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
-}
-
-#endif /* !defined(CONFIG_USER_ONLY) */
-
-uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
-{
- uint32_t res = a + b;
- if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
- env->QF = 1;
- return res;
-}
-
-uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
-{
- uint32_t res = a + b;
- if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
- env->QF = 1;
- res = ~(((int32_t)a >> 31) ^ SIGNBIT);
- }
- return res;
-}
-
-uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
-{
- uint32_t res = a - b;
- if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
- env->QF = 1;
- res = ~(((int32_t)a >> 31) ^ SIGNBIT);
- }
- return res;
-}
-
-uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
-{
- uint32_t res;
- if (val >= 0x40000000) {
- res = ~SIGNBIT;
- env->QF = 1;
- } else if (val <= (int32_t)0xc0000000) {
- res = SIGNBIT;
- env->QF = 1;
- } else {
- res = val << 1;
- }
- return res;
-}
-
-uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
-{
- uint32_t res = a + b;
- if (res < a) {
- env->QF = 1;
- res = ~0;
- }
- return res;
-}
-
-uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
-{
- uint32_t res = a - b;
- if (res > a) {
- env->QF = 1;
- res = 0;
- }
- return res;
-}
-
-/* Signed saturation. */
-static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
-{
- int32_t top;
- uint32_t mask;
-
- top = val >> shift;
- mask = (1u << shift) - 1;
- if (top > 0) {
- env->QF = 1;
- return mask;
- } else if (top < -1) {
- env->QF = 1;
- return ~mask;
- }
- return val;
-}
-
-/* Unsigned saturation. */
-static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
-{
- uint32_t max;
-
- max = (1u << shift) - 1;
- if (val < 0) {
- env->QF = 1;
- return 0;
- } else if (val > max) {
- env->QF = 1;
- return max;
- }
- return val;
-}
-
-/* Signed saturate. */
-uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
-{
- return do_ssat(env, x, shift);
-}
-
-/* Dual halfword signed saturate. */
-uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
-{
- uint32_t res;
-
- res = (uint16_t)do_ssat(env, (int16_t)x, shift);
- res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
- return res;
-}
-
-/* Unsigned saturate. */
-uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
-{
- return do_usat(env, x, shift);
-}
-
-/* Dual halfword unsigned saturate. */
-uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
-{
- uint32_t res;
-
- res = (uint16_t)do_usat(env, (int16_t)x, shift);
- res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
- return res;
-}
-
-void HELPER(setend)(CPUARMState *env)
-{
- env->uncached_cpsr ^= CPSR_E;
-}
-
-/* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
- * The function returns the target EL (1-3) if the instruction is to be trapped;
- * otherwise it returns 0 indicating it is not trapped.
- */
-static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
-{
- int cur_el = arm_current_el(env);
- uint64_t mask;
-
- /* If we are currently in EL0 then we need to check if SCTLR is set up for
- * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
- */
- if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
- int target_el;
-
- mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
- if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
- /* Secure EL0 and Secure PL1 is at EL3 */
- target_el = 3;
- } else {
- target_el = 1;
- }
-
- if (!(env->cp15.sctlr_el[target_el] & mask)) {
- return target_el;
- }
- }
-
- /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
- * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
- * bits will be zero indicating no trap.
- */
- if (cur_el < 2 && !arm_is_secure(env)) {
- mask = (is_wfe) ? HCR_TWE : HCR_TWI;
- if (env->cp15.hcr_el2 & mask) {
- return 2;
- }
- }
-
- /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
- if (cur_el < 3) {
- mask = (is_wfe) ? SCR_TWE : SCR_TWI;
- if (env->cp15.scr_el3 & mask) {
- return 3;
- }
- }
-
- return 0;
-}
-
-void HELPER(wfi)(CPUARMState *env)
-{
- CPUState *cs = CPU(arm_env_get_cpu(env));
- int target_el = check_wfx_trap(env, false);
-
- if (cpu_has_work(cs)) {
- /* Don't bother to go into our "low power state" if
- * we would just wake up immediately.
- */
- return;
- }
-
- if (target_el) {
- env->pc -= 4;
- raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el);
- }
-
- cs->exception_index = EXCP_HLT;
- cs->halted = 1;
- cpu_loop_exit(cs);
-}
-
-void HELPER(wfe)(CPUARMState *env)
-{
- /* This is a hint instruction that is semantically different
- * from YIELD even though we currently implement it identically.
- * Don't actually halt the CPU, just yield back to top
- * level loop. This is not going into a "low power state"
- * (ie halting until some event occurs), so we never take
- * a configurable trap to a different exception level.
- */
- HELPER(yield)(env);
-}
-
-void HELPER(yield)(CPUARMState *env)
-{
- ARMCPU *cpu = arm_env_get_cpu(env);
- CPUState *cs = CPU(cpu);
-
- /* This is a non-trappable hint instruction that generally indicates
- * that the guest is currently busy-looping. Yield control back to the
- * top level loop so that a more deserving VCPU has a chance to run.
- */
- cs->exception_index = EXCP_YIELD;
- cpu_loop_exit(cs);
-}
-
-/* Raise an internal-to-QEMU exception. This is limited to only
- * those EXCP values which are special cases for QEMU to interrupt
- * execution and not to be used for exceptions which are passed to
- * the guest (those must all have syndrome information and thus should
- * use exception_with_syndrome).
- */
-void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
-{
- CPUState *cs = CPU(arm_env_get_cpu(env));
-
- assert(excp_is_internal(excp));
- cs->exception_index = excp;
- cpu_loop_exit(cs);
-}
-
-/* Raise an exception with the specified syndrome register value */
-void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
- uint32_t syndrome, uint32_t target_el)
-{
- raise_exception(env, excp, syndrome, target_el);
-}
-
-uint32_t HELPER(cpsr_read)(CPUARMState *env)
-{
- return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
-}
-
-void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
-{
- cpsr_write(env, val, mask, CPSRWriteByInstr);
-}
-
-/* Write the CPSR for a 32-bit exception return */
-void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
-{
- cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
-
- /* Generated code has already stored the new PC value, but
- * without masking out its low bits, because which bits need
- * masking depends on whether we're returning to Thumb or ARM
- * state. Do the masking now.
- */
- env->regs[15] &= (env->thumb ? ~1 : ~3);
-
- arm_call_el_change_hook(arm_env_get_cpu(env));
-}
-
-/* Access to user mode registers from privileged modes. */
-uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
-{
- uint32_t val;
-
- if (regno == 13) {
- val = env->banked_r13[BANK_USRSYS];
- } else if (regno == 14) {
- val = env->banked_r14[BANK_USRSYS];
- } else if (regno >= 8
- && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
- val = env->usr_regs[regno - 8];
- } else {
- val = env->regs[regno];
- }
- return val;
-}
-
-void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
-{
- if (regno == 13) {
- env->banked_r13[BANK_USRSYS] = val;
- } else if (regno == 14) {
- env->banked_r14[BANK_USRSYS] = val;
- } else if (regno >= 8
- && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
- env->usr_regs[regno - 8] = val;
- } else {
- env->regs[regno] = val;
- }
-}
-
-void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
-{
- if ((env->uncached_cpsr & CPSR_M) == mode) {
- env->regs[13] = val;
- } else {
- env->banked_r13[bank_number(mode)] = val;
- }
-}
-
-uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
-{
- if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
- /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
- * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
- */
- raise_exception(env, EXCP_UDEF, syn_uncategorized(),
- exception_target_el(env));
- }
-
- if ((env->uncached_cpsr & CPSR_M) == mode) {
- return env->regs[13];
- } else {
- return env->banked_r13[bank_number(mode)];
- }
-}
-
-static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
- uint32_t regno)
-{
- /* Raise an exception if the requested access is one of the UNPREDICTABLE
- * cases; otherwise return. This broadly corresponds to the pseudocode
- * BankedRegisterAccessValid() and SPSRAccessValid(),
- * except that we have already handled some cases at translate time.
- */
- int curmode = env->uncached_cpsr & CPSR_M;
-
- if (curmode == tgtmode) {
- goto undef;
- }
-
- if (tgtmode == ARM_CPU_MODE_USR) {
- switch (regno) {
- case 8 ... 12:
- if (curmode != ARM_CPU_MODE_FIQ) {
- goto undef;
- }
- break;
- case 13:
- if (curmode == ARM_CPU_MODE_SYS) {
- goto undef;
- }
- break;
- case 14:
- if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
- goto undef;
- }
- break;
- default:
- break;
- }
- }
-
- if (tgtmode == ARM_CPU_MODE_HYP) {
- switch (regno) {
- case 17: /* ELR_Hyp */
- if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
- goto undef;
- }
- break;
- default:
- if (curmode != ARM_CPU_MODE_MON) {
- goto undef;
- }
- break;
- }
- }
-
- return;
-
-undef:
- raise_exception(env, EXCP_UDEF, syn_uncategorized(),
- exception_target_el(env));
-}
-
-void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
- uint32_t regno)
-{
- msr_mrs_banked_exc_checks(env, tgtmode, regno);
-
- switch (regno) {
- case 16: /* SPSRs */
- env->banked_spsr[bank_number(tgtmode)] = value;
- break;
- case 17: /* ELR_Hyp */
- env->elr_el[2] = value;
- break;
- case 13:
- env->banked_r13[bank_number(tgtmode)] = value;
- break;
- case 14:
- env->banked_r14[bank_number(tgtmode)] = value;
- break;
- case 8 ... 12:
- switch (tgtmode) {
- case ARM_CPU_MODE_USR:
- env->usr_regs[regno - 8] = value;
- break;
- case ARM_CPU_MODE_FIQ:
- env->fiq_regs[regno - 8] = value;
- break;
- default:
- g_assert_not_reached();
- }
- break;
- default:
- g_assert_not_reached();
- }
-}
-
-uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
-{
- msr_mrs_banked_exc_checks(env, tgtmode, regno);
-
- switch (regno) {
- case 16: /* SPSRs */
- return env->banked_spsr[bank_number(tgtmode)];
- case 17: /* ELR_Hyp */
- return env->elr_el[2];
- case 13:
- return env->banked_r13[bank_number(tgtmode)];
- case 14:
- return env->banked_r14[bank_number(tgtmode)];
- case 8 ... 12:
- switch (tgtmode) {
- case ARM_CPU_MODE_USR:
- return env->usr_regs[regno - 8];
- case ARM_CPU_MODE_FIQ:
- return env->fiq_regs[regno - 8];
- default:
- g_assert_not_reached();
- }
- default:
- g_assert_not_reached();
- }
-}
-
-void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
- uint32_t isread)
-{
- const ARMCPRegInfo *ri = rip;
- int target_el;
-
- if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
- && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
- raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
- }
-
- if (!ri->accessfn) {
- return;
- }
-
- switch (ri->accessfn(env, ri, isread)) {
- case CP_ACCESS_OK:
- return;
- case CP_ACCESS_TRAP:
- target_el = exception_target_el(env);
- break;
- case CP_ACCESS_TRAP_EL2:
- /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
- * a bug in the access function.
- */
- assert(!arm_is_secure(env) && arm_current_el(env) != 3);
- target_el = 2;
- break;
- case CP_ACCESS_TRAP_EL3:
- target_el = 3;
- break;
- case CP_ACCESS_TRAP_UNCATEGORIZED:
- target_el = exception_target_el(env);
- syndrome = syn_uncategorized();
- break;
- case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
- target_el = 2;
- syndrome = syn_uncategorized();
- break;
- case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
- target_el = 3;
- syndrome = syn_uncategorized();
- break;
- case CP_ACCESS_TRAP_FP_EL2:
- target_el = 2;
- /* Since we are an implementation that takes exceptions on a trapped
- * conditional insn only if the insn has passed its condition code
- * check, we take the IMPDEF choice to always report CV=1 COND=0xe
- * (which is also the required value for AArch64 traps).
- */
- syndrome = syn_fp_access_trap(1, 0xe, false);
- break;
- case CP_ACCESS_TRAP_FP_EL3:
- target_el = 3;
- syndrome = syn_fp_access_trap(1, 0xe, false);
- break;
- default:
- g_assert_not_reached();
- }
-
- raise_exception(env, EXCP_UDEF, syndrome, target_el);
-}
-
-void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
-{
- const ARMCPRegInfo *ri = rip;
-
- ri->writefn(env, ri, value);
-}
-
-uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
-{
- const ARMCPRegInfo *ri = rip;
-
- return ri->readfn(env, ri);
-}
-
-void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
-{
- const ARMCPRegInfo *ri = rip;
-
- ri->writefn(env, ri, value);
-}
-
-uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
-{
- const ARMCPRegInfo *ri = rip;
-
- return ri->readfn(env, ri);
-}
-
-void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
-{
- /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
- * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
- * to catch that case at translate time.
- */
- if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
- uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
- extract32(op, 3, 3), 4,
- imm, 0x1f, 0);
- raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
- }
-
- switch (op) {
- case 0x05: /* SPSel */
- update_spsel(env, imm);
- break;
- case 0x1e: /* DAIFSet */
- env->daif |= (imm << 6) & PSTATE_DAIF;
- break;
- case 0x1f: /* DAIFClear */
- env->daif &= ~((imm << 6) & PSTATE_DAIF);
- break;
- default:
- g_assert_not_reached();
- }
-}
-
-void HELPER(clear_pstate_ss)(CPUARMState *env)
-{
- env->pstate &= ~PSTATE_SS;
-}
-
-void HELPER(pre_hvc)(CPUARMState *env)
-{
- ARMCPU *cpu = arm_env_get_cpu(env);
- int cur_el = arm_current_el(env);
- /* FIXME: Use actual secure state. */
- bool secure = false;
- bool undef;
-
- if (arm_is_psci_call(cpu, EXCP_HVC)) {
- /* If PSCI is enabled and this looks like a valid PSCI call then
- * that overrides the architecturally mandated HVC behaviour.
- */
- return;
- }
-
- if (!arm_feature(env, ARM_FEATURE_EL2)) {
- /* If EL2 doesn't exist, HVC always UNDEFs */
- undef = true;
- } else if (arm_feature(env, ARM_FEATURE_EL3)) {
- /* EL3.HCE has priority over EL2.HCD. */
- undef = !(env->cp15.scr_el3 & SCR_HCE);
- } else {
- undef = env->cp15.hcr_el2 & HCR_HCD;
- }
-
- /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
- * For ARMv8/AArch64, HVC is allowed in EL3.
- * Note that we've already trapped HVC from EL0 at translation
- * time.
- */
- if (secure && (!is_a64(env) || cur_el == 1)) {
- undef = true;
- }
-
- if (undef) {
- raise_exception(env, EXCP_UDEF, syn_uncategorized(),
- exception_target_el(env));
- }
-}
-
-void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
-{
- ARMCPU *cpu = arm_env_get_cpu(env);
- int cur_el = arm_current_el(env);
- bool secure = arm_is_secure(env);
- bool smd = env->cp15.scr_el3 & SCR_SMD;
- /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
- * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
- * extensions, SMD only applies to NS state.
- * On ARMv7 without the Virtualization extensions, the SMD bit
- * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
- * so we need not special case this here.
- */
- bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure;
-
- if (arm_is_psci_call(cpu, EXCP_SMC)) {
- /* If PSCI is enabled and this looks like a valid PSCI call then
- * that overrides the architecturally mandated SMC behaviour.
- */
- return;
- }
-
- if (!arm_feature(env, ARM_FEATURE_EL3)) {
- /* If we have no EL3 then SMC always UNDEFs */
- undef = true;
- } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
- /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
- raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
- }
-
- if (undef) {
- raise_exception(env, EXCP_UDEF, syn_uncategorized(),
- exception_target_el(env));
- }
-}
-
-static int el_from_spsr(uint32_t spsr)
-{
- /* Return the exception level that this SPSR is requesting a return to,
- * or -1 if it is invalid (an illegal return)
- */
- if (spsr & PSTATE_nRW) {
- switch (spsr & CPSR_M) {
- case ARM_CPU_MODE_USR:
- return 0;
- case ARM_CPU_MODE_HYP:
- return 2;
- case ARM_CPU_MODE_FIQ:
- case ARM_CPU_MODE_IRQ:
- case ARM_CPU_MODE_SVC:
- case ARM_CPU_MODE_ABT:
- case ARM_CPU_MODE_UND:
- case ARM_CPU_MODE_SYS:
- return 1;
- case ARM_CPU_MODE_MON:
- /* Returning to Mon from AArch64 is never possible,
- * so this is an illegal return.
- */
- default:
- return -1;
- }
- } else {
- if (extract32(spsr, 1, 1)) {
- /* Return with reserved M[1] bit set */
- return -1;
- }
- if (extract32(spsr, 0, 4) == 1) {
- /* return to EL0 with M[0] bit set */
- return -1;
- }
- return extract32(spsr, 2, 2);
- }
-}
-
-void HELPER(exception_return)(CPUARMState *env)
-{
- int cur_el = arm_current_el(env);
- unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
- uint32_t spsr = env->banked_spsr[spsr_idx];
- int new_el;
- bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
-
- aarch64_save_sp(env, cur_el);
-
- env->exclusive_addr = -1;
-
- /* We must squash the PSTATE.SS bit to zero unless both of the
- * following hold:
- * 1. debug exceptions are currently disabled
- * 2. singlestep will be active in the EL we return to
- * We check 1 here and 2 after we've done the pstate/cpsr write() to
- * transition to the EL we're going to.
- */
- if (arm_generate_debug_exceptions(env)) {
- spsr &= ~PSTATE_SS;
- }
-
- new_el = el_from_spsr(spsr);
- if (new_el == -1) {
- goto illegal_return;
- }
- if (new_el > cur_el
- || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
- /* Disallow return to an EL which is unimplemented or higher
- * than the current one.
- */
- goto illegal_return;
- }
-
- if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
- /* Return to an EL which is configured for a different register width */
- goto illegal_return;
- }
-
- if (new_el == 2 && arm_is_secure_below_el3(env)) {
- /* Return to the non-existent secure-EL2 */
- goto illegal_return;
- }
-
- if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE)
- && !arm_is_secure_below_el3(env)) {
- goto illegal_return;
- }
-
- if (!return_to_aa64) {
- env->aarch64 = 0;
- /* We do a raw CPSR write because aarch64_sync_64_to_32()
- * will sort the register banks out for us, and we've already
- * caught all the bad-mode cases in el_from_spsr().
- */
- cpsr_write(env, spsr, ~0, CPSRWriteRaw);
- if (!arm_singlestep_active(env)) {
- env->uncached_cpsr &= ~PSTATE_SS;
- }
- aarch64_sync_64_to_32(env);
-
- if (spsr & CPSR_T) {
- env->regs[15] = env->elr_el[cur_el] & ~0x1;
- } else {
- env->regs[15] = env->elr_el[cur_el] & ~0x3;
- }
- } else {
- env->aarch64 = 1;
- pstate_write(env, spsr);
- if (!arm_singlestep_active(env)) {
- env->pstate &= ~PSTATE_SS;
- }
- aarch64_restore_sp(env, new_el);
- env->pc = env->elr_el[cur_el];
- }
-
- arm_call_el_change_hook(arm_env_get_cpu(env));
-
- return;
-
-illegal_return:
- /* Illegal return events of various kinds have architecturally
- * mandated behaviour:
- * restore NZCV and DAIF from SPSR_ELx
- * set PSTATE.IL
- * restore PC from ELR_ELx
- * no change to exception level, execution state or stack pointer
- */
- env->pstate |= PSTATE_IL;
- env->pc = env->elr_el[cur_el];
- spsr &= PSTATE_NZCV | PSTATE_DAIF;
- spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
- pstate_write(env, spsr);
- if (!arm_singlestep_active(env)) {
- env->pstate &= ~PSTATE_SS;
- }
-}
-
-/* Return true if the linked breakpoint entry lbn passes its checks */
-static bool linked_bp_matches(ARMCPU *cpu, int lbn)
-{
- CPUARMState *env = &cpu->env;
- uint64_t bcr = env->cp15.dbgbcr[lbn];
- int brps = extract32(cpu->dbgdidr, 24, 4);
- int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
- int bt;
- uint32_t contextidr;
-
- /* Links to unimplemented or non-context aware breakpoints are
- * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
- * as if linked to an UNKNOWN context-aware breakpoint (in which
- * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
- * We choose the former.
- */
- if (lbn > brps || lbn < (brps - ctx_cmps)) {
- return false;
- }
-
- bcr = env->cp15.dbgbcr[lbn];
-
- if (extract64(bcr, 0, 1) == 0) {
- /* Linked breakpoint disabled : generate no events */
- return false;
- }
-
- bt = extract64(bcr, 20, 4);
-
- /* We match the whole register even if this is AArch32 using the
- * short descriptor format (in which case it holds both PROCID and ASID),
- * since we don't implement the optional v7 context ID masking.
- */
- contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
-
- switch (bt) {
- case 3: /* linked context ID match */
- if (arm_current_el(env) > 1) {
- /* Context matches never fire in EL2 or (AArch64) EL3 */
- return false;
- }
- return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
- case 5: /* linked address mismatch (reserved in AArch64) */
- case 9: /* linked VMID match (reserved if no EL2) */
- case 11: /* linked context ID and VMID match (reserved if no EL2) */
- default:
- /* Links to Unlinked context breakpoints must generate no
- * events; we choose to do the same for reserved values too.
- */
- return false;
- }
-
- return false;
-}
-
-static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
-{
- CPUARMState *env = &cpu->env;
- uint64_t cr;
- int pac, hmc, ssc, wt, lbn;
- /* Note that for watchpoints the check is against the CPU security
- * state, not the S/NS attribute on the offending data access.
- */
- bool is_secure = arm_is_secure(env);
- int access_el = arm_current_el(env);
-
- if (is_wp) {
- CPUWatchpoint *wp = env->cpu_watchpoint[n];
-
- if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
- return false;
- }
- cr = env->cp15.dbgwcr[n];
- if (wp->hitattrs.user) {
- /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
- * match watchpoints as if they were accesses done at EL0, even if
- * the CPU is at EL1 or higher.
- */
- access_el = 0;
- }
- } else {
- uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
-
- if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
- return false;
- }
- cr = env->cp15.dbgbcr[n];
- }
- /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
- * enabled and that the address and access type match; for breakpoints
- * we know the address matched; check the remaining fields, including
- * linked breakpoints. We rely on WCR and BCR having the same layout
- * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
- * Note that some combinations of {PAC, HMC, SSC} are reserved and
- * must act either like some valid combination or as if the watchpoint
- * were disabled. We choose the former, and use this together with
- * the fact that EL3 must always be Secure and EL2 must always be
- * Non-Secure to simplify the code slightly compared to the full
- * table in the ARM ARM.
- */
- pac = extract64(cr, 1, 2);
- hmc = extract64(cr, 13, 1);
- ssc = extract64(cr, 14, 2);
-
- switch (ssc) {
- case 0:
- break;
- case 1:
- case 3:
- if (is_secure) {
- return false;
- }
- break;
- case 2:
- if (!is_secure) {
- return false;
- }
- break;
- }
-
- switch (access_el) {
- case 3:
- case 2:
- if (!hmc) {
- return false;
- }
- break;
- case 1:
- if (extract32(pac, 0, 1) == 0) {
- return false;
- }
- break;
- case 0:
- if (extract32(pac, 1, 1) == 0) {
- return false;
- }
- break;
- default:
- g_assert_not_reached();
- }
-
- wt = extract64(cr, 20, 1);
- lbn = extract64(cr, 16, 4);
-
- if (wt && !linked_bp_matches(cpu, lbn)) {
- return false;
- }
-
- return true;
-}
-
-static bool check_watchpoints(ARMCPU *cpu)
-{
- CPUARMState *env = &cpu->env;
- int n;
-
- /* If watchpoints are disabled globally or we can't take debug
- * exceptions here then watchpoint firings are ignored.
- */
- if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
- || !arm_generate_debug_exceptions(env)) {
- return false;
- }
-
- for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
- if (bp_wp_matches(cpu, n, true)) {
- return true;
- }
- }
- return false;
-}
-
-static bool check_breakpoints(ARMCPU *cpu)
-{
- CPUARMState *env = &cpu->env;
- int n;
-
- /* If breakpoints are disabled globally or we can't take debug
- * exceptions here then breakpoint firings are ignored.
- */
- if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
- || !arm_generate_debug_exceptions(env)) {
- return false;
- }
-
- for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
- if (bp_wp_matches(cpu, n, false)) {
- return true;
- }
- }
- return false;
-}
-
-void HELPER(check_breakpoints)(CPUARMState *env)
-{
- ARMCPU *cpu = arm_env_get_cpu(env);
-
- if (check_breakpoints(cpu)) {
- HELPER(exception_internal(env, EXCP_DEBUG));
- }
-}
-
-bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
-{
- /* Called by core code when a CPU watchpoint fires; need to check if this
- * is also an architectural watchpoint match.
- */
- ARMCPU *cpu = ARM_CPU(cs);
-
- return check_watchpoints(cpu);
-}
-
-void arm_debug_excp_handler(CPUState *cs)
-{
- /* Called by core code when a watchpoint or breakpoint fires;
- * need to check which one and raise the appropriate exception.
- */
- ARMCPU *cpu = ARM_CPU(cs);
- CPUARMState *env = &cpu->env;
- CPUWatchpoint *wp_hit = cs->watchpoint_hit;
-
- if (wp_hit) {
- if (wp_hit->flags & BP_CPU) {
- bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
- bool same_el = arm_debug_target_el(env) == arm_current_el(env);
-
- cs->watchpoint_hit = NULL;
-
- if (extended_addresses_enabled(env)) {
- env->exception.fsr = (1 << 9) | 0x22;
- } else {
- env->exception.fsr = 0x2;
- }
- env->exception.vaddress = wp_hit->hitaddr;
- raise_exception(env, EXCP_DATA_ABORT,
- syn_watchpoint(same_el, 0, wnr),
- arm_debug_target_el(env));
- }
- } else {
- uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
- bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
-
- /* (1) GDB breakpoints should be handled first.
- * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
- * since singlestep is also done by generating a debug internal
- * exception.
- */
- if (cpu_breakpoint_test(cs, pc, BP_GDB)
- || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
- return;
- }
-
- if (extended_addresses_enabled(env)) {
- env->exception.fsr = (1 << 9) | 0x22;
- } else {
- env->exception.fsr = 0x2;
- }
- /* FAR is UNKNOWN, so doesn't need setting */
- raise_exception(env, EXCP_PREFETCH_ABORT,
- syn_breakpoint(same_el),
- arm_debug_target_el(env));
- }
-}
-
-/* ??? Flag setting arithmetic is awkward because we need to do comparisons.
- The only way to do that in TCG is a conditional branch, which clobbers
- all our temporaries. For now implement these as helper functions. */
-
-/* Similarly for variable shift instructions. */
-
-uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
-{
- int shift = i & 0xff;
- if (shift >= 32) {
- if (shift == 32)
- env->CF = x & 1;
- else
- env->CF = 0;
- return 0;
- } else if (shift != 0) {
- env->CF = (x >> (32 - shift)) & 1;
- return x << shift;
- }
- return x;
-}
-
-uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
-{
- int shift = i & 0xff;
- if (shift >= 32) {
- if (shift == 32)
- env->CF = (x >> 31) & 1;
- else
- env->CF = 0;
- return 0;
- } else if (shift != 0) {
- env->CF = (x >> (shift - 1)) & 1;
- return x >> shift;
- }
- return x;
-}
-
-uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
-{
- int shift = i & 0xff;
- if (shift >= 32) {
- env->CF = (x >> 31) & 1;
- return (int32_t)x >> 31;
- } else if (shift != 0) {
- env->CF = (x >> (shift - 1)) & 1;
- return (int32_t)x >> shift;
- }
- return x;
-}
-
-uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
-{
- int shift1, shift;
- shift1 = i & 0xff;
- shift = shift1 & 0x1f;
- if (shift == 0) {
- if (shift1 != 0)
- env->CF = (x >> 31) & 1;
- return x;
- } else {
- env->CF = (x >> (shift - 1)) & 1;
- return ((uint32_t)x >> shift) | (x << (32 - shift));
- }
-}