diff options
author | Thomas Huth <thuth@redhat.com> | 2016-10-11 08:56:52 +0200 |
---|---|---|
committer | Thomas Huth <thuth@redhat.com> | 2016-12-20 21:52:12 +0100 |
commit | fcf5ef2ab52c621a4617ebbef36bf43b4003f4c0 (patch) | |
tree | 2b450d96b01455df8ed908bf8f26ddc388a03380 /target-arm/kvm64.c | |
parent | 82ecffa8c050bf5bbc13329e9b65eac1caa5b55c (diff) |
Move target-* CPU file into a target/ folder
We've currently got 18 architectures in QEMU, and thus 18 target-xxx
folders in the root folder of the QEMU source tree. More architectures
(e.g. RISC-V, AVR) are likely to be included soon, too, so the main
folder of the QEMU sources slowly gets quite overcrowded with the
target-xxx folders.
To disburden the main folder a little bit, let's move the target-xxx
folders into a dedicated target/ folder, so that target-xxx/ simply
becomes target/xxx/ instead.
Acked-by: Laurent Vivier <laurent@vivier.eu> [m68k part]
Acked-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> [tricore part]
Acked-by: Michael Walle <michael@walle.cc> [lm32 part]
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> [s390x part]
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> [s390x part]
Acked-by: Eduardo Habkost <ehabkost@redhat.com> [i386 part]
Acked-by: Artyom Tarasenko <atar4qemu@gmail.com> [sparc part]
Acked-by: Richard Henderson <rth@twiddle.net> [alpha part]
Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa part]
Reviewed-by: David Gibson <david@gibson.dropbear.id.au> [ppc part]
Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> [crisµblaze part]
Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn> [unicore32 part]
Signed-off-by: Thomas Huth <thuth@redhat.com>
Diffstat (limited to 'target-arm/kvm64.c')
-rw-r--r-- | target-arm/kvm64.c | 982 |
1 files changed, 0 insertions, 982 deletions
diff --git a/target-arm/kvm64.c b/target-arm/kvm64.c deleted file mode 100644 index 61111091ad..0000000000 --- a/target-arm/kvm64.c +++ /dev/null @@ -1,982 +0,0 @@ -/* - * ARM implementation of KVM hooks, 64 bit specific code - * - * Copyright Mian-M. Hamayun 2013, Virtual Open Systems - * Copyright Alex BennĂ©e 2014, Linaro - * - * This work is licensed under the terms of the GNU GPL, version 2 or later. - * See the COPYING file in the top-level directory. - * - */ - -#include "qemu/osdep.h" -#include <sys/ioctl.h> -#include <sys/ptrace.h> - -#include <linux/elf.h> -#include <linux/kvm.h> - -#include "qemu-common.h" -#include "cpu.h" -#include "qemu/timer.h" -#include "qemu/error-report.h" -#include "qemu/host-utils.h" -#include "exec/gdbstub.h" -#include "sysemu/sysemu.h" -#include "sysemu/kvm.h" -#include "kvm_arm.h" -#include "internals.h" -#include "hw/arm/arm.h" - -static bool have_guest_debug; - -/* - * Although the ARM implementation of hardware assisted debugging - * allows for different breakpoints per-core, the current GDB - * interface treats them as a global pool of registers (which seems to - * be the case for x86, ppc and s390). As a result we store one copy - * of registers which is used for all active cores. - * - * Write access is serialised by virtue of the GDB protocol which - * updates things. Read access (i.e. when the values are copied to the - * vCPU) is also gated by GDB's run control. - * - * This is not unreasonable as most of the time debugging kernels you - * never know which core will eventually execute your function. - */ - -typedef struct { - uint64_t bcr; - uint64_t bvr; -} HWBreakpoint; - -/* The watchpoint registers can cover more area than the requested - * watchpoint so we need to store the additional information - * somewhere. We also need to supply a CPUWatchpoint to the GDB stub - * when the watchpoint is hit. - */ -typedef struct { - uint64_t wcr; - uint64_t wvr; - CPUWatchpoint details; -} HWWatchpoint; - -/* Maximum and current break/watch point counts */ -int max_hw_bps, max_hw_wps; -GArray *hw_breakpoints, *hw_watchpoints; - -#define cur_hw_wps (hw_watchpoints->len) -#define cur_hw_bps (hw_breakpoints->len) -#define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i)) -#define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i)) - -/** - * kvm_arm_init_debug() - check for guest debug capabilities - * @cs: CPUState - * - * kvm_check_extension returns the number of debug registers we have - * or 0 if we have none. - * - */ -static void kvm_arm_init_debug(CPUState *cs) -{ - have_guest_debug = kvm_check_extension(cs->kvm_state, - KVM_CAP_SET_GUEST_DEBUG); - - max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS); - hw_watchpoints = g_array_sized_new(true, true, - sizeof(HWWatchpoint), max_hw_wps); - - max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS); - hw_breakpoints = g_array_sized_new(true, true, - sizeof(HWBreakpoint), max_hw_bps); - return; -} - -/** - * insert_hw_breakpoint() - * @addr: address of breakpoint - * - * See ARM ARM D2.9.1 for details but here we are only going to create - * simple un-linked breakpoints (i.e. we don't chain breakpoints - * together to match address and context or vmid). The hardware is - * capable of fancier matching but that will require exposing that - * fanciness to GDB's interface - * - * D7.3.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers - * - * 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0 - * +------+------+-------+-----+----+------+-----+------+-----+---+ - * | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E | - * +------+------+-------+-----+----+------+-----+------+-----+---+ - * - * BT: Breakpoint type (0 = unlinked address match) - * LBN: Linked BP number (0 = unused) - * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12) - * BAS: Byte Address Select (RES1 for AArch64) - * E: Enable bit - */ -static int insert_hw_breakpoint(target_ulong addr) -{ - HWBreakpoint brk = { - .bcr = 0x1, /* BCR E=1, enable */ - .bvr = addr - }; - - if (cur_hw_bps >= max_hw_bps) { - return -ENOBUFS; - } - - brk.bcr = deposit32(brk.bcr, 1, 2, 0x3); /* PMC = 11 */ - brk.bcr = deposit32(brk.bcr, 5, 4, 0xf); /* BAS = RES1 */ - - g_array_append_val(hw_breakpoints, brk); - - return 0; -} - -/** - * delete_hw_breakpoint() - * @pc: address of breakpoint - * - * Delete a breakpoint and shuffle any above down - */ - -static int delete_hw_breakpoint(target_ulong pc) -{ - int i; - for (i = 0; i < hw_breakpoints->len; i++) { - HWBreakpoint *brk = get_hw_bp(i); - if (brk->bvr == pc) { - g_array_remove_index(hw_breakpoints, i); - return 0; - } - } - return -ENOENT; -} - -/** - * insert_hw_watchpoint() - * @addr: address of watch point - * @len: size of area - * @type: type of watch point - * - * See ARM ARM D2.10. As with the breakpoints we can do some advanced - * stuff if we want to. The watch points can be linked with the break - * points above to make them context aware. However for simplicity - * currently we only deal with simple read/write watch points. - * - * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers - * - * 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0 - * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+ - * | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E | - * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+ - * - * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes)) - * WT: 0 - unlinked, 1 - linked (not currently used) - * LBN: Linked BP number (not currently used) - * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11) - * BAS: Byte Address Select - * LSC: Load/Store control (01: load, 10: store, 11: both) - * E: Enable - * - * The bottom 2 bits of the value register are masked. Therefore to - * break on any sizes smaller than an unaligned word you need to set - * MASK=0, BAS=bit per byte in question. For larger regions (^2) you - * need to ensure you mask the address as required and set BAS=0xff - */ - -static int insert_hw_watchpoint(target_ulong addr, - target_ulong len, int type) -{ - HWWatchpoint wp = { - .wcr = 1, /* E=1, enable */ - .wvr = addr & (~0x7ULL), - .details = { .vaddr = addr, .len = len } - }; - - if (cur_hw_wps >= max_hw_wps) { - return -ENOBUFS; - } - - /* - * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state, - * valid whether EL3 is implemented or not - */ - wp.wcr = deposit32(wp.wcr, 1, 2, 3); - - switch (type) { - case GDB_WATCHPOINT_READ: - wp.wcr = deposit32(wp.wcr, 3, 2, 1); - wp.details.flags = BP_MEM_READ; - break; - case GDB_WATCHPOINT_WRITE: - wp.wcr = deposit32(wp.wcr, 3, 2, 2); - wp.details.flags = BP_MEM_WRITE; - break; - case GDB_WATCHPOINT_ACCESS: - wp.wcr = deposit32(wp.wcr, 3, 2, 3); - wp.details.flags = BP_MEM_ACCESS; - break; - default: - g_assert_not_reached(); - break; - } - if (len <= 8) { - /* we align the address and set the bits in BAS */ - int off = addr & 0x7; - int bas = (1 << len) - 1; - - wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas); - } else { - /* For ranges above 8 bytes we need to be a power of 2 */ - if (is_power_of_2(len)) { - int bits = ctz64(len); - - wp.wvr &= ~((1 << bits) - 1); - wp.wcr = deposit32(wp.wcr, 24, 4, bits); - wp.wcr = deposit32(wp.wcr, 5, 8, 0xff); - } else { - return -ENOBUFS; - } - } - - g_array_append_val(hw_watchpoints, wp); - return 0; -} - - -static bool check_watchpoint_in_range(int i, target_ulong addr) -{ - HWWatchpoint *wp = get_hw_wp(i); - uint64_t addr_top, addr_bottom = wp->wvr; - int bas = extract32(wp->wcr, 5, 8); - int mask = extract32(wp->wcr, 24, 4); - - if (mask) { - addr_top = addr_bottom + (1 << mask); - } else { - /* BAS must be contiguous but can offset against the base - * address in DBGWVR */ - addr_bottom = addr_bottom + ctz32(bas); - addr_top = addr_bottom + clo32(bas); - } - - if (addr >= addr_bottom && addr <= addr_top) { - return true; - } - - return false; -} - -/** - * delete_hw_watchpoint() - * @addr: address of breakpoint - * - * Delete a breakpoint and shuffle any above down - */ - -static int delete_hw_watchpoint(target_ulong addr, - target_ulong len, int type) -{ - int i; - for (i = 0; i < cur_hw_wps; i++) { - if (check_watchpoint_in_range(i, addr)) { - g_array_remove_index(hw_watchpoints, i); - return 0; - } - } - return -ENOENT; -} - - -int kvm_arch_insert_hw_breakpoint(target_ulong addr, - target_ulong len, int type) -{ - switch (type) { - case GDB_BREAKPOINT_HW: - return insert_hw_breakpoint(addr); - break; - case GDB_WATCHPOINT_READ: - case GDB_WATCHPOINT_WRITE: - case GDB_WATCHPOINT_ACCESS: - return insert_hw_watchpoint(addr, len, type); - default: - return -ENOSYS; - } -} - -int kvm_arch_remove_hw_breakpoint(target_ulong addr, - target_ulong len, int type) -{ - switch (type) { - case GDB_BREAKPOINT_HW: - return delete_hw_breakpoint(addr); - break; - case GDB_WATCHPOINT_READ: - case GDB_WATCHPOINT_WRITE: - case GDB_WATCHPOINT_ACCESS: - return delete_hw_watchpoint(addr, len, type); - default: - return -ENOSYS; - } -} - - -void kvm_arch_remove_all_hw_breakpoints(void) -{ - if (cur_hw_wps > 0) { - g_array_remove_range(hw_watchpoints, 0, cur_hw_wps); - } - if (cur_hw_bps > 0) { - g_array_remove_range(hw_breakpoints, 0, cur_hw_bps); - } -} - -void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr) -{ - int i; - memset(ptr, 0, sizeof(struct kvm_guest_debug_arch)); - - for (i = 0; i < max_hw_wps; i++) { - HWWatchpoint *wp = get_hw_wp(i); - ptr->dbg_wcr[i] = wp->wcr; - ptr->dbg_wvr[i] = wp->wvr; - } - for (i = 0; i < max_hw_bps; i++) { - HWBreakpoint *bp = get_hw_bp(i); - ptr->dbg_bcr[i] = bp->bcr; - ptr->dbg_bvr[i] = bp->bvr; - } -} - -bool kvm_arm_hw_debug_active(CPUState *cs) -{ - return ((cur_hw_wps > 0) || (cur_hw_bps > 0)); -} - -static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc) -{ - int i; - - for (i = 0; i < cur_hw_bps; i++) { - HWBreakpoint *bp = get_hw_bp(i); - if (bp->bvr == pc) { - return true; - } - } - return false; -} - -static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr) -{ - int i; - - for (i = 0; i < cur_hw_wps; i++) { - if (check_watchpoint_in_range(i, addr)) { - return &get_hw_wp(i)->details; - } - } - return NULL; -} - -static bool kvm_arm_pmu_support_ctrl(CPUState *cs, struct kvm_device_attr *attr) -{ - return kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr) == 0; -} - -int kvm_arm_pmu_create(CPUState *cs, int irq) -{ - int err; - - struct kvm_device_attr attr = { - .group = KVM_ARM_VCPU_PMU_V3_CTRL, - .addr = (intptr_t)&irq, - .attr = KVM_ARM_VCPU_PMU_V3_IRQ, - .flags = 0, - }; - - if (!kvm_arm_pmu_support_ctrl(cs, &attr)) { - return 0; - } - - err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, &attr); - if (err < 0) { - fprintf(stderr, "KVM_SET_DEVICE_ATTR failed: %s\n", - strerror(-err)); - abort(); - } - - attr.group = KVM_ARM_VCPU_PMU_V3_CTRL; - attr.attr = KVM_ARM_VCPU_PMU_V3_INIT; - attr.addr = 0; - attr.flags = 0; - - err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, &attr); - if (err < 0) { - fprintf(stderr, "KVM_SET_DEVICE_ATTR failed: %s\n", - strerror(-err)); - abort(); - } - - return 1; -} - -static inline void set_feature(uint64_t *features, int feature) -{ - *features |= 1ULL << feature; -} - -static inline void unset_feature(uint64_t *features, int feature) -{ - *features &= ~(1ULL << feature); -} - -bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc) -{ - /* Identify the feature bits corresponding to the host CPU, and - * fill out the ARMHostCPUClass fields accordingly. To do this - * we have to create a scratch VM, create a single CPU inside it, - * and then query that CPU for the relevant ID registers. - * For AArch64 we currently don't care about ID registers at - * all; we just want to know the CPU type. - */ - int fdarray[3]; - uint64_t features = 0; - /* Old kernels may not know about the PREFERRED_TARGET ioctl: however - * we know these will only support creating one kind of guest CPU, - * which is its preferred CPU type. Fortunately these old kernels - * support only a very limited number of CPUs. - */ - static const uint32_t cpus_to_try[] = { - KVM_ARM_TARGET_AEM_V8, - KVM_ARM_TARGET_FOUNDATION_V8, - KVM_ARM_TARGET_CORTEX_A57, - QEMU_KVM_ARM_TARGET_NONE - }; - struct kvm_vcpu_init init; - - if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) { - return false; - } - - ahcc->target = init.target; - ahcc->dtb_compatible = "arm,arm-v8"; - - kvm_arm_destroy_scratch_host_vcpu(fdarray); - - /* We can assume any KVM supporting CPU is at least a v8 - * with VFPv4+Neon; this in turn implies most of the other - * feature bits. - */ - set_feature(&features, ARM_FEATURE_V8); - set_feature(&features, ARM_FEATURE_VFP4); - set_feature(&features, ARM_FEATURE_NEON); - set_feature(&features, ARM_FEATURE_AARCH64); - set_feature(&features, ARM_FEATURE_PMU); - - ahcc->features = features; - - return true; -} - -#define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5 - -int kvm_arch_init_vcpu(CPUState *cs) -{ - int ret; - uint64_t mpidr; - ARMCPU *cpu = ARM_CPU(cs); - CPUARMState *env = &cpu->env; - - if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE || - !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) { - fprintf(stderr, "KVM is not supported for this guest CPU type\n"); - return -EINVAL; - } - - /* Determine init features for this CPU */ - memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features)); - if (cpu->start_powered_off) { - cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF; - } - if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) { - cpu->psci_version = 2; - cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2; - } - if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { - cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT; - } - if (!kvm_irqchip_in_kernel() || - !kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) { - cpu->has_pmu = false; - } - if (cpu->has_pmu) { - cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3; - } else { - unset_feature(&env->features, ARM_FEATURE_PMU); - } - - /* Do KVM_ARM_VCPU_INIT ioctl */ - ret = kvm_arm_vcpu_init(cs); - if (ret) { - return ret; - } - - /* - * When KVM is in use, PSCI is emulated in-kernel and not by qemu. - * Currently KVM has its own idea about MPIDR assignment, so we - * override our defaults with what we get from KVM. - */ - ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr); - if (ret) { - return ret; - } - cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK; - - kvm_arm_init_debug(cs); - - return kvm_arm_init_cpreg_list(cpu); -} - -bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx) -{ - /* Return true if the regidx is a register we should synchronize - * via the cpreg_tuples array (ie is not a core reg we sync by - * hand in kvm_arch_get/put_registers()) - */ - switch (regidx & KVM_REG_ARM_COPROC_MASK) { - case KVM_REG_ARM_CORE: - return false; - default: - return true; - } -} - -typedef struct CPRegStateLevel { - uint64_t regidx; - int level; -} CPRegStateLevel; - -/* All system registers not listed in the following table are assumed to be - * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less - * often, you must add it to this table with a state of either - * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE. - */ -static const CPRegStateLevel non_runtime_cpregs[] = { - { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE }, -}; - -int kvm_arm_cpreg_level(uint64_t regidx) -{ - int i; - - for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) { - const CPRegStateLevel *l = &non_runtime_cpregs[i]; - if (l->regidx == regidx) { - return l->level; - } - } - - return KVM_PUT_RUNTIME_STATE; -} - -#define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \ - KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) - -#define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \ - KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) - -#define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \ - KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) - -int kvm_arch_put_registers(CPUState *cs, int level) -{ - struct kvm_one_reg reg; - uint32_t fpr; - uint64_t val; - int i; - int ret; - unsigned int el; - - ARMCPU *cpu = ARM_CPU(cs); - CPUARMState *env = &cpu->env; - - /* If we are in AArch32 mode then we need to copy the AArch32 regs to the - * AArch64 registers before pushing them out to 64-bit KVM. - */ - if (!is_a64(env)) { - aarch64_sync_32_to_64(env); - } - - for (i = 0; i < 31; i++) { - reg.id = AARCH64_CORE_REG(regs.regs[i]); - reg.addr = (uintptr_t) &env->xregs[i]; - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); - if (ret) { - return ret; - } - } - - /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the - * QEMU side we keep the current SP in xregs[31] as well. - */ - aarch64_save_sp(env, 1); - - reg.id = AARCH64_CORE_REG(regs.sp); - reg.addr = (uintptr_t) &env->sp_el[0]; - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); - if (ret) { - return ret; - } - - reg.id = AARCH64_CORE_REG(sp_el1); - reg.addr = (uintptr_t) &env->sp_el[1]; - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); - if (ret) { - return ret; - } - - /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */ - if (is_a64(env)) { - val = pstate_read(env); - } else { - val = cpsr_read(env); - } - reg.id = AARCH64_CORE_REG(regs.pstate); - reg.addr = (uintptr_t) &val; - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); - if (ret) { - return ret; - } - - reg.id = AARCH64_CORE_REG(regs.pc); - reg.addr = (uintptr_t) &env->pc; - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); - if (ret) { - return ret; - } - - reg.id = AARCH64_CORE_REG(elr_el1); - reg.addr = (uintptr_t) &env->elr_el[1]; - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); - if (ret) { - return ret; - } - - /* Saved Program State Registers - * - * Before we restore from the banked_spsr[] array we need to - * ensure that any modifications to env->spsr are correctly - * reflected in the banks. - */ - el = arm_current_el(env); - if (el > 0 && !is_a64(env)) { - i = bank_number(env->uncached_cpsr & CPSR_M); - env->banked_spsr[i] = env->spsr; - } - - /* KVM 0-4 map to QEMU banks 1-5 */ - for (i = 0; i < KVM_NR_SPSR; i++) { - reg.id = AARCH64_CORE_REG(spsr[i]); - reg.addr = (uintptr_t) &env->banked_spsr[i + 1]; - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); - if (ret) { - return ret; - } - } - - /* Advanced SIMD and FP registers - * We map Qn = regs[2n+1]:regs[2n] - */ - for (i = 0; i < 32; i++) { - int rd = i << 1; - uint64_t fp_val[2]; -#ifdef HOST_WORDS_BIGENDIAN - fp_val[0] = env->vfp.regs[rd + 1]; - fp_val[1] = env->vfp.regs[rd]; -#else - fp_val[1] = env->vfp.regs[rd + 1]; - fp_val[0] = env->vfp.regs[rd]; -#endif - reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]); - reg.addr = (uintptr_t)(&fp_val); - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); - if (ret) { - return ret; - } - } - - reg.addr = (uintptr_t)(&fpr); - fpr = vfp_get_fpsr(env); - reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr); - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); - if (ret) { - return ret; - } - - fpr = vfp_get_fpcr(env); - reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr); - ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); - if (ret) { - return ret; - } - - if (!write_list_to_kvmstate(cpu, level)) { - return EINVAL; - } - - kvm_arm_sync_mpstate_to_kvm(cpu); - - return ret; -} - -int kvm_arch_get_registers(CPUState *cs) -{ - struct kvm_one_reg reg; - uint64_t val; - uint32_t fpr; - unsigned int el; - int i; - int ret; - - ARMCPU *cpu = ARM_CPU(cs); - CPUARMState *env = &cpu->env; - - for (i = 0; i < 31; i++) { - reg.id = AARCH64_CORE_REG(regs.regs[i]); - reg.addr = (uintptr_t) &env->xregs[i]; - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); - if (ret) { - return ret; - } - } - - reg.id = AARCH64_CORE_REG(regs.sp); - reg.addr = (uintptr_t) &env->sp_el[0]; - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); - if (ret) { - return ret; - } - - reg.id = AARCH64_CORE_REG(sp_el1); - reg.addr = (uintptr_t) &env->sp_el[1]; - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); - if (ret) { - return ret; - } - - reg.id = AARCH64_CORE_REG(regs.pstate); - reg.addr = (uintptr_t) &val; - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); - if (ret) { - return ret; - } - - env->aarch64 = ((val & PSTATE_nRW) == 0); - if (is_a64(env)) { - pstate_write(env, val); - } else { - cpsr_write(env, val, 0xffffffff, CPSRWriteRaw); - } - - /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the - * QEMU side we keep the current SP in xregs[31] as well. - */ - aarch64_restore_sp(env, 1); - - reg.id = AARCH64_CORE_REG(regs.pc); - reg.addr = (uintptr_t) &env->pc; - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); - if (ret) { - return ret; - } - - /* If we are in AArch32 mode then we need to sync the AArch32 regs with the - * incoming AArch64 regs received from 64-bit KVM. - * We must perform this after all of the registers have been acquired from - * the kernel. - */ - if (!is_a64(env)) { - aarch64_sync_64_to_32(env); - } - - reg.id = AARCH64_CORE_REG(elr_el1); - reg.addr = (uintptr_t) &env->elr_el[1]; - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); - if (ret) { - return ret; - } - - /* Fetch the SPSR registers - * - * KVM SPSRs 0-4 map to QEMU banks 1-5 - */ - for (i = 0; i < KVM_NR_SPSR; i++) { - reg.id = AARCH64_CORE_REG(spsr[i]); - reg.addr = (uintptr_t) &env->banked_spsr[i + 1]; - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); - if (ret) { - return ret; - } - } - - el = arm_current_el(env); - if (el > 0 && !is_a64(env)) { - i = bank_number(env->uncached_cpsr & CPSR_M); - env->spsr = env->banked_spsr[i]; - } - - /* Advanced SIMD and FP registers - * We map Qn = regs[2n+1]:regs[2n] - */ - for (i = 0; i < 32; i++) { - uint64_t fp_val[2]; - reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]); - reg.addr = (uintptr_t)(&fp_val); - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); - if (ret) { - return ret; - } else { - int rd = i << 1; -#ifdef HOST_WORDS_BIGENDIAN - env->vfp.regs[rd + 1] = fp_val[0]; - env->vfp.regs[rd] = fp_val[1]; -#else - env->vfp.regs[rd + 1] = fp_val[1]; - env->vfp.regs[rd] = fp_val[0]; -#endif - } - } - - reg.addr = (uintptr_t)(&fpr); - reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr); - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); - if (ret) { - return ret; - } - vfp_set_fpsr(env, fpr); - - reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr); - ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); - if (ret) { - return ret; - } - vfp_set_fpcr(env, fpr); - - if (!write_kvmstate_to_list(cpu)) { - return EINVAL; - } - /* Note that it's OK to have registers which aren't in CPUState, - * so we can ignore a failure return here. - */ - write_list_to_cpustate(cpu); - - kvm_arm_sync_mpstate_to_qemu(cpu); - - /* TODO: other registers */ - return ret; -} - -/* C6.6.29 BRK instruction */ -static const uint32_t brk_insn = 0xd4200000; - -int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) -{ - if (have_guest_debug) { - if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) || - cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) { - return -EINVAL; - } - return 0; - } else { - error_report("guest debug not supported on this kernel"); - return -EINVAL; - } -} - -int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) -{ - static uint32_t brk; - - if (have_guest_debug) { - if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) || - brk != brk_insn || - cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) { - return -EINVAL; - } - return 0; - } else { - error_report("guest debug not supported on this kernel"); - return -EINVAL; - } -} - -/* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register - * - * To minimise translating between kernel and user-space the kernel - * ABI just provides user-space with the full exception syndrome - * register value to be decoded in QEMU. - */ - -bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit) -{ - int hsr_ec = debug_exit->hsr >> ARM_EL_EC_SHIFT; - ARMCPU *cpu = ARM_CPU(cs); - CPUClass *cc = CPU_GET_CLASS(cs); - CPUARMState *env = &cpu->env; - - /* Ensure PC is synchronised */ - kvm_cpu_synchronize_state(cs); - - switch (hsr_ec) { - case EC_SOFTWARESTEP: - if (cs->singlestep_enabled) { - return true; - } else { - /* - * The kernel should have suppressed the guest's ability to - * single step at this point so something has gone wrong. - */ - error_report("%s: guest single-step while debugging unsupported" - " (%"PRIx64", %"PRIx32")\n", - __func__, env->pc, debug_exit->hsr); - return false; - } - break; - case EC_AA64_BKPT: - if (kvm_find_sw_breakpoint(cs, env->pc)) { - return true; - } - break; - case EC_BREAKPOINT: - if (find_hw_breakpoint(cs, env->pc)) { - return true; - } - break; - case EC_WATCHPOINT: - { - CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far); - if (wp) { - cs->watchpoint_hit = wp; - return true; - } - break; - } - default: - error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")\n", - __func__, debug_exit->hsr, env->pc); - } - - /* If we are not handling the debug exception it must belong to - * the guest. Let's re-use the existing TCG interrupt code to set - * everything up properly. - */ - cs->exception_index = EXCP_BKPT; - env->exception.syndrome = debug_exit->hsr; - env->exception.vaddress = debug_exit->far; - cc->do_interrupt(cs); - - return false; -} |