aboutsummaryrefslogtreecommitdiff
path: root/target-arm/helper-a64.c
diff options
context:
space:
mode:
authorThomas Huth <thuth@redhat.com>2016-10-11 08:56:52 +0200
committerThomas Huth <thuth@redhat.com>2016-12-20 21:52:12 +0100
commitfcf5ef2ab52c621a4617ebbef36bf43b4003f4c0 (patch)
tree2b450d96b01455df8ed908bf8f26ddc388a03380 /target-arm/helper-a64.c
parent82ecffa8c050bf5bbc13329e9b65eac1caa5b55c (diff)
Move target-* CPU file into a target/ folder
We've currently got 18 architectures in QEMU, and thus 18 target-xxx folders in the root folder of the QEMU source tree. More architectures (e.g. RISC-V, AVR) are likely to be included soon, too, so the main folder of the QEMU sources slowly gets quite overcrowded with the target-xxx folders. To disburden the main folder a little bit, let's move the target-xxx folders into a dedicated target/ folder, so that target-xxx/ simply becomes target/xxx/ instead. Acked-by: Laurent Vivier <laurent@vivier.eu> [m68k part] Acked-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> [tricore part] Acked-by: Michael Walle <michael@walle.cc> [lm32 part] Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> [s390x part] Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> [s390x part] Acked-by: Eduardo Habkost <ehabkost@redhat.com> [i386 part] Acked-by: Artyom Tarasenko <atar4qemu@gmail.com> [sparc part] Acked-by: Richard Henderson <rth@twiddle.net> [alpha part] Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa part] Reviewed-by: David Gibson <david@gibson.dropbear.id.au> [ppc part] Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> [cris&microblaze part] Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn> [unicore32 part] Signed-off-by: Thomas Huth <thuth@redhat.com>
Diffstat (limited to 'target-arm/helper-a64.c')
-rw-r--r--target-arm/helper-a64.c559
1 files changed, 0 insertions, 559 deletions
diff --git a/target-arm/helper-a64.c b/target-arm/helper-a64.c
deleted file mode 100644
index 98b97df461..0000000000
--- a/target-arm/helper-a64.c
+++ /dev/null
@@ -1,559 +0,0 @@
-/*
- * AArch64 specific helpers
- *
- * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, see <http://www.gnu.org/licenses/>.
- */
-
-#include "qemu/osdep.h"
-#include "cpu.h"
-#include "exec/gdbstub.h"
-#include "exec/helper-proto.h"
-#include "qemu/host-utils.h"
-#include "qemu/log.h"
-#include "sysemu/sysemu.h"
-#include "qemu/bitops.h"
-#include "internals.h"
-#include "qemu/crc32c.h"
-#include "exec/exec-all.h"
-#include "exec/cpu_ldst.h"
-#include "qemu/int128.h"
-#include "tcg.h"
-#include <zlib.h> /* For crc32 */
-
-/* C2.4.7 Multiply and divide */
-/* special cases for 0 and LLONG_MIN are mandated by the standard */
-uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
-{
- if (den == 0) {
- return 0;
- }
- return num / den;
-}
-
-int64_t HELPER(sdiv64)(int64_t num, int64_t den)
-{
- if (den == 0) {
- return 0;
- }
- if (num == LLONG_MIN && den == -1) {
- return LLONG_MIN;
- }
- return num / den;
-}
-
-uint64_t HELPER(clz64)(uint64_t x)
-{
- return clz64(x);
-}
-
-uint64_t HELPER(cls64)(uint64_t x)
-{
- return clrsb64(x);
-}
-
-uint32_t HELPER(cls32)(uint32_t x)
-{
- return clrsb32(x);
-}
-
-uint32_t HELPER(clz32)(uint32_t x)
-{
- return clz32(x);
-}
-
-uint64_t HELPER(rbit64)(uint64_t x)
-{
- return revbit64(x);
-}
-
-/* Convert a softfloat float_relation_ (as returned by
- * the float*_compare functions) to the correct ARM
- * NZCV flag state.
- */
-static inline uint32_t float_rel_to_flags(int res)
-{
- uint64_t flags;
- switch (res) {
- case float_relation_equal:
- flags = PSTATE_Z | PSTATE_C;
- break;
- case float_relation_less:
- flags = PSTATE_N;
- break;
- case float_relation_greater:
- flags = PSTATE_C;
- break;
- case float_relation_unordered:
- default:
- flags = PSTATE_C | PSTATE_V;
- break;
- }
- return flags;
-}
-
-uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
-{
- return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
-}
-
-uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
-{
- return float_rel_to_flags(float32_compare(x, y, fp_status));
-}
-
-uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
-{
- return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
-}
-
-uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
-{
- return float_rel_to_flags(float64_compare(x, y, fp_status));
-}
-
-float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
-{
- float_status *fpst = fpstp;
-
- a = float32_squash_input_denormal(a, fpst);
- b = float32_squash_input_denormal(b, fpst);
-
- if ((float32_is_zero(a) && float32_is_infinity(b)) ||
- (float32_is_infinity(a) && float32_is_zero(b))) {
- /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
- return make_float32((1U << 30) |
- ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
- }
- return float32_mul(a, b, fpst);
-}
-
-float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
-{
- float_status *fpst = fpstp;
-
- a = float64_squash_input_denormal(a, fpst);
- b = float64_squash_input_denormal(b, fpst);
-
- if ((float64_is_zero(a) && float64_is_infinity(b)) ||
- (float64_is_infinity(a) && float64_is_zero(b))) {
- /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
- return make_float64((1ULL << 62) |
- ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
- }
- return float64_mul(a, b, fpst);
-}
-
-uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices,
- uint32_t rn, uint32_t numregs)
-{
- /* Helper function for SIMD TBL and TBX. We have to do the table
- * lookup part for the 64 bits worth of indices we're passed in.
- * result is the initial results vector (either zeroes for TBL
- * or some guest values for TBX), rn the register number where
- * the table starts, and numregs the number of registers in the table.
- * We return the results of the lookups.
- */
- int shift;
-
- for (shift = 0; shift < 64; shift += 8) {
- int index = extract64(indices, shift, 8);
- if (index < 16 * numregs) {
- /* Convert index (a byte offset into the virtual table
- * which is a series of 128-bit vectors concatenated)
- * into the correct vfp.regs[] element plus a bit offset
- * into that element, bearing in mind that the table
- * can wrap around from V31 to V0.
- */
- int elt = (rn * 2 + (index >> 3)) % 64;
- int bitidx = (index & 7) * 8;
- uint64_t val = extract64(env->vfp.regs[elt], bitidx, 8);
-
- result = deposit64(result, shift, 8, val);
- }
- }
- return result;
-}
-
-/* 64bit/double versions of the neon float compare functions */
-uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
-{
- float_status *fpst = fpstp;
- return -float64_eq_quiet(a, b, fpst);
-}
-
-uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
-{
- float_status *fpst = fpstp;
- return -float64_le(b, a, fpst);
-}
-
-uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
-{
- float_status *fpst = fpstp;
- return -float64_lt(b, a, fpst);
-}
-
-/* Reciprocal step and sqrt step. Note that unlike the A32/T32
- * versions, these do a fully fused multiply-add or
- * multiply-add-and-halve.
- */
-#define float32_two make_float32(0x40000000)
-#define float32_three make_float32(0x40400000)
-#define float32_one_point_five make_float32(0x3fc00000)
-
-#define float64_two make_float64(0x4000000000000000ULL)
-#define float64_three make_float64(0x4008000000000000ULL)
-#define float64_one_point_five make_float64(0x3FF8000000000000ULL)
-
-float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
-{
- float_status *fpst = fpstp;
-
- a = float32_squash_input_denormal(a, fpst);
- b = float32_squash_input_denormal(b, fpst);
-
- a = float32_chs(a);
- if ((float32_is_infinity(a) && float32_is_zero(b)) ||
- (float32_is_infinity(b) && float32_is_zero(a))) {
- return float32_two;
- }
- return float32_muladd(a, b, float32_two, 0, fpst);
-}
-
-float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
-{
- float_status *fpst = fpstp;
-
- a = float64_squash_input_denormal(a, fpst);
- b = float64_squash_input_denormal(b, fpst);
-
- a = float64_chs(a);
- if ((float64_is_infinity(a) && float64_is_zero(b)) ||
- (float64_is_infinity(b) && float64_is_zero(a))) {
- return float64_two;
- }
- return float64_muladd(a, b, float64_two, 0, fpst);
-}
-
-float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
-{
- float_status *fpst = fpstp;
-
- a = float32_squash_input_denormal(a, fpst);
- b = float32_squash_input_denormal(b, fpst);
-
- a = float32_chs(a);
- if ((float32_is_infinity(a) && float32_is_zero(b)) ||
- (float32_is_infinity(b) && float32_is_zero(a))) {
- return float32_one_point_five;
- }
- return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
-}
-
-float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
-{
- float_status *fpst = fpstp;
-
- a = float64_squash_input_denormal(a, fpst);
- b = float64_squash_input_denormal(b, fpst);
-
- a = float64_chs(a);
- if ((float64_is_infinity(a) && float64_is_zero(b)) ||
- (float64_is_infinity(b) && float64_is_zero(a))) {
- return float64_one_point_five;
- }
- return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
-}
-
-/* Pairwise long add: add pairs of adjacent elements into
- * double-width elements in the result (eg _s8 is an 8x8->16 op)
- */
-uint64_t HELPER(neon_addlp_s8)(uint64_t a)
-{
- uint64_t nsignmask = 0x0080008000800080ULL;
- uint64_t wsignmask = 0x8000800080008000ULL;
- uint64_t elementmask = 0x00ff00ff00ff00ffULL;
- uint64_t tmp1, tmp2;
- uint64_t res, signres;
-
- /* Extract odd elements, sign extend each to a 16 bit field */
- tmp1 = a & elementmask;
- tmp1 ^= nsignmask;
- tmp1 |= wsignmask;
- tmp1 = (tmp1 - nsignmask) ^ wsignmask;
- /* Ditto for the even elements */
- tmp2 = (a >> 8) & elementmask;
- tmp2 ^= nsignmask;
- tmp2 |= wsignmask;
- tmp2 = (tmp2 - nsignmask) ^ wsignmask;
-
- /* calculate the result by summing bits 0..14, 16..22, etc,
- * and then adjusting the sign bits 15, 23, etc manually.
- * This ensures the addition can't overflow the 16 bit field.
- */
- signres = (tmp1 ^ tmp2) & wsignmask;
- res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
- res ^= signres;
-
- return res;
-}
-
-uint64_t HELPER(neon_addlp_u8)(uint64_t a)
-{
- uint64_t tmp;
-
- tmp = a & 0x00ff00ff00ff00ffULL;
- tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
- return tmp;
-}
-
-uint64_t HELPER(neon_addlp_s16)(uint64_t a)
-{
- int32_t reslo, reshi;
-
- reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
- reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
-
- return (uint32_t)reslo | (((uint64_t)reshi) << 32);
-}
-
-uint64_t HELPER(neon_addlp_u16)(uint64_t a)
-{
- uint64_t tmp;
-
- tmp = a & 0x0000ffff0000ffffULL;
- tmp += (a >> 16) & 0x0000ffff0000ffffULL;
- return tmp;
-}
-
-/* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
-float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
-{
- float_status *fpst = fpstp;
- uint32_t val32, sbit;
- int32_t exp;
-
- if (float32_is_any_nan(a)) {
- float32 nan = a;
- if (float32_is_signaling_nan(a, fpst)) {
- float_raise(float_flag_invalid, fpst);
- nan = float32_maybe_silence_nan(a, fpst);
- }
- if (fpst->default_nan_mode) {
- nan = float32_default_nan(fpst);
- }
- return nan;
- }
-
- val32 = float32_val(a);
- sbit = 0x80000000ULL & val32;
- exp = extract32(val32, 23, 8);
-
- if (exp == 0) {
- return make_float32(sbit | (0xfe << 23));
- } else {
- return make_float32(sbit | (~exp & 0xff) << 23);
- }
-}
-
-float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
-{
- float_status *fpst = fpstp;
- uint64_t val64, sbit;
- int64_t exp;
-
- if (float64_is_any_nan(a)) {
- float64 nan = a;
- if (float64_is_signaling_nan(a, fpst)) {
- float_raise(float_flag_invalid, fpst);
- nan = float64_maybe_silence_nan(a, fpst);
- }
- if (fpst->default_nan_mode) {
- nan = float64_default_nan(fpst);
- }
- return nan;
- }
-
- val64 = float64_val(a);
- sbit = 0x8000000000000000ULL & val64;
- exp = extract64(float64_val(a), 52, 11);
-
- if (exp == 0) {
- return make_float64(sbit | (0x7feULL << 52));
- } else {
- return make_float64(sbit | (~exp & 0x7ffULL) << 52);
- }
-}
-
-float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
-{
- /* Von Neumann rounding is implemented by using round-to-zero
- * and then setting the LSB of the result if Inexact was raised.
- */
- float32 r;
- float_status *fpst = &env->vfp.fp_status;
- float_status tstat = *fpst;
- int exflags;
-
- set_float_rounding_mode(float_round_to_zero, &tstat);
- set_float_exception_flags(0, &tstat);
- r = float64_to_float32(a, &tstat);
- r = float32_maybe_silence_nan(r, &tstat);
- exflags = get_float_exception_flags(&tstat);
- if (exflags & float_flag_inexact) {
- r = make_float32(float32_val(r) | 1);
- }
- exflags |= get_float_exception_flags(fpst);
- set_float_exception_flags(exflags, fpst);
- return r;
-}
-
-/* 64-bit versions of the CRC helpers. Note that although the operation
- * (and the prototypes of crc32c() and crc32() mean that only the bottom
- * 32 bits of the accumulator and result are used, we pass and return
- * uint64_t for convenience of the generated code. Unlike the 32-bit
- * instruction set versions, val may genuinely have 64 bits of data in it.
- * The upper bytes of val (above the number specified by 'bytes') must have
- * been zeroed out by the caller.
- */
-uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
-{
- uint8_t buf[8];
-
- stq_le_p(buf, val);
-
- /* zlib crc32 converts the accumulator and output to one's complement. */
- return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
-}
-
-uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
-{
- uint8_t buf[8];
-
- stq_le_p(buf, val);
-
- /* Linux crc32c converts the output to one's complement. */
- return crc32c(acc, buf, bytes) ^ 0xffffffff;
-}
-
-/* Returns 0 on success; 1 otherwise. */
-uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr,
- uint64_t new_lo, uint64_t new_hi)
-{
- uintptr_t ra = GETPC();
- Int128 oldv, cmpv, newv;
- bool success;
-
- cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
- newv = int128_make128(new_lo, new_hi);
-
- if (parallel_cpus) {
-#ifndef CONFIG_ATOMIC128
- cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
-#else
- int mem_idx = cpu_mmu_index(env, false);
- TCGMemOpIdx oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
- oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
- success = int128_eq(oldv, cmpv);
-#endif
- } else {
- uint64_t o0, o1;
-
-#ifdef CONFIG_USER_ONLY
- /* ??? Enforce alignment. */
- uint64_t *haddr = g2h(addr);
- o0 = ldq_le_p(haddr + 0);
- o1 = ldq_le_p(haddr + 1);
- oldv = int128_make128(o0, o1);
-
- success = int128_eq(oldv, cmpv);
- if (success) {
- stq_le_p(haddr + 0, int128_getlo(newv));
- stq_le_p(haddr + 1, int128_gethi(newv));
- }
-#else
- int mem_idx = cpu_mmu_index(env, false);
- TCGMemOpIdx oi0 = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
- TCGMemOpIdx oi1 = make_memop_idx(MO_LEQ, mem_idx);
-
- o0 = helper_le_ldq_mmu(env, addr + 0, oi0, ra);
- o1 = helper_le_ldq_mmu(env, addr + 8, oi1, ra);
- oldv = int128_make128(o0, o1);
-
- success = int128_eq(oldv, cmpv);
- if (success) {
- helper_le_stq_mmu(env, addr + 0, int128_getlo(newv), oi1, ra);
- helper_le_stq_mmu(env, addr + 8, int128_gethi(newv), oi1, ra);
- }
-#endif
- }
-
- return !success;
-}
-
-uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr,
- uint64_t new_lo, uint64_t new_hi)
-{
- uintptr_t ra = GETPC();
- Int128 oldv, cmpv, newv;
- bool success;
-
- cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
- newv = int128_make128(new_lo, new_hi);
-
- if (parallel_cpus) {
-#ifndef CONFIG_ATOMIC128
- cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
-#else
- int mem_idx = cpu_mmu_index(env, false);
- TCGMemOpIdx oi = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
- oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
- success = int128_eq(oldv, cmpv);
-#endif
- } else {
- uint64_t o0, o1;
-
-#ifdef CONFIG_USER_ONLY
- /* ??? Enforce alignment. */
- uint64_t *haddr = g2h(addr);
- o1 = ldq_be_p(haddr + 0);
- o0 = ldq_be_p(haddr + 1);
- oldv = int128_make128(o0, o1);
-
- success = int128_eq(oldv, cmpv);
- if (success) {
- stq_be_p(haddr + 0, int128_gethi(newv));
- stq_be_p(haddr + 1, int128_getlo(newv));
- }
-#else
- int mem_idx = cpu_mmu_index(env, false);
- TCGMemOpIdx oi0 = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
- TCGMemOpIdx oi1 = make_memop_idx(MO_BEQ, mem_idx);
-
- o1 = helper_be_ldq_mmu(env, addr + 0, oi0, ra);
- o0 = helper_be_ldq_mmu(env, addr + 8, oi1, ra);
- oldv = int128_make128(o0, o1);
-
- success = int128_eq(oldv, cmpv);
- if (success) {
- helper_be_stq_mmu(env, addr + 0, int128_gethi(newv), oi1, ra);
- helper_be_stq_mmu(env, addr + 8, int128_getlo(newv), oi1, ra);
- }
-#endif
- }
-
- return !success;
-}