diff options
author | Thomas Huth <thuth@redhat.com> | 2016-10-11 08:56:52 +0200 |
---|---|---|
committer | Thomas Huth <thuth@redhat.com> | 2016-12-20 21:52:12 +0100 |
commit | fcf5ef2ab52c621a4617ebbef36bf43b4003f4c0 (patch) | |
tree | 2b450d96b01455df8ed908bf8f26ddc388a03380 /target-arm/helper-a64.c | |
parent | 82ecffa8c050bf5bbc13329e9b65eac1caa5b55c (diff) |
Move target-* CPU file into a target/ folder
We've currently got 18 architectures in QEMU, and thus 18 target-xxx
folders in the root folder of the QEMU source tree. More architectures
(e.g. RISC-V, AVR) are likely to be included soon, too, so the main
folder of the QEMU sources slowly gets quite overcrowded with the
target-xxx folders.
To disburden the main folder a little bit, let's move the target-xxx
folders into a dedicated target/ folder, so that target-xxx/ simply
becomes target/xxx/ instead.
Acked-by: Laurent Vivier <laurent@vivier.eu> [m68k part]
Acked-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> [tricore part]
Acked-by: Michael Walle <michael@walle.cc> [lm32 part]
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> [s390x part]
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> [s390x part]
Acked-by: Eduardo Habkost <ehabkost@redhat.com> [i386 part]
Acked-by: Artyom Tarasenko <atar4qemu@gmail.com> [sparc part]
Acked-by: Richard Henderson <rth@twiddle.net> [alpha part]
Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa part]
Reviewed-by: David Gibson <david@gibson.dropbear.id.au> [ppc part]
Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> [crisµblaze part]
Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn> [unicore32 part]
Signed-off-by: Thomas Huth <thuth@redhat.com>
Diffstat (limited to 'target-arm/helper-a64.c')
-rw-r--r-- | target-arm/helper-a64.c | 559 |
1 files changed, 0 insertions, 559 deletions
diff --git a/target-arm/helper-a64.c b/target-arm/helper-a64.c deleted file mode 100644 index 98b97df461..0000000000 --- a/target-arm/helper-a64.c +++ /dev/null @@ -1,559 +0,0 @@ -/* - * AArch64 specific helpers - * - * Copyright (c) 2013 Alexander Graf <agraf@suse.de> - * - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with this library; if not, see <http://www.gnu.org/licenses/>. - */ - -#include "qemu/osdep.h" -#include "cpu.h" -#include "exec/gdbstub.h" -#include "exec/helper-proto.h" -#include "qemu/host-utils.h" -#include "qemu/log.h" -#include "sysemu/sysemu.h" -#include "qemu/bitops.h" -#include "internals.h" -#include "qemu/crc32c.h" -#include "exec/exec-all.h" -#include "exec/cpu_ldst.h" -#include "qemu/int128.h" -#include "tcg.h" -#include <zlib.h> /* For crc32 */ - -/* C2.4.7 Multiply and divide */ -/* special cases for 0 and LLONG_MIN are mandated by the standard */ -uint64_t HELPER(udiv64)(uint64_t num, uint64_t den) -{ - if (den == 0) { - return 0; - } - return num / den; -} - -int64_t HELPER(sdiv64)(int64_t num, int64_t den) -{ - if (den == 0) { - return 0; - } - if (num == LLONG_MIN && den == -1) { - return LLONG_MIN; - } - return num / den; -} - -uint64_t HELPER(clz64)(uint64_t x) -{ - return clz64(x); -} - -uint64_t HELPER(cls64)(uint64_t x) -{ - return clrsb64(x); -} - -uint32_t HELPER(cls32)(uint32_t x) -{ - return clrsb32(x); -} - -uint32_t HELPER(clz32)(uint32_t x) -{ - return clz32(x); -} - -uint64_t HELPER(rbit64)(uint64_t x) -{ - return revbit64(x); -} - -/* Convert a softfloat float_relation_ (as returned by - * the float*_compare functions) to the correct ARM - * NZCV flag state. - */ -static inline uint32_t float_rel_to_flags(int res) -{ - uint64_t flags; - switch (res) { - case float_relation_equal: - flags = PSTATE_Z | PSTATE_C; - break; - case float_relation_less: - flags = PSTATE_N; - break; - case float_relation_greater: - flags = PSTATE_C; - break; - case float_relation_unordered: - default: - flags = PSTATE_C | PSTATE_V; - break; - } - return flags; -} - -uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status) -{ - return float_rel_to_flags(float32_compare_quiet(x, y, fp_status)); -} - -uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status) -{ - return float_rel_to_flags(float32_compare(x, y, fp_status)); -} - -uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status) -{ - return float_rel_to_flags(float64_compare_quiet(x, y, fp_status)); -} - -uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status) -{ - return float_rel_to_flags(float64_compare(x, y, fp_status)); -} - -float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp) -{ - float_status *fpst = fpstp; - - a = float32_squash_input_denormal(a, fpst); - b = float32_squash_input_denormal(b, fpst); - - if ((float32_is_zero(a) && float32_is_infinity(b)) || - (float32_is_infinity(a) && float32_is_zero(b))) { - /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ - return make_float32((1U << 30) | - ((float32_val(a) ^ float32_val(b)) & (1U << 31))); - } - return float32_mul(a, b, fpst); -} - -float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp) -{ - float_status *fpst = fpstp; - - a = float64_squash_input_denormal(a, fpst); - b = float64_squash_input_denormal(b, fpst); - - if ((float64_is_zero(a) && float64_is_infinity(b)) || - (float64_is_infinity(a) && float64_is_zero(b))) { - /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ - return make_float64((1ULL << 62) | - ((float64_val(a) ^ float64_val(b)) & (1ULL << 63))); - } - return float64_mul(a, b, fpst); -} - -uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices, - uint32_t rn, uint32_t numregs) -{ - /* Helper function for SIMD TBL and TBX. We have to do the table - * lookup part for the 64 bits worth of indices we're passed in. - * result is the initial results vector (either zeroes for TBL - * or some guest values for TBX), rn the register number where - * the table starts, and numregs the number of registers in the table. - * We return the results of the lookups. - */ - int shift; - - for (shift = 0; shift < 64; shift += 8) { - int index = extract64(indices, shift, 8); - if (index < 16 * numregs) { - /* Convert index (a byte offset into the virtual table - * which is a series of 128-bit vectors concatenated) - * into the correct vfp.regs[] element plus a bit offset - * into that element, bearing in mind that the table - * can wrap around from V31 to V0. - */ - int elt = (rn * 2 + (index >> 3)) % 64; - int bitidx = (index & 7) * 8; - uint64_t val = extract64(env->vfp.regs[elt], bitidx, 8); - - result = deposit64(result, shift, 8, val); - } - } - return result; -} - -/* 64bit/double versions of the neon float compare functions */ -uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp) -{ - float_status *fpst = fpstp; - return -float64_eq_quiet(a, b, fpst); -} - -uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp) -{ - float_status *fpst = fpstp; - return -float64_le(b, a, fpst); -} - -uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp) -{ - float_status *fpst = fpstp; - return -float64_lt(b, a, fpst); -} - -/* Reciprocal step and sqrt step. Note that unlike the A32/T32 - * versions, these do a fully fused multiply-add or - * multiply-add-and-halve. - */ -#define float32_two make_float32(0x40000000) -#define float32_three make_float32(0x40400000) -#define float32_one_point_five make_float32(0x3fc00000) - -#define float64_two make_float64(0x4000000000000000ULL) -#define float64_three make_float64(0x4008000000000000ULL) -#define float64_one_point_five make_float64(0x3FF8000000000000ULL) - -float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp) -{ - float_status *fpst = fpstp; - - a = float32_squash_input_denormal(a, fpst); - b = float32_squash_input_denormal(b, fpst); - - a = float32_chs(a); - if ((float32_is_infinity(a) && float32_is_zero(b)) || - (float32_is_infinity(b) && float32_is_zero(a))) { - return float32_two; - } - return float32_muladd(a, b, float32_two, 0, fpst); -} - -float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp) -{ - float_status *fpst = fpstp; - - a = float64_squash_input_denormal(a, fpst); - b = float64_squash_input_denormal(b, fpst); - - a = float64_chs(a); - if ((float64_is_infinity(a) && float64_is_zero(b)) || - (float64_is_infinity(b) && float64_is_zero(a))) { - return float64_two; - } - return float64_muladd(a, b, float64_two, 0, fpst); -} - -float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp) -{ - float_status *fpst = fpstp; - - a = float32_squash_input_denormal(a, fpst); - b = float32_squash_input_denormal(b, fpst); - - a = float32_chs(a); - if ((float32_is_infinity(a) && float32_is_zero(b)) || - (float32_is_infinity(b) && float32_is_zero(a))) { - return float32_one_point_five; - } - return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst); -} - -float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp) -{ - float_status *fpst = fpstp; - - a = float64_squash_input_denormal(a, fpst); - b = float64_squash_input_denormal(b, fpst); - - a = float64_chs(a); - if ((float64_is_infinity(a) && float64_is_zero(b)) || - (float64_is_infinity(b) && float64_is_zero(a))) { - return float64_one_point_five; - } - return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst); -} - -/* Pairwise long add: add pairs of adjacent elements into - * double-width elements in the result (eg _s8 is an 8x8->16 op) - */ -uint64_t HELPER(neon_addlp_s8)(uint64_t a) -{ - uint64_t nsignmask = 0x0080008000800080ULL; - uint64_t wsignmask = 0x8000800080008000ULL; - uint64_t elementmask = 0x00ff00ff00ff00ffULL; - uint64_t tmp1, tmp2; - uint64_t res, signres; - - /* Extract odd elements, sign extend each to a 16 bit field */ - tmp1 = a & elementmask; - tmp1 ^= nsignmask; - tmp1 |= wsignmask; - tmp1 = (tmp1 - nsignmask) ^ wsignmask; - /* Ditto for the even elements */ - tmp2 = (a >> 8) & elementmask; - tmp2 ^= nsignmask; - tmp2 |= wsignmask; - tmp2 = (tmp2 - nsignmask) ^ wsignmask; - - /* calculate the result by summing bits 0..14, 16..22, etc, - * and then adjusting the sign bits 15, 23, etc manually. - * This ensures the addition can't overflow the 16 bit field. - */ - signres = (tmp1 ^ tmp2) & wsignmask; - res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask); - res ^= signres; - - return res; -} - -uint64_t HELPER(neon_addlp_u8)(uint64_t a) -{ - uint64_t tmp; - - tmp = a & 0x00ff00ff00ff00ffULL; - tmp += (a >> 8) & 0x00ff00ff00ff00ffULL; - return tmp; -} - -uint64_t HELPER(neon_addlp_s16)(uint64_t a) -{ - int32_t reslo, reshi; - - reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16); - reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48); - - return (uint32_t)reslo | (((uint64_t)reshi) << 32); -} - -uint64_t HELPER(neon_addlp_u16)(uint64_t a) -{ - uint64_t tmp; - - tmp = a & 0x0000ffff0000ffffULL; - tmp += (a >> 16) & 0x0000ffff0000ffffULL; - return tmp; -} - -/* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */ -float32 HELPER(frecpx_f32)(float32 a, void *fpstp) -{ - float_status *fpst = fpstp; - uint32_t val32, sbit; - int32_t exp; - - if (float32_is_any_nan(a)) { - float32 nan = a; - if (float32_is_signaling_nan(a, fpst)) { - float_raise(float_flag_invalid, fpst); - nan = float32_maybe_silence_nan(a, fpst); - } - if (fpst->default_nan_mode) { - nan = float32_default_nan(fpst); - } - return nan; - } - - val32 = float32_val(a); - sbit = 0x80000000ULL & val32; - exp = extract32(val32, 23, 8); - - if (exp == 0) { - return make_float32(sbit | (0xfe << 23)); - } else { - return make_float32(sbit | (~exp & 0xff) << 23); - } -} - -float64 HELPER(frecpx_f64)(float64 a, void *fpstp) -{ - float_status *fpst = fpstp; - uint64_t val64, sbit; - int64_t exp; - - if (float64_is_any_nan(a)) { - float64 nan = a; - if (float64_is_signaling_nan(a, fpst)) { - float_raise(float_flag_invalid, fpst); - nan = float64_maybe_silence_nan(a, fpst); - } - if (fpst->default_nan_mode) { - nan = float64_default_nan(fpst); - } - return nan; - } - - val64 = float64_val(a); - sbit = 0x8000000000000000ULL & val64; - exp = extract64(float64_val(a), 52, 11); - - if (exp == 0) { - return make_float64(sbit | (0x7feULL << 52)); - } else { - return make_float64(sbit | (~exp & 0x7ffULL) << 52); - } -} - -float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env) -{ - /* Von Neumann rounding is implemented by using round-to-zero - * and then setting the LSB of the result if Inexact was raised. - */ - float32 r; - float_status *fpst = &env->vfp.fp_status; - float_status tstat = *fpst; - int exflags; - - set_float_rounding_mode(float_round_to_zero, &tstat); - set_float_exception_flags(0, &tstat); - r = float64_to_float32(a, &tstat); - r = float32_maybe_silence_nan(r, &tstat); - exflags = get_float_exception_flags(&tstat); - if (exflags & float_flag_inexact) { - r = make_float32(float32_val(r) | 1); - } - exflags |= get_float_exception_flags(fpst); - set_float_exception_flags(exflags, fpst); - return r; -} - -/* 64-bit versions of the CRC helpers. Note that although the operation - * (and the prototypes of crc32c() and crc32() mean that only the bottom - * 32 bits of the accumulator and result are used, we pass and return - * uint64_t for convenience of the generated code. Unlike the 32-bit - * instruction set versions, val may genuinely have 64 bits of data in it. - * The upper bytes of val (above the number specified by 'bytes') must have - * been zeroed out by the caller. - */ -uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes) -{ - uint8_t buf[8]; - - stq_le_p(buf, val); - - /* zlib crc32 converts the accumulator and output to one's complement. */ - return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; -} - -uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes) -{ - uint8_t buf[8]; - - stq_le_p(buf, val); - - /* Linux crc32c converts the output to one's complement. */ - return crc32c(acc, buf, bytes) ^ 0xffffffff; -} - -/* Returns 0 on success; 1 otherwise. */ -uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr, - uint64_t new_lo, uint64_t new_hi) -{ - uintptr_t ra = GETPC(); - Int128 oldv, cmpv, newv; - bool success; - - cmpv = int128_make128(env->exclusive_val, env->exclusive_high); - newv = int128_make128(new_lo, new_hi); - - if (parallel_cpus) { -#ifndef CONFIG_ATOMIC128 - cpu_loop_exit_atomic(ENV_GET_CPU(env), ra); -#else - int mem_idx = cpu_mmu_index(env, false); - TCGMemOpIdx oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx); - oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra); - success = int128_eq(oldv, cmpv); -#endif - } else { - uint64_t o0, o1; - -#ifdef CONFIG_USER_ONLY - /* ??? Enforce alignment. */ - uint64_t *haddr = g2h(addr); - o0 = ldq_le_p(haddr + 0); - o1 = ldq_le_p(haddr + 1); - oldv = int128_make128(o0, o1); - - success = int128_eq(oldv, cmpv); - if (success) { - stq_le_p(haddr + 0, int128_getlo(newv)); - stq_le_p(haddr + 1, int128_gethi(newv)); - } -#else - int mem_idx = cpu_mmu_index(env, false); - TCGMemOpIdx oi0 = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx); - TCGMemOpIdx oi1 = make_memop_idx(MO_LEQ, mem_idx); - - o0 = helper_le_ldq_mmu(env, addr + 0, oi0, ra); - o1 = helper_le_ldq_mmu(env, addr + 8, oi1, ra); - oldv = int128_make128(o0, o1); - - success = int128_eq(oldv, cmpv); - if (success) { - helper_le_stq_mmu(env, addr + 0, int128_getlo(newv), oi1, ra); - helper_le_stq_mmu(env, addr + 8, int128_gethi(newv), oi1, ra); - } -#endif - } - - return !success; -} - -uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr, - uint64_t new_lo, uint64_t new_hi) -{ - uintptr_t ra = GETPC(); - Int128 oldv, cmpv, newv; - bool success; - - cmpv = int128_make128(env->exclusive_val, env->exclusive_high); - newv = int128_make128(new_lo, new_hi); - - if (parallel_cpus) { -#ifndef CONFIG_ATOMIC128 - cpu_loop_exit_atomic(ENV_GET_CPU(env), ra); -#else - int mem_idx = cpu_mmu_index(env, false); - TCGMemOpIdx oi = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx); - oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra); - success = int128_eq(oldv, cmpv); -#endif - } else { - uint64_t o0, o1; - -#ifdef CONFIG_USER_ONLY - /* ??? Enforce alignment. */ - uint64_t *haddr = g2h(addr); - o1 = ldq_be_p(haddr + 0); - o0 = ldq_be_p(haddr + 1); - oldv = int128_make128(o0, o1); - - success = int128_eq(oldv, cmpv); - if (success) { - stq_be_p(haddr + 0, int128_gethi(newv)); - stq_be_p(haddr + 1, int128_getlo(newv)); - } -#else - int mem_idx = cpu_mmu_index(env, false); - TCGMemOpIdx oi0 = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx); - TCGMemOpIdx oi1 = make_memop_idx(MO_BEQ, mem_idx); - - o1 = helper_be_ldq_mmu(env, addr + 0, oi0, ra); - o0 = helper_be_ldq_mmu(env, addr + 8, oi1, ra); - oldv = int128_make128(o0, o1); - - success = int128_eq(oldv, cmpv); - if (success) { - helper_be_stq_mmu(env, addr + 0, int128_gethi(newv), oi1, ra); - helper_be_stq_mmu(env, addr + 8, int128_getlo(newv), oi1, ra); - } -#endif - } - - return !success; -} |