diff options
author | Peter Maydell <peter.maydell@linaro.org> | 2020-10-12 22:48:45 +0100 |
---|---|---|
committer | Peter Maydell <peter.maydell@linaro.org> | 2020-10-12 22:48:45 +0100 |
commit | 724c1c8bb350d84c097ab2005aad15e125d06b6c (patch) | |
tree | b55ff4dc3e8012e2624d2aa2d1211684bd425656 /softmmu | |
parent | a0bdf866873467271eff9a92f179ab0f77d735cb (diff) | |
parent | a0c9162c8250e121af438aee5ef93e64ec62dae1 (diff) |
Merge remote-tracking branch 'remotes/bonzini-gitlab/tags/for-upstream' into staging
* qtest documentation improvements (Eduardo, myself)
* libqtest event buffering (Maxim)
* use RCU for list of children of a bus (Maxim)
* move more files to softmmu/ (myself)
* meson.build cleanups, qemu-storage-daemon fix (Philippe)
# gpg: Signature made Mon 12 Oct 2020 16:55:19 BST
# gpg: using RSA key F13338574B662389866C7682BFFBD25F78C7AE83
# gpg: issuer "pbonzini@redhat.com"
# gpg: Good signature from "Paolo Bonzini <bonzini@gnu.org>" [full]
# gpg: aka "Paolo Bonzini <pbonzini@redhat.com>" [full]
# Primary key fingerprint: 46F5 9FBD 57D6 12E7 BFD4 E2F7 7E15 100C CD36 69B1
# Subkey fingerprint: F133 3857 4B66 2389 866C 7682 BFFB D25F 78C7 AE83
* remotes/bonzini-gitlab/tags/for-upstream: (38 commits)
meson: identify more sections of meson.build
scsi/scsi_bus: fix races in REPORT LUNS
virtio-scsi: use scsi_device_get
scsi/scsi_bus: Add scsi_device_get
scsi/scsi-bus: scsi_device_find: don't return unrealized devices
device-core: use atomic_set on .realized property
scsi: switch to bus->check_address
device-core: use RCU for list of children of a bus
device_core: use drain_call_rcu in in qmp_device_add
scsi/scsi_bus: switch search direction in scsi_device_find
qdev: add "check if address free" callback for buses
qemu-iotests, qtest: rewrite test 067 as a qtest
qtest: check that drives are really appearing and disappearing
qtest: switch users back to qtest_qmp_receive
device-plug-test: use qtest_qmp to send the device_del command
qtest: remove qtest_qmp_receive_success
qtest: Reintroduce qtest_qmp_receive with QMP event buffering
qtest: rename qtest_qmp_receive to qtest_qmp_receive_dict
meson.build: Re-enable KVM support for MIPS
build-sys: fix git version from -version
...
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Diffstat (limited to 'softmmu')
-rw-r--r-- | softmmu/bootdevice.c | 429 | ||||
-rw-r--r-- | softmmu/device_tree.c | 579 | ||||
-rw-r--r-- | softmmu/dma-helpers.c | 331 | ||||
-rw-r--r-- | softmmu/meson.build | 11 | ||||
-rw-r--r-- | softmmu/physmem.c | 3711 | ||||
-rw-r--r-- | softmmu/qdev-monitor.c | 1005 | ||||
-rw-r--r-- | softmmu/qemu-seccomp.c | 331 | ||||
-rw-r--r-- | softmmu/qtest.c | 71 | ||||
-rw-r--r-- | softmmu/tpm.c | 265 |
9 files changed, 6725 insertions, 8 deletions
diff --git a/softmmu/bootdevice.c b/softmmu/bootdevice.c new file mode 100644 index 0000000000..add4e3d2d1 --- /dev/null +++ b/softmmu/bootdevice.c @@ -0,0 +1,429 @@ +/* + * QEMU Boot Device Implement + * + * Copyright (c) 2014 HUAWEI TECHNOLOGIES CO., LTD. + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +#include "qemu/osdep.h" +#include "qapi/error.h" +#include "sysemu/sysemu.h" +#include "qapi/visitor.h" +#include "qemu/error-report.h" +#include "sysemu/reset.h" +#include "hw/qdev-core.h" +#include "hw/boards.h" + +typedef struct FWBootEntry FWBootEntry; + +struct FWBootEntry { + QTAILQ_ENTRY(FWBootEntry) link; + int32_t bootindex; + DeviceState *dev; + char *suffix; +}; + +static QTAILQ_HEAD(, FWBootEntry) fw_boot_order = + QTAILQ_HEAD_INITIALIZER(fw_boot_order); +static QEMUBootSetHandler *boot_set_handler; +static void *boot_set_opaque; + +void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque) +{ + boot_set_handler = func; + boot_set_opaque = opaque; +} + +void qemu_boot_set(const char *boot_order, Error **errp) +{ + Error *local_err = NULL; + + if (!boot_set_handler) { + error_setg(errp, "no function defined to set boot device list for" + " this architecture"); + return; + } + + validate_bootdevices(boot_order, &local_err); + if (local_err) { + error_propagate(errp, local_err); + return; + } + + boot_set_handler(boot_set_opaque, boot_order, errp); +} + +void validate_bootdevices(const char *devices, Error **errp) +{ + /* We just do some generic consistency checks */ + const char *p; + int bitmap = 0; + + for (p = devices; *p != '\0'; p++) { + /* Allowed boot devices are: + * a-b: floppy disk drives + * c-f: IDE disk drives + * g-m: machine implementation dependent drives + * n-p: network devices + * It's up to each machine implementation to check if the given boot + * devices match the actual hardware implementation and firmware + * features. + */ + if (*p < 'a' || *p > 'p') { + error_setg(errp, "Invalid boot device '%c'", *p); + return; + } + if (bitmap & (1 << (*p - 'a'))) { + error_setg(errp, "Boot device '%c' was given twice", *p); + return; + } + bitmap |= 1 << (*p - 'a'); + } +} + +void restore_boot_order(void *opaque) +{ + char *normal_boot_order = opaque; + static int first = 1; + + /* Restore boot order and remove ourselves after the first boot */ + if (first) { + first = 0; + return; + } + + if (boot_set_handler) { + qemu_boot_set(normal_boot_order, &error_abort); + } + + qemu_unregister_reset(restore_boot_order, normal_boot_order); + g_free(normal_boot_order); +} + +void check_boot_index(int32_t bootindex, Error **errp) +{ + FWBootEntry *i; + + if (bootindex >= 0) { + QTAILQ_FOREACH(i, &fw_boot_order, link) { + if (i->bootindex == bootindex) { + error_setg(errp, "The bootindex %d has already been used", + bootindex); + return; + } + } + } +} + +void del_boot_device_path(DeviceState *dev, const char *suffix) +{ + FWBootEntry *i; + + if (dev == NULL) { + return; + } + + QTAILQ_FOREACH(i, &fw_boot_order, link) { + if ((!suffix || !g_strcmp0(i->suffix, suffix)) && + i->dev == dev) { + QTAILQ_REMOVE(&fw_boot_order, i, link); + g_free(i->suffix); + g_free(i); + + break; + } + } +} + +void add_boot_device_path(int32_t bootindex, DeviceState *dev, + const char *suffix) +{ + FWBootEntry *node, *i; + + if (bootindex < 0) { + del_boot_device_path(dev, suffix); + return; + } + + assert(dev != NULL || suffix != NULL); + + del_boot_device_path(dev, suffix); + + node = g_malloc0(sizeof(FWBootEntry)); + node->bootindex = bootindex; + node->suffix = g_strdup(suffix); + node->dev = dev; + + QTAILQ_FOREACH(i, &fw_boot_order, link) { + if (i->bootindex == bootindex) { + error_report("Two devices with same boot index %d", bootindex); + exit(1); + } else if (i->bootindex < bootindex) { + continue; + } + QTAILQ_INSERT_BEFORE(i, node, link); + return; + } + QTAILQ_INSERT_TAIL(&fw_boot_order, node, link); +} + +DeviceState *get_boot_device(uint32_t position) +{ + uint32_t counter = 0; + FWBootEntry *i = NULL; + DeviceState *res = NULL; + + if (!QTAILQ_EMPTY(&fw_boot_order)) { + QTAILQ_FOREACH(i, &fw_boot_order, link) { + if (counter == position) { + res = i->dev; + break; + } + counter++; + } + } + return res; +} + +static char *get_boot_device_path(DeviceState *dev, bool ignore_suffixes, + const char *suffix) +{ + char *devpath = NULL, *s = NULL, *d, *bootpath; + + if (dev) { + devpath = qdev_get_fw_dev_path(dev); + assert(devpath); + } + + if (!ignore_suffixes) { + if (dev) { + d = qdev_get_own_fw_dev_path_from_handler(dev->parent_bus, dev); + if (d) { + assert(!suffix); + s = d; + } else { + s = g_strdup(suffix); + } + } else { + s = g_strdup(suffix); + } + } + + bootpath = g_strdup_printf("%s%s", + devpath ? devpath : "", + s ? s : ""); + g_free(devpath); + g_free(s); + + return bootpath; +} + +/* + * This function returns null terminated string that consist of new line + * separated device paths. + * + * memory pointed by "size" is assigned total length of the array in bytes + * + */ +char *get_boot_devices_list(size_t *size) +{ + FWBootEntry *i; + size_t total = 0; + char *list = NULL; + MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); + bool ignore_suffixes = mc->ignore_boot_device_suffixes; + + QTAILQ_FOREACH(i, &fw_boot_order, link) { + char *bootpath; + size_t len; + + bootpath = get_boot_device_path(i->dev, ignore_suffixes, i->suffix); + + if (total) { + list[total-1] = '\n'; + } + len = strlen(bootpath) + 1; + list = g_realloc(list, total + len); + memcpy(&list[total], bootpath, len); + total += len; + g_free(bootpath); + } + + *size = total; + + if (boot_strict && *size > 0) { + list[total-1] = '\n'; + list = g_realloc(list, total + 5); + memcpy(&list[total], "HALT", 5); + *size = total + 5; + } + return list; +} + +typedef struct { + int32_t *bootindex; + const char *suffix; + DeviceState *dev; +} BootIndexProperty; + +static void device_get_bootindex(Object *obj, Visitor *v, const char *name, + void *opaque, Error **errp) +{ + BootIndexProperty *prop = opaque; + visit_type_int32(v, name, prop->bootindex, errp); +} + +static void device_set_bootindex(Object *obj, Visitor *v, const char *name, + void *opaque, Error **errp) +{ + BootIndexProperty *prop = opaque; + int32_t boot_index; + Error *local_err = NULL; + + if (!visit_type_int32(v, name, &boot_index, errp)) { + return; + } + /* check whether bootindex is present in fw_boot_order list */ + check_boot_index(boot_index, &local_err); + if (local_err) { + error_propagate(errp, local_err); + return; + } + /* change bootindex to a new one */ + *prop->bootindex = boot_index; + + add_boot_device_path(*prop->bootindex, prop->dev, prop->suffix); +} + +static void property_release_bootindex(Object *obj, const char *name, + void *opaque) + +{ + BootIndexProperty *prop = opaque; + + del_boot_device_path(prop->dev, prop->suffix); + g_free(prop); +} + +void device_add_bootindex_property(Object *obj, int32_t *bootindex, + const char *name, const char *suffix, + DeviceState *dev) +{ + BootIndexProperty *prop = g_malloc0(sizeof(*prop)); + + prop->bootindex = bootindex; + prop->suffix = suffix; + prop->dev = dev; + + object_property_add(obj, name, "int32", + device_get_bootindex, + device_set_bootindex, + property_release_bootindex, + prop); + + /* initialize devices' bootindex property to -1 */ + object_property_set_int(obj, name, -1, NULL); +} + +typedef struct FWLCHSEntry FWLCHSEntry; + +struct FWLCHSEntry { + QTAILQ_ENTRY(FWLCHSEntry) link; + DeviceState *dev; + char *suffix; + uint32_t lcyls; + uint32_t lheads; + uint32_t lsecs; +}; + +static QTAILQ_HEAD(, FWLCHSEntry) fw_lchs = + QTAILQ_HEAD_INITIALIZER(fw_lchs); + +void add_boot_device_lchs(DeviceState *dev, const char *suffix, + uint32_t lcyls, uint32_t lheads, uint32_t lsecs) +{ + FWLCHSEntry *node; + + if (!lcyls && !lheads && !lsecs) { + return; + } + + assert(dev != NULL || suffix != NULL); + + node = g_malloc0(sizeof(FWLCHSEntry)); + node->suffix = g_strdup(suffix); + node->dev = dev; + node->lcyls = lcyls; + node->lheads = lheads; + node->lsecs = lsecs; + + QTAILQ_INSERT_TAIL(&fw_lchs, node, link); +} + +void del_boot_device_lchs(DeviceState *dev, const char *suffix) +{ + FWLCHSEntry *i; + + if (dev == NULL) { + return; + } + + QTAILQ_FOREACH(i, &fw_lchs, link) { + if ((!suffix || !g_strcmp0(i->suffix, suffix)) && + i->dev == dev) { + QTAILQ_REMOVE(&fw_lchs, i, link); + g_free(i->suffix); + g_free(i); + + break; + } + } +} + +char *get_boot_devices_lchs_list(size_t *size) +{ + FWLCHSEntry *i; + size_t total = 0; + char *list = NULL; + + QTAILQ_FOREACH(i, &fw_lchs, link) { + char *bootpath; + char *chs_string; + size_t len; + + bootpath = get_boot_device_path(i->dev, false, i->suffix); + chs_string = g_strdup_printf("%s %" PRIu32 " %" PRIu32 " %" PRIu32, + bootpath, i->lcyls, i->lheads, i->lsecs); + + if (total) { + list[total - 1] = '\n'; + } + len = strlen(chs_string) + 1; + list = g_realloc(list, total + len); + memcpy(&list[total], chs_string, len); + total += len; + g_free(chs_string); + g_free(bootpath); + } + + *size = total; + + return list; +} diff --git a/softmmu/device_tree.c b/softmmu/device_tree.c new file mode 100644 index 0000000000..b335dae707 --- /dev/null +++ b/softmmu/device_tree.c @@ -0,0 +1,579 @@ +/* + * Functions to help device tree manipulation using libfdt. + * It also provides functions to read entries from device tree proc + * interface. + * + * Copyright 2008 IBM Corporation. + * Authors: Jerone Young <jyoung5@us.ibm.com> + * Hollis Blanchard <hollisb@us.ibm.com> + * + * This work is licensed under the GNU GPL license version 2 or later. + * + */ + +#include "qemu/osdep.h" + +#ifdef CONFIG_LINUX +#include <dirent.h> +#endif + +#include "qapi/error.h" +#include "qemu/error-report.h" +#include "qemu/option.h" +#include "qemu/bswap.h" +#include "sysemu/device_tree.h" +#include "sysemu/sysemu.h" +#include "hw/loader.h" +#include "hw/boards.h" +#include "qemu/config-file.h" + +#include <libfdt.h> + +#define FDT_MAX_SIZE 0x100000 + +void *create_device_tree(int *sizep) +{ + void *fdt; + int ret; + + *sizep = FDT_MAX_SIZE; + fdt = g_malloc0(FDT_MAX_SIZE); + ret = fdt_create(fdt, FDT_MAX_SIZE); + if (ret < 0) { + goto fail; + } + ret = fdt_finish_reservemap(fdt); + if (ret < 0) { + goto fail; + } + ret = fdt_begin_node(fdt, ""); + if (ret < 0) { + goto fail; + } + ret = fdt_end_node(fdt); + if (ret < 0) { + goto fail; + } + ret = fdt_finish(fdt); + if (ret < 0) { + goto fail; + } + ret = fdt_open_into(fdt, fdt, *sizep); + if (ret) { + error_report("Unable to copy device tree in memory"); + exit(1); + } + + return fdt; +fail: + error_report("%s Couldn't create dt: %s", __func__, fdt_strerror(ret)); + exit(1); +} + +void *load_device_tree(const char *filename_path, int *sizep) +{ + int dt_size; + int dt_file_load_size; + int ret; + void *fdt = NULL; + + *sizep = 0; + dt_size = get_image_size(filename_path); + if (dt_size < 0) { + error_report("Unable to get size of device tree file '%s'", + filename_path); + goto fail; + } + if (dt_size > INT_MAX / 2 - 10000) { + error_report("Device tree file '%s' is too large", filename_path); + goto fail; + } + + /* Expand to 2x size to give enough room for manipulation. */ + dt_size += 10000; + dt_size *= 2; + /* First allocate space in qemu for device tree */ + fdt = g_malloc0(dt_size); + + dt_file_load_size = load_image_size(filename_path, fdt, dt_size); + if (dt_file_load_size < 0) { + error_report("Unable to open device tree file '%s'", + filename_path); + goto fail; + } + + ret = fdt_open_into(fdt, fdt, dt_size); + if (ret) { + error_report("Unable to copy device tree in memory"); + goto fail; + } + + /* Check sanity of device tree */ + if (fdt_check_header(fdt)) { + error_report("Device tree file loaded into memory is invalid: %s", + filename_path); + goto fail; + } + *sizep = dt_size; + return fdt; + +fail: + g_free(fdt); + return NULL; +} + +#ifdef CONFIG_LINUX + +#define SYSFS_DT_BASEDIR "/proc/device-tree" + +/** + * read_fstree: this function is inspired from dtc read_fstree + * @fdt: preallocated fdt blob buffer, to be populated + * @dirname: directory to scan under SYSFS_DT_BASEDIR + * the search is recursive and the tree is searched down to the + * leaves (property files). + * + * the function asserts in case of error + */ +static void read_fstree(void *fdt, const char *dirname) +{ + DIR *d; + struct dirent *de; + struct stat st; + const char *root_dir = SYSFS_DT_BASEDIR; + const char *parent_node; + + if (strstr(dirname, root_dir) != dirname) { + error_report("%s: %s must be searched within %s", + __func__, dirname, root_dir); + exit(1); + } + parent_node = &dirname[strlen(SYSFS_DT_BASEDIR)]; + + d = opendir(dirname); + if (!d) { + error_report("%s cannot open %s", __func__, dirname); + exit(1); + } + + while ((de = readdir(d)) != NULL) { + char *tmpnam; + + if (!g_strcmp0(de->d_name, ".") + || !g_strcmp0(de->d_name, "..")) { + continue; + } + + tmpnam = g_strdup_printf("%s/%s", dirname, de->d_name); + + if (lstat(tmpnam, &st) < 0) { + error_report("%s cannot lstat %s", __func__, tmpnam); + exit(1); + } + + if (S_ISREG(st.st_mode)) { + gchar *val; + gsize len; + + if (!g_file_get_contents(tmpnam, &val, &len, NULL)) { + error_report("%s not able to extract info from %s", + __func__, tmpnam); + exit(1); + } + + if (strlen(parent_node) > 0) { + qemu_fdt_setprop(fdt, parent_node, + de->d_name, val, len); + } else { + qemu_fdt_setprop(fdt, "/", de->d_name, val, len); + } + g_free(val); + } else if (S_ISDIR(st.st_mode)) { + char *node_name; + + node_name = g_strdup_printf("%s/%s", + parent_node, de->d_name); + qemu_fdt_add_subnode(fdt, node_name); + g_free(node_name); + read_fstree(fdt, tmpnam); + } + + g_free(tmpnam); + } + + closedir(d); +} + +/* load_device_tree_from_sysfs: extract the dt blob from host sysfs */ +void *load_device_tree_from_sysfs(void) +{ + void *host_fdt; + int host_fdt_size; + + host_fdt = create_device_tree(&host_fdt_size); + read_fstree(host_fdt, SYSFS_DT_BASEDIR); + if (fdt_check_header(host_fdt)) { + error_report("%s host device tree extracted into memory is invalid", + __func__); + exit(1); + } + return host_fdt; +} + +#endif /* CONFIG_LINUX */ + +static int findnode_nofail(void *fdt, const char *node_path) +{ + int offset; + + offset = fdt_path_offset(fdt, node_path); + if (offset < 0) { + error_report("%s Couldn't find node %s: %s", __func__, node_path, + fdt_strerror(offset)); + exit(1); + } + + return offset; +} + +char **qemu_fdt_node_unit_path(void *fdt, const char *name, Error **errp) +{ + char *prefix = g_strdup_printf("%s@", name); + unsigned int path_len = 16, n = 0; + GSList *path_list = NULL, *iter; + const char *iter_name; + int offset, len, ret; + char **path_array; + + offset = fdt_next_node(fdt, -1, NULL); + + while (offset >= 0) { + iter_name = fdt_get_name(fdt, offset, &len); + if (!iter_name) { + offset = len; + break; + } + if (!strcmp(iter_name, name) || g_str_has_prefix(iter_name, prefix)) { + char *path; + + path = g_malloc(path_len); + while ((ret = fdt_get_path(fdt, offset, path, path_len)) + == -FDT_ERR_NOSPACE) { + path_len += 16; + path = g_realloc(path, path_len); + } + path_list = g_slist_prepend(path_list, path); + n++; + } + offset = fdt_next_node(fdt, offset, NULL); + } + g_free(prefix); + + if (offset < 0 && offset != -FDT_ERR_NOTFOUND) { + error_setg(errp, "%s: abort parsing dt for %s node units: %s", + __func__, name, fdt_strerror(offset)); + for (iter = path_list; iter; iter = iter->next) { + g_free(iter->data); + } + g_slist_free(path_list); + return NULL; + } + + path_array = g_new(char *, n + 1); + path_array[n--] = NULL; + + for (iter = path_list; iter; iter = iter->next) { + path_array[n--] = iter->data; + } + + g_slist_free(path_list); + + return path_array; +} + +char **qemu_fdt_node_path(void *fdt, const char *name, const char *compat, + Error **errp) +{ + int offset, len, ret; + const char *iter_name; + unsigned int path_len = 16, n = 0; + GSList *path_list = NULL, *iter; + char **path_array; + + offset = fdt_node_offset_by_compatible(fdt, -1, compat); + + while (offset >= 0) { + iter_name = fdt_get_name(fdt, offset, &len); + if (!iter_name) { + offset = len; + break; + } + if (!name || !strcmp(iter_name, name)) { + char *path; + + path = g_malloc(path_len); + while ((ret = fdt_get_path(fdt, offset, path, path_len)) + == -FDT_ERR_NOSPACE) { + path_len += 16; + path = g_realloc(path, path_len); + } + path_list = g_slist_prepend(path_list, path); + n++; + } + offset = fdt_node_offset_by_compatible(fdt, offset, compat); + } + + if (offset < 0 && offset != -FDT_ERR_NOTFOUND) { + error_setg(errp, "%s: abort parsing dt for %s/%s: %s", + __func__, name, compat, fdt_strerror(offset)); + for (iter = path_list; iter; iter = iter->next) { + g_free(iter->data); + } + g_slist_free(path_list); + return NULL; + } + + path_array = g_new(char *, n + 1); + path_array[n--] = NULL; + + for (iter = path_list; iter; iter = iter->next) { + path_array[n--] = iter->data; + } + + g_slist_free(path_list); + + return path_array; +} + +int qemu_fdt_setprop(void *fdt, const char *node_path, + const char *property, const void *val, int size) +{ + int r; + + r = fdt_setprop(fdt, findnode_nofail(fdt, node_path), property, val, size); + if (r < 0) { + error_report("%s: Couldn't set %s/%s: %s", __func__, node_path, + property, fdt_strerror(r)); + exit(1); + } + + return r; +} + +int qemu_fdt_setprop_cell(void *fdt, const char *node_path, + const char *property, uint32_t val) +{ + int r; + + r = fdt_setprop_cell(fdt, findnode_nofail(fdt, node_path), property, val); + if (r < 0) { + error_report("%s: Couldn't set %s/%s = %#08x: %s", __func__, + node_path, property, val, fdt_strerror(r)); + exit(1); + } + + return r; +} + +int qemu_fdt_setprop_u64(void *fdt, const char *node_path, + const char *property, uint64_t val) +{ + val = cpu_to_be64(val); + return qemu_fdt_setprop(fdt, node_path, property, &val, sizeof(val)); +} + +int qemu_fdt_setprop_string(void *fdt, const char *node_path, + const char *property, const char *string) +{ + int r; + + r = fdt_setprop_string(fdt, findnode_nofail(fdt, node_path), property, string); + if (r < 0) { + error_report("%s: Couldn't set %s/%s = %s: %s", __func__, + node_path, property, string, fdt_strerror(r)); + exit(1); + } + + return r; +} + +const void *qemu_fdt_getprop(void *fdt, const char *node_path, + const char *property, int *lenp, Error **errp) +{ + int len; + const void *r; + + if (!lenp) { + lenp = &len; + } + r = fdt_getprop(fdt, findnode_nofail(fdt, node_path), property, lenp); + if (!r) { + error_setg(errp, "%s: Couldn't get %s/%s: %s", __func__, + node_path, property, fdt_strerror(*lenp)); + } + return r; +} + +uint32_t qemu_fdt_getprop_cell(void *fdt, const char *node_path, + const char *property, int *lenp, Error **errp) +{ + int len; + const uint32_t *p; + + if (!lenp) { + lenp = &len; + } + p = qemu_fdt_getprop(fdt, node_path, property, lenp, errp); + if (!p) { + return 0; + } else if (*lenp != 4) { + error_setg(errp, "%s: %s/%s not 4 bytes long (not a cell?)", + __func__, node_path, property); + *lenp = -EINVAL; + return 0; + } + return be32_to_cpu(*p); +} + +uint32_t qemu_fdt_get_phandle(void *fdt, const char *path) +{ + uint32_t r; + + r = fdt_get_phandle(fdt, findnode_nofail(fdt, path)); + if (r == 0) { + error_report("%s: Couldn't get phandle for %s: %s", __func__, + path, fdt_strerror(r)); + exit(1); + } + + return r; +} + +int qemu_fdt_setprop_phandle(void *fdt, const char *node_path, + const char *property, + const char *target_node_path) +{ + uint32_t phandle = qemu_fdt_get_phandle(fdt, target_node_path); + return qemu_fdt_setprop_cell(fdt, node_path, property, phandle); +} + +uint32_t qemu_fdt_alloc_phandle(void *fdt) +{ + static int phandle = 0x0; + + /* + * We need to find out if the user gave us special instruction at + * which phandle id to start allocating phandles. + */ + if (!phandle) { + phandle = machine_phandle_start(current_machine); + } + + if (!phandle) { + /* + * None or invalid phandle given on the command line, so fall back to + * default starting point. + */ + phandle = 0x8000; + } + + return phandle++; +} + +int qemu_fdt_nop_node(void *fdt, const char *node_path) +{ + int r; + + r = fdt_nop_node(fdt, findnode_nofail(fdt, node_path)); + if (r < 0) { + error_report("%s: Couldn't nop node %s: %s", __func__, node_path, + fdt_strerror(r)); + exit(1); + } + + return r; +} + +int qemu_fdt_add_subnode(void *fdt, const char *name) +{ + char *dupname = g_strdup(name); + char *basename = strrchr(dupname, '/'); + int retval; + int parent = 0; + + if (!basename) { + g_free(dupname); + return -1; + } + + basename[0] = '\0'; + basename++; + + if (dupname[0]) { + parent = findnode_nofail(fdt, dupname); + } + + retval = fdt_add_subnode(fdt, parent, basename); + if (retval < 0) { + error_report("FDT: Failed to create subnode %s: %s", name, + fdt_strerror(retval)); + exit(1); + } + + g_free(dupname); + return retval; +} + +void qemu_fdt_dumpdtb(void *fdt, int size) +{ + const char *dumpdtb = qemu_opt_get(qemu_get_machine_opts(), "dumpdtb"); + + if (dumpdtb) { + /* Dump the dtb to a file and quit */ + if (g_file_set_contents(dumpdtb, fdt, size, NULL)) { + info_report("dtb dumped to %s. Exiting.", dumpdtb); + exit(0); + } + error_report("%s: Failed dumping dtb to %s", __func__, dumpdtb); + exit(1); + } +} + +int qemu_fdt_setprop_sized_cells_from_array(void *fdt, + const char *node_path, + const char *property, + int numvalues, + uint64_t *values) +{ + uint32_t *propcells; + uint64_t value; + int cellnum, vnum, ncells; + uint32_t hival; + int ret; + + propcells = g_new0(uint32_t, numvalues * 2); + + cellnum = 0; + for (vnum = 0; vnum < numvalues; vnum++) { + ncells = values[vnum * 2]; + if (ncells != 1 && ncells != 2) { + ret = -1; + goto out; + } + value = values[vnum * 2 + 1]; + hival = cpu_to_be32(value >> 32); + if (ncells > 1) { + propcells[cellnum++] = hival; + } else if (hival != 0) { + ret = -1; + goto out; + } + propcells[cellnum++] = cpu_to_be32(value); + } + + ret = qemu_fdt_setprop(fdt, node_path, property, propcells, + cellnum * sizeof(uint32_t)); +out: + g_free(propcells); + return ret; +} diff --git a/softmmu/dma-helpers.c b/softmmu/dma-helpers.c new file mode 100644 index 0000000000..03c92e0cc6 --- /dev/null +++ b/softmmu/dma-helpers.c @@ -0,0 +1,331 @@ +/* + * DMA helper functions + * + * Copyright (c) 2009 Red Hat + * + * This work is licensed under the terms of the GNU General Public License + * (GNU GPL), version 2 or later. + */ + +#include "qemu/osdep.h" +#include "sysemu/block-backend.h" +#include "sysemu/dma.h" +#include "trace/trace-root.h" +#include "qemu/thread.h" +#include "qemu/main-loop.h" +#include "sysemu/cpu-timers.h" +#include "qemu/range.h" + +/* #define DEBUG_IOMMU */ + +int dma_memory_set(AddressSpace *as, dma_addr_t addr, uint8_t c, dma_addr_t len) +{ + dma_barrier(as, DMA_DIRECTION_FROM_DEVICE); + +#define FILLBUF_SIZE 512 + uint8_t fillbuf[FILLBUF_SIZE]; + int l; + bool error = false; + + memset(fillbuf, c, FILLBUF_SIZE); + while (len > 0) { + l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; + error |= address_space_write(as, addr, MEMTXATTRS_UNSPECIFIED, + fillbuf, l); + len -= l; + addr += l; + } + + return error; +} + +void qemu_sglist_init(QEMUSGList *qsg, DeviceState *dev, int alloc_hint, + AddressSpace *as) +{ + qsg->sg = g_malloc(alloc_hint * sizeof(ScatterGatherEntry)); + qsg->nsg = 0; + qsg->nalloc = alloc_hint; + qsg->size = 0; + qsg->as = as; + qsg->dev = dev; + object_ref(OBJECT(dev)); +} + +void qemu_sglist_add(QEMUSGList *qsg, dma_addr_t base, dma_addr_t len) +{ + if (qsg->nsg == qsg->nalloc) { + qsg->nalloc = 2 * qsg->nalloc + 1; + qsg->sg = g_realloc(qsg->sg, qsg->nalloc * sizeof(ScatterGatherEntry)); + } + qsg->sg[qsg->nsg].base = base; + qsg->sg[qsg->nsg].len = len; + qsg->size += len; + ++qsg->nsg; +} + +void qemu_sglist_destroy(QEMUSGList *qsg) +{ + object_unref(OBJECT(qsg->dev)); + g_free(qsg->sg); + memset(qsg, 0, sizeof(*qsg)); +} + +typedef struct { + BlockAIOCB common; + AioContext *ctx; + BlockAIOCB *acb; + QEMUSGList *sg; + uint32_t align; + uint64_t offset; + DMADirection dir; + int sg_cur_index; + dma_addr_t sg_cur_byte; + QEMUIOVector iov; + QEMUBH *bh; + DMAIOFunc *io_func; + void *io_func_opaque; +} DMAAIOCB; + +static void dma_blk_cb(void *opaque, int ret); + +static void reschedule_dma(void *opaque) +{ + DMAAIOCB *dbs = (DMAAIOCB *)opaque; + + assert(!dbs->acb && dbs->bh); + qemu_bh_delete(dbs->bh); + dbs->bh = NULL; + dma_blk_cb(dbs, 0); +} + +static void dma_blk_unmap(DMAAIOCB *dbs) +{ + int i; + + for (i = 0; i < dbs->iov.niov; ++i) { + dma_memory_unmap(dbs->sg->as, dbs->iov.iov[i].iov_base, + dbs->iov.iov[i].iov_len, dbs->dir, + dbs->iov.iov[i].iov_len); + } + qemu_iovec_reset(&dbs->iov); +} + +static void dma_complete(DMAAIOCB *dbs, int ret) +{ + trace_dma_complete(dbs, ret, dbs->common.cb); + + assert(!dbs->acb && !dbs->bh); + dma_blk_unmap(dbs); + if (dbs->common.cb) { + dbs->common.cb(dbs->common.opaque, ret); + } + qemu_iovec_destroy(&dbs->iov); + qemu_aio_unref(dbs); +} + +static void dma_blk_cb(void *opaque, int ret) +{ + DMAAIOCB *dbs = (DMAAIOCB *)opaque; + dma_addr_t cur_addr, cur_len; + void *mem; + + trace_dma_blk_cb(dbs, ret); + + dbs->acb = NULL; + dbs->offset += dbs->iov.size; + + if (dbs->sg_cur_index == dbs->sg->nsg || ret < 0) { + dma_complete(dbs, ret); + return; + } + dma_blk_unmap(dbs); + + while (dbs->sg_cur_index < dbs->sg->nsg) { + cur_addr = dbs->sg->sg[dbs->sg_cur_index].base + dbs->sg_cur_byte; + cur_len = dbs->sg->sg[dbs->sg_cur_index].len - dbs->sg_cur_byte; + mem = dma_memory_map(dbs->sg->as, cur_addr, &cur_len, dbs->dir); + /* + * Make reads deterministic in icount mode. Windows sometimes issues + * disk read requests with overlapping SGs. It leads + * to non-determinism, because resulting buffer contents may be mixed + * from several sectors. This code splits all SGs into several + * groups. SGs in every group do not overlap. + */ + if (mem && icount_enabled() && dbs->dir == DMA_DIRECTION_FROM_DEVICE) { + int i; + for (i = 0 ; i < dbs->iov.niov ; ++i) { + if (ranges_overlap((intptr_t)dbs->iov.iov[i].iov_base, + dbs->iov.iov[i].iov_len, (intptr_t)mem, + cur_len)) { + dma_memory_unmap(dbs->sg->as, mem, cur_len, + dbs->dir, cur_len); + mem = NULL; + break; + } + } + } + if (!mem) + break; + qemu_iovec_add(&dbs->iov, mem, cur_len); + dbs->sg_cur_byte += cur_len; + if (dbs->sg_cur_byte == dbs->sg->sg[dbs->sg_cur_index].len) { + dbs->sg_cur_byte = 0; + ++dbs->sg_cur_index; + } + } + + if (dbs->iov.size == 0) { + trace_dma_map_wait(dbs); + dbs->bh = aio_bh_new(dbs->ctx, reschedule_dma, dbs); + cpu_register_map_client(dbs->bh); + return; + } + + if (!QEMU_IS_ALIGNED(dbs->iov.size, dbs->align)) { + qemu_iovec_discard_back(&dbs->iov, + QEMU_ALIGN_DOWN(dbs->iov.size, dbs->align)); + } + + aio_context_acquire(dbs->ctx); + dbs->acb = dbs->io_func(dbs->offset, &dbs->iov, + dma_blk_cb, dbs, dbs->io_func_opaque); + aio_context_release(dbs->ctx); + assert(dbs->acb); +} + +static void dma_aio_cancel(BlockAIOCB *acb) +{ + DMAAIOCB *dbs = container_of(acb, DMAAIOCB, common); + + trace_dma_aio_cancel(dbs); + + assert(!(dbs->acb && dbs->bh)); + if (dbs->acb) { + /* This will invoke dma_blk_cb. */ + blk_aio_cancel_async(dbs->acb); + return; + } + + if (dbs->bh) { + cpu_unregister_map_client(dbs->bh); + qemu_bh_delete(dbs->bh); + dbs->bh = NULL; + } + if (dbs->common.cb) { + dbs->common.cb(dbs->common.opaque, -ECANCELED); + } +} + +static AioContext *dma_get_aio_context(BlockAIOCB *acb) +{ + DMAAIOCB *dbs = container_of(acb, DMAAIOCB, common); + + return dbs->ctx; +} + +static const AIOCBInfo dma_aiocb_info = { + .aiocb_size = sizeof(DMAAIOCB), + .cancel_async = dma_aio_cancel, + .get_aio_context = dma_get_aio_context, +}; + +BlockAIOCB *dma_blk_io(AioContext *ctx, + QEMUSGList *sg, uint64_t offset, uint32_t align, + DMAIOFunc *io_func, void *io_func_opaque, + BlockCompletionFunc *cb, + void *opaque, DMADirection dir) +{ + DMAAIOCB *dbs = qemu_aio_get(&dma_aiocb_info, NULL, cb, opaque); + + trace_dma_blk_io(dbs, io_func_opaque, offset, (dir == DMA_DIRECTION_TO_DEVICE)); + + dbs->acb = NULL; + dbs->sg = sg; + dbs->ctx = ctx; + dbs->offset = offset; + dbs->align = align; + dbs->sg_cur_index = 0; + dbs->sg_cur_byte = 0; + dbs->dir = dir; + dbs->io_func = io_func; + dbs->io_func_opaque = io_func_opaque; + dbs->bh = NULL; + qemu_iovec_init(&dbs->iov, sg->nsg); + dma_blk_cb(dbs, 0); + return &dbs->common; +} + + +static +BlockAIOCB *dma_blk_read_io_func(int64_t offset, QEMUIOVector *iov, + BlockCompletionFunc *cb, void *cb_opaque, + void *opaque) +{ + BlockBackend *blk = opaque; + return blk_aio_preadv(blk, offset, iov, 0, cb, cb_opaque); +} + +BlockAIOCB *dma_blk_read(BlockBackend *blk, + QEMUSGList *sg, uint64_t offset, uint32_t align, + void (*cb)(void *opaque, int ret), void *opaque) +{ + return dma_blk_io(blk_get_aio_context(blk), sg, offset, align, + dma_blk_read_io_func, blk, cb, opaque, + DMA_DIRECTION_FROM_DEVICE); +} + +static +BlockAIOCB *dma_blk_write_io_func(int64_t offset, QEMUIOVector *iov, + BlockCompletionFunc *cb, void *cb_opaque, + void *opaque) +{ + BlockBackend *blk = opaque; + return blk_aio_pwritev(blk, offset, iov, 0, cb, cb_opaque); +} + +BlockAIOCB *dma_blk_write(BlockBackend *blk, + QEMUSGList *sg, uint64_t offset, uint32_t align, + void (*cb)(void *opaque, int ret), void *opaque) +{ + return dma_blk_io(blk_get_aio_context(blk), sg, offset, align, + dma_blk_write_io_func, blk, cb, opaque, + DMA_DIRECTION_TO_DEVICE); +} + + +static uint64_t dma_buf_rw(uint8_t *ptr, int32_t len, QEMUSGList *sg, + DMADirection dir) +{ + uint64_t resid; + int sg_cur_index; + + resid = sg->size; + sg_cur_index = 0; + len = MIN(len, resid); + while (len > 0) { + ScatterGatherEntry entry = sg->sg[sg_cur_index++]; + int32_t xfer = MIN(len, entry.len); + dma_memory_rw(sg->as, entry.base, ptr, xfer, dir); + ptr += xfer; + len -= xfer; + resid -= xfer; + } + + return resid; +} + +uint64_t dma_buf_read(uint8_t *ptr, int32_t len, QEMUSGList *sg) +{ + return dma_buf_rw(ptr, len, sg, DMA_DIRECTION_FROM_DEVICE); +} + +uint64_t dma_buf_write(uint8_t *ptr, int32_t len, QEMUSGList *sg) +{ + return dma_buf_rw(ptr, len, sg, DMA_DIRECTION_TO_DEVICE); +} + +void dma_acct_start(BlockBackend *blk, BlockAcctCookie *cookie, + QEMUSGList *sg, enum BlockAcctType type) +{ + block_acct_start(blk_get_stats(blk), cookie, sg->size, type); +} diff --git a/softmmu/meson.build b/softmmu/meson.build index 36c96e7b15..8f7210b4f0 100644 --- a/softmmu/meson.build +++ b/softmmu/meson.build @@ -3,6 +3,7 @@ specific_ss.add(when: 'CONFIG_SOFTMMU', if_true: [files( 'balloon.c', 'cpus.c', 'cpu-throttle.c', + 'physmem.c', 'ioport.c', 'memory.c', 'memory_mapping.c', @@ -14,3 +15,13 @@ specific_ss.add(when: 'CONFIG_SOFTMMU', if_true: [files( specific_ss.add(when: ['CONFIG_SOFTMMU', 'CONFIG_TCG'], if_true: [files( 'icount.c' )]) + +softmmu_ss.add(files( + 'bootdevice.c', + 'dma-helpers.c', + 'qdev-monitor.c', +), sdl, libpmem, libdaxctl) + +softmmu_ss.add(when: 'CONFIG_TPM', if_true: files('tpm.c')) +softmmu_ss.add(when: 'CONFIG_SECCOMP', if_true: [files('qemu-seccomp.c'), seccomp]) +softmmu_ss.add(when: fdt, if_true: files('device_tree.c')) diff --git a/softmmu/physmem.c b/softmmu/physmem.c new file mode 100644 index 0000000000..e319fb2a1e --- /dev/null +++ b/softmmu/physmem.c @@ -0,0 +1,3711 @@ +/* + * RAM allocation and memory access + * + * Copyright (c) 2003 Fabrice Bellard + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +#include "qemu/osdep.h" +#include "qemu-common.h" +#include "qapi/error.h" + +#include "qemu/cutils.h" +#include "cpu.h" +#include "exec/exec-all.h" +#include "exec/target_page.h" +#include "tcg/tcg.h" +#include "hw/qdev-core.h" +#include "hw/qdev-properties.h" +#include "hw/boards.h" +#include "hw/xen/xen.h" +#include "sysemu/kvm.h" +#include "sysemu/sysemu.h" +#include "sysemu/tcg.h" +#include "sysemu/qtest.h" +#include "qemu/timer.h" +#include "qemu/config-file.h" +#include "qemu/error-report.h" +#include "qemu/qemu-print.h" +#include "exec/memory.h" +#include "exec/ioport.h" +#include "sysemu/dma.h" +#include "sysemu/hostmem.h" +#include "sysemu/hw_accel.h" +#include "exec/address-spaces.h" +#include "sysemu/xen-mapcache.h" +#include "trace/trace-root.h" + +#ifdef CONFIG_FALLOCATE_PUNCH_HOLE +#include <linux/falloc.h> +#endif + +#include "qemu/rcu_queue.h" +#include "qemu/main-loop.h" +#include "translate-all.h" +#include "sysemu/replay.h" + +#include "exec/memory-internal.h" +#include "exec/ram_addr.h" +#include "exec/log.h" + +#include "qemu/pmem.h" + +#include "migration/vmstate.h" + +#include "qemu/range.h" +#ifndef _WIN32 +#include "qemu/mmap-alloc.h" +#endif + +#include "monitor/monitor.h" + +#ifdef CONFIG_LIBDAXCTL +#include <daxctl/libdaxctl.h> +#endif + +//#define DEBUG_SUBPAGE + +/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes + * are protected by the ramlist lock. + */ +RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; + +static MemoryRegion *system_memory; +static MemoryRegion *system_io; + +AddressSpace address_space_io; +AddressSpace address_space_memory; + +static MemoryRegion io_mem_unassigned; + +typedef struct PhysPageEntry PhysPageEntry; + +struct PhysPageEntry { + /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ + uint32_t skip : 6; + /* index into phys_sections (!skip) or phys_map_nodes (skip) */ + uint32_t ptr : 26; +}; + +#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) + +/* Size of the L2 (and L3, etc) page tables. */ +#define ADDR_SPACE_BITS 64 + +#define P_L2_BITS 9 +#define P_L2_SIZE (1 << P_L2_BITS) + +#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) + +typedef PhysPageEntry Node[P_L2_SIZE]; + +typedef struct PhysPageMap { + struct rcu_head rcu; + + unsigned sections_nb; + unsigned sections_nb_alloc; + unsigned nodes_nb; + unsigned nodes_nb_alloc; + Node *nodes; + MemoryRegionSection *sections; +} PhysPageMap; + +struct AddressSpaceDispatch { + MemoryRegionSection *mru_section; + /* This is a multi-level map on the physical address space. + * The bottom level has pointers to MemoryRegionSections. + */ + PhysPageEntry phys_map; + PhysPageMap map; +}; + +#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) +typedef struct subpage_t { + MemoryRegion iomem; + FlatView *fv; + hwaddr base; + uint16_t sub_section[]; +} subpage_t; + +#define PHYS_SECTION_UNASSIGNED 0 + +static void io_mem_init(void); +static void memory_map_init(void); +static void tcg_log_global_after_sync(MemoryListener *listener); +static void tcg_commit(MemoryListener *listener); + +/** + * CPUAddressSpace: all the information a CPU needs about an AddressSpace + * @cpu: the CPU whose AddressSpace this is + * @as: the AddressSpace itself + * @memory_dispatch: its dispatch pointer (cached, RCU protected) + * @tcg_as_listener: listener for tracking changes to the AddressSpace + */ +struct CPUAddressSpace { + CPUState *cpu; + AddressSpace *as; + struct AddressSpaceDispatch *memory_dispatch; + MemoryListener tcg_as_listener; +}; + +struct DirtyBitmapSnapshot { + ram_addr_t start; + ram_addr_t end; + unsigned long dirty[]; +}; + +static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) +{ + static unsigned alloc_hint = 16; + if (map->nodes_nb + nodes > map->nodes_nb_alloc) { + map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); + map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); + alloc_hint = map->nodes_nb_alloc; + } +} + +static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) +{ + unsigned i; + uint32_t ret; + PhysPageEntry e; + PhysPageEntry *p; + + ret = map->nodes_nb++; + p = map->nodes[ret]; + assert(ret != PHYS_MAP_NODE_NIL); + assert(ret != map->nodes_nb_alloc); + + e.skip = leaf ? 0 : 1; + e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; + for (i = 0; i < P_L2_SIZE; ++i) { + memcpy(&p[i], &e, sizeof(e)); + } + return ret; +} + +static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, + hwaddr *index, uint64_t *nb, uint16_t leaf, + int level) +{ + PhysPageEntry *p; + hwaddr step = (hwaddr)1 << (level * P_L2_BITS); + + if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { + lp->ptr = phys_map_node_alloc(map, level == 0); + } + p = map->nodes[lp->ptr]; + lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; + + while (*nb && lp < &p[P_L2_SIZE]) { + if ((*index & (step - 1)) == 0 && *nb >= step) { + lp->skip = 0; + lp->ptr = leaf; + *index += step; + *nb -= step; + } else { + phys_page_set_level(map, lp, index, nb, leaf, level - 1); + } + ++lp; + } +} + +static void phys_page_set(AddressSpaceDispatch *d, + hwaddr index, uint64_t nb, + uint16_t leaf) +{ + /* Wildly overreserve - it doesn't matter much. */ + phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); + + phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); +} + +/* Compact a non leaf page entry. Simply detect that the entry has a single child, + * and update our entry so we can skip it and go directly to the destination. + */ +static void phys_page_compact(PhysPageEntry *lp, Node *nodes) +{ + unsigned valid_ptr = P_L2_SIZE; + int valid = 0; + PhysPageEntry *p; + int i; + + if (lp->ptr == PHYS_MAP_NODE_NIL) { + return; + } + + p = nodes[lp->ptr]; + for (i = 0; i < P_L2_SIZE; i++) { + if (p[i].ptr == PHYS_MAP_NODE_NIL) { + continue; + } + + valid_ptr = i; + valid++; + if (p[i].skip) { + phys_page_compact(&p[i], nodes); + } + } + + /* We can only compress if there's only one child. */ + if (valid != 1) { + return; + } + + assert(valid_ptr < P_L2_SIZE); + + /* Don't compress if it won't fit in the # of bits we have. */ + if (P_L2_LEVELS >= (1 << 6) && + lp->skip + p[valid_ptr].skip >= (1 << 6)) { + return; + } + + lp->ptr = p[valid_ptr].ptr; + if (!p[valid_ptr].skip) { + /* If our only child is a leaf, make this a leaf. */ + /* By design, we should have made this node a leaf to begin with so we + * should never reach here. + * But since it's so simple to handle this, let's do it just in case we + * change this rule. + */ + lp->skip = 0; + } else { + lp->skip += p[valid_ptr].skip; + } +} + +void address_space_dispatch_compact(AddressSpaceDispatch *d) +{ + if (d->phys_map.skip) { + phys_page_compact(&d->phys_map, d->map.nodes); + } +} + +static inline bool section_covers_addr(const MemoryRegionSection *section, + hwaddr addr) +{ + /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means + * the section must cover the entire address space. + */ + return int128_gethi(section->size) || + range_covers_byte(section->offset_within_address_space, + int128_getlo(section->size), addr); +} + +static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) +{ + PhysPageEntry lp = d->phys_map, *p; + Node *nodes = d->map.nodes; + MemoryRegionSection *sections = d->map.sections; + hwaddr index = addr >> TARGET_PAGE_BITS; + int i; + + for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { + if (lp.ptr == PHYS_MAP_NODE_NIL) { + return §ions[PHYS_SECTION_UNASSIGNED]; + } + p = nodes[lp.ptr]; + lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; + } + + if (section_covers_addr(§ions[lp.ptr], addr)) { + return §ions[lp.ptr]; + } else { + return §ions[PHYS_SECTION_UNASSIGNED]; + } +} + +/* Called from RCU critical section */ +static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, + hwaddr addr, + bool resolve_subpage) +{ + MemoryRegionSection *section = qatomic_read(&d->mru_section); + subpage_t *subpage; + + if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || + !section_covers_addr(section, addr)) { + section = phys_page_find(d, addr); + qatomic_set(&d->mru_section, section); + } + if (resolve_subpage && section->mr->subpage) { + subpage = container_of(section->mr, subpage_t, iomem); + section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; + } + return section; +} + +/* Called from RCU critical section */ +static MemoryRegionSection * +address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, + hwaddr *plen, bool resolve_subpage) +{ + MemoryRegionSection *section; + MemoryRegion *mr; + Int128 diff; + + section = address_space_lookup_region(d, addr, resolve_subpage); + /* Compute offset within MemoryRegionSection */ + addr -= section->offset_within_address_space; + + /* Compute offset within MemoryRegion */ + *xlat = addr + section->offset_within_region; + + mr = section->mr; + + /* MMIO registers can be expected to perform full-width accesses based only + * on their address, without considering adjacent registers that could + * decode to completely different MemoryRegions. When such registers + * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO + * regions overlap wildly. For this reason we cannot clamp the accesses + * here. + * + * If the length is small (as is the case for address_space_ldl/stl), + * everything works fine. If the incoming length is large, however, + * the caller really has to do the clamping through memory_access_size. + */ + if (memory_region_is_ram(mr)) { + diff = int128_sub(section->size, int128_make64(addr)); + *plen = int128_get64(int128_min(diff, int128_make64(*plen))); + } + return section; +} + +/** + * address_space_translate_iommu - translate an address through an IOMMU + * memory region and then through the target address space. + * + * @iommu_mr: the IOMMU memory region that we start the translation from + * @addr: the address to be translated through the MMU + * @xlat: the translated address offset within the destination memory region. + * It cannot be %NULL. + * @plen_out: valid read/write length of the translated address. It + * cannot be %NULL. + * @page_mask_out: page mask for the translated address. This + * should only be meaningful for IOMMU translated + * addresses, since there may be huge pages that this bit + * would tell. It can be %NULL if we don't care about it. + * @is_write: whether the translation operation is for write + * @is_mmio: whether this can be MMIO, set true if it can + * @target_as: the address space targeted by the IOMMU + * @attrs: transaction attributes + * + * This function is called from RCU critical section. It is the common + * part of flatview_do_translate and address_space_translate_cached. + */ +static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, + hwaddr *xlat, + hwaddr *plen_out, + hwaddr *page_mask_out, + bool is_write, + bool is_mmio, + AddressSpace **target_as, + MemTxAttrs attrs) +{ + MemoryRegionSection *section; + hwaddr page_mask = (hwaddr)-1; + + do { + hwaddr addr = *xlat; + IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); + int iommu_idx = 0; + IOMMUTLBEntry iotlb; + + if (imrc->attrs_to_index) { + iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); + } + + iotlb = imrc->translate(iommu_mr, addr, is_write ? + IOMMU_WO : IOMMU_RO, iommu_idx); + + if (!(iotlb.perm & (1 << is_write))) { + goto unassigned; + } + + addr = ((iotlb.translated_addr & ~iotlb.addr_mask) + | (addr & iotlb.addr_mask)); + page_mask &= iotlb.addr_mask; + *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); + *target_as = iotlb.target_as; + + section = address_space_translate_internal( + address_space_to_dispatch(iotlb.target_as), addr, xlat, + plen_out, is_mmio); + + iommu_mr = memory_region_get_iommu(section->mr); + } while (unlikely(iommu_mr)); + + if (page_mask_out) { + *page_mask_out = page_mask; + } + return *section; + +unassigned: + return (MemoryRegionSection) { .mr = &io_mem_unassigned }; +} + +/** + * flatview_do_translate - translate an address in FlatView + * + * @fv: the flat view that we want to translate on + * @addr: the address to be translated in above address space + * @xlat: the translated address offset within memory region. It + * cannot be @NULL. + * @plen_out: valid read/write length of the translated address. It + * can be @NULL when we don't care about it. + * @page_mask_out: page mask for the translated address. This + * should only be meaningful for IOMMU translated + * addresses, since there may be huge pages that this bit + * would tell. It can be @NULL if we don't care about it. + * @is_write: whether the translation operation is for write + * @is_mmio: whether this can be MMIO, set true if it can + * @target_as: the address space targeted by the IOMMU + * @attrs: memory transaction attributes + * + * This function is called from RCU critical section + */ +static MemoryRegionSection flatview_do_translate(FlatView *fv, + hwaddr addr, + hwaddr *xlat, + hwaddr *plen_out, + hwaddr *page_mask_out, + bool is_write, + bool is_mmio, + AddressSpace **target_as, + MemTxAttrs attrs) +{ + MemoryRegionSection *section; + IOMMUMemoryRegion *iommu_mr; + hwaddr plen = (hwaddr)(-1); + + if (!plen_out) { + plen_out = &plen; + } + + section = address_space_translate_internal( + flatview_to_dispatch(fv), addr, xlat, + plen_out, is_mmio); + + iommu_mr = memory_region_get_iommu(section->mr); + if (unlikely(iommu_mr)) { + return address_space_translate_iommu(iommu_mr, xlat, + plen_out, page_mask_out, + is_write, is_mmio, + target_as, attrs); + } + if (page_mask_out) { + /* Not behind an IOMMU, use default page size. */ + *page_mask_out = ~TARGET_PAGE_MASK; + } + + return *section; +} + +/* Called from RCU critical section */ +IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, + bool is_write, MemTxAttrs attrs) +{ + MemoryRegionSection section; + hwaddr xlat, page_mask; + + /* + * This can never be MMIO, and we don't really care about plen, + * but page mask. + */ + section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, + NULL, &page_mask, is_write, false, &as, + attrs); + + /* Illegal translation */ + if (section.mr == &io_mem_unassigned) { + goto iotlb_fail; + } + + /* Convert memory region offset into address space offset */ + xlat += section.offset_within_address_space - + section.offset_within_region; + + return (IOMMUTLBEntry) { + .target_as = as, + .iova = addr & ~page_mask, + .translated_addr = xlat & ~page_mask, + .addr_mask = page_mask, + /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ + .perm = IOMMU_RW, + }; + +iotlb_fail: + return (IOMMUTLBEntry) {0}; +} + +/* Called from RCU critical section */ +MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, + hwaddr *plen, bool is_write, + MemTxAttrs attrs) +{ + MemoryRegion *mr; + MemoryRegionSection section; + AddressSpace *as = NULL; + + /* This can be MMIO, so setup MMIO bit. */ + section = flatview_do_translate(fv, addr, xlat, plen, NULL, + is_write, true, &as, attrs); + mr = section.mr; + + if (xen_enabled() && memory_access_is_direct(mr, is_write)) { + hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; + *plen = MIN(page, *plen); + } + + return mr; +} + +typedef struct TCGIOMMUNotifier { + IOMMUNotifier n; + MemoryRegion *mr; + CPUState *cpu; + int iommu_idx; + bool active; +} TCGIOMMUNotifier; + +static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) +{ + TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); + + if (!notifier->active) { + return; + } + tlb_flush(notifier->cpu); + notifier->active = false; + /* We leave the notifier struct on the list to avoid reallocating it later. + * Generally the number of IOMMUs a CPU deals with will be small. + * In any case we can't unregister the iommu notifier from a notify + * callback. + */ +} + +static void tcg_register_iommu_notifier(CPUState *cpu, + IOMMUMemoryRegion *iommu_mr, + int iommu_idx) +{ + /* Make sure this CPU has an IOMMU notifier registered for this + * IOMMU/IOMMU index combination, so that we can flush its TLB + * when the IOMMU tells us the mappings we've cached have changed. + */ + MemoryRegion *mr = MEMORY_REGION(iommu_mr); + TCGIOMMUNotifier *notifier; + int i; + + for (i = 0; i < cpu->iommu_notifiers->len; i++) { + notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); + if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { + break; + } + } + if (i == cpu->iommu_notifiers->len) { + /* Not found, add a new entry at the end of the array */ + cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); + notifier = g_new0(TCGIOMMUNotifier, 1); + g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; + + notifier->mr = mr; + notifier->iommu_idx = iommu_idx; + notifier->cpu = cpu; + /* Rather than trying to register interest in the specific part + * of the iommu's address space that we've accessed and then + * expand it later as subsequent accesses touch more of it, we + * just register interest in the whole thing, on the assumption + * that iommu reconfiguration will be rare. + */ + iommu_notifier_init(¬ifier->n, + tcg_iommu_unmap_notify, + IOMMU_NOTIFIER_UNMAP, + 0, + HWADDR_MAX, + iommu_idx); + memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, + &error_fatal); + } + + if (!notifier->active) { + notifier->active = true; + } +} + +void tcg_iommu_free_notifier_list(CPUState *cpu) +{ + /* Destroy the CPU's notifier list */ + int i; + TCGIOMMUNotifier *notifier; + + for (i = 0; i < cpu->iommu_notifiers->len; i++) { + notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); + memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); + g_free(notifier); + } + g_array_free(cpu->iommu_notifiers, true); +} + +void tcg_iommu_init_notifier_list(CPUState *cpu) +{ + cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); +} + +/* Called from RCU critical section */ +MemoryRegionSection * +address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, + hwaddr *xlat, hwaddr *plen, + MemTxAttrs attrs, int *prot) +{ + MemoryRegionSection *section; + IOMMUMemoryRegion *iommu_mr; + IOMMUMemoryRegionClass *imrc; + IOMMUTLBEntry iotlb; + int iommu_idx; + AddressSpaceDispatch *d = + qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); + + for (;;) { + section = address_space_translate_internal(d, addr, &addr, plen, false); + + iommu_mr = memory_region_get_iommu(section->mr); + if (!iommu_mr) { + break; + } + + imrc = memory_region_get_iommu_class_nocheck(iommu_mr); + + iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); + tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); + /* We need all the permissions, so pass IOMMU_NONE so the IOMMU + * doesn't short-cut its translation table walk. + */ + iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); + addr = ((iotlb.translated_addr & ~iotlb.addr_mask) + | (addr & iotlb.addr_mask)); + /* Update the caller's prot bits to remove permissions the IOMMU + * is giving us a failure response for. If we get down to no + * permissions left at all we can give up now. + */ + if (!(iotlb.perm & IOMMU_RO)) { + *prot &= ~(PAGE_READ | PAGE_EXEC); + } + if (!(iotlb.perm & IOMMU_WO)) { + *prot &= ~PAGE_WRITE; + } + + if (!*prot) { + goto translate_fail; + } + + d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); + } + + assert(!memory_region_is_iommu(section->mr)); + *xlat = addr; + return section; + +translate_fail: + return &d->map.sections[PHYS_SECTION_UNASSIGNED]; +} + +void cpu_address_space_init(CPUState *cpu, int asidx, + const char *prefix, MemoryRegion *mr) +{ + CPUAddressSpace *newas; + AddressSpace *as = g_new0(AddressSpace, 1); + char *as_name; + + assert(mr); + as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); + address_space_init(as, mr, as_name); + g_free(as_name); + + /* Target code should have set num_ases before calling us */ + assert(asidx < cpu->num_ases); + + if (asidx == 0) { + /* address space 0 gets the convenience alias */ + cpu->as = as; + } + + /* KVM cannot currently support multiple address spaces. */ + assert(asidx == 0 || !kvm_enabled()); + + if (!cpu->cpu_ases) { + cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); + } + + newas = &cpu->cpu_ases[asidx]; + newas->cpu = cpu; + newas->as = as; + if (tcg_enabled()) { + newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; + newas->tcg_as_listener.commit = tcg_commit; + memory_listener_register(&newas->tcg_as_listener, as); + } +} + +AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) +{ + /* Return the AddressSpace corresponding to the specified index */ + return cpu->cpu_ases[asidx].as; +} + +/* Add a watchpoint. */ +int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, + int flags, CPUWatchpoint **watchpoint) +{ + CPUWatchpoint *wp; + vaddr in_page; + + /* forbid ranges which are empty or run off the end of the address space */ + if (len == 0 || (addr + len - 1) < addr) { + error_report("tried to set invalid watchpoint at %" + VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); + return -EINVAL; + } + wp = g_malloc(sizeof(*wp)); + + wp->vaddr = addr; + wp->len = len; + wp->flags = flags; + + /* keep all GDB-injected watchpoints in front */ + if (flags & BP_GDB) { + QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); + } else { + QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); + } + + in_page = -(addr | TARGET_PAGE_MASK); + if (len <= in_page) { + tlb_flush_page(cpu, addr); + } else { + tlb_flush(cpu); + } + + if (watchpoint) + *watchpoint = wp; + return 0; +} + +/* Remove a specific watchpoint. */ +int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, + int flags) +{ + CPUWatchpoint *wp; + + QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { + if (addr == wp->vaddr && len == wp->len + && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { + cpu_watchpoint_remove_by_ref(cpu, wp); + return 0; + } + } + return -ENOENT; +} + +/* Remove a specific watchpoint by reference. */ +void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) +{ + QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); + + tlb_flush_page(cpu, watchpoint->vaddr); + + g_free(watchpoint); +} + +/* Remove all matching watchpoints. */ +void cpu_watchpoint_remove_all(CPUState *cpu, int mask) +{ + CPUWatchpoint *wp, *next; + + QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { + if (wp->flags & mask) { + cpu_watchpoint_remove_by_ref(cpu, wp); + } + } +} + +/* Return true if this watchpoint address matches the specified + * access (ie the address range covered by the watchpoint overlaps + * partially or completely with the address range covered by the + * access). + */ +static inline bool watchpoint_address_matches(CPUWatchpoint *wp, + vaddr addr, vaddr len) +{ + /* We know the lengths are non-zero, but a little caution is + * required to avoid errors in the case where the range ends + * exactly at the top of the address space and so addr + len + * wraps round to zero. + */ + vaddr wpend = wp->vaddr + wp->len - 1; + vaddr addrend = addr + len - 1; + + return !(addr > wpend || wp->vaddr > addrend); +} + +/* Return flags for watchpoints that match addr + prot. */ +int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len) +{ + CPUWatchpoint *wp; + int ret = 0; + + QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { + if (watchpoint_address_matches(wp, addr, len)) { + ret |= wp->flags; + } + } + return ret; +} + +/* Called from RCU critical section */ +static RAMBlock *qemu_get_ram_block(ram_addr_t addr) +{ + RAMBlock *block; + + block = qatomic_rcu_read(&ram_list.mru_block); + if (block && addr - block->offset < block->max_length) { + return block; + } + RAMBLOCK_FOREACH(block) { + if (addr - block->offset < block->max_length) { + goto found; + } + } + + fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); + abort(); + +found: + /* It is safe to write mru_block outside the iothread lock. This + * is what happens: + * + * mru_block = xxx + * rcu_read_unlock() + * xxx removed from list + * rcu_read_lock() + * read mru_block + * mru_block = NULL; + * call_rcu(reclaim_ramblock, xxx); + * rcu_read_unlock() + * + * qatomic_rcu_set is not needed here. The block was already published + * when it was placed into the list. Here we're just making an extra + * copy of the pointer. + */ + ram_list.mru_block = block; + return block; +} + +static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) +{ + CPUState *cpu; + ram_addr_t start1; + RAMBlock *block; + ram_addr_t end; + + assert(tcg_enabled()); + end = TARGET_PAGE_ALIGN(start + length); + start &= TARGET_PAGE_MASK; + + RCU_READ_LOCK_GUARD(); + block = qemu_get_ram_block(start); + assert(block == qemu_get_ram_block(end - 1)); + start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); + CPU_FOREACH(cpu) { + tlb_reset_dirty(cpu, start1, length); + } +} + +/* Note: start and end must be within the same ram block. */ +bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, + ram_addr_t length, + unsigned client) +{ + DirtyMemoryBlocks *blocks; + unsigned long end, page, start_page; + bool dirty = false; + RAMBlock *ramblock; + uint64_t mr_offset, mr_size; + + if (length == 0) { + return false; + } + + end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; + start_page = start >> TARGET_PAGE_BITS; + page = start_page; + + WITH_RCU_READ_LOCK_GUARD() { + blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); + ramblock = qemu_get_ram_block(start); + /* Range sanity check on the ramblock */ + assert(start >= ramblock->offset && + start + length <= ramblock->offset + ramblock->used_length); + + while (page < end) { + unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; + unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; + unsigned long num = MIN(end - page, + DIRTY_MEMORY_BLOCK_SIZE - offset); + + dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], + offset, num); + page += num; + } + + mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; + mr_size = (end - start_page) << TARGET_PAGE_BITS; + memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); + } + + if (dirty && tcg_enabled()) { + tlb_reset_dirty_range_all(start, length); + } + + return dirty; +} + +DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty + (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) +{ + DirtyMemoryBlocks *blocks; + ram_addr_t start = memory_region_get_ram_addr(mr) + offset; + unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); + ram_addr_t first = QEMU_ALIGN_DOWN(start, align); + ram_addr_t last = QEMU_ALIGN_UP(start + length, align); + DirtyBitmapSnapshot *snap; + unsigned long page, end, dest; + + snap = g_malloc0(sizeof(*snap) + + ((last - first) >> (TARGET_PAGE_BITS + 3))); + snap->start = first; + snap->end = last; + + page = first >> TARGET_PAGE_BITS; + end = last >> TARGET_PAGE_BITS; + dest = 0; + + WITH_RCU_READ_LOCK_GUARD() { + blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); + + while (page < end) { + unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; + unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; + unsigned long num = MIN(end - page, + DIRTY_MEMORY_BLOCK_SIZE - offset); + + assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); + assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); + offset >>= BITS_PER_LEVEL; + + bitmap_copy_and_clear_atomic(snap->dirty + dest, + blocks->blocks[idx] + offset, + num); + page += num; + dest += num >> BITS_PER_LEVEL; + } + } + + if (tcg_enabled()) { + tlb_reset_dirty_range_all(start, length); + } + + memory_region_clear_dirty_bitmap(mr, offset, length); + + return snap; +} + +bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, + ram_addr_t start, + ram_addr_t length) +{ + unsigned long page, end; + + assert(start >= snap->start); + assert(start + length <= snap->end); + + end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; + page = (start - snap->start) >> TARGET_PAGE_BITS; + + while (page < end) { + if (test_bit(page, snap->dirty)) { + return true; + } + page++; + } + return false; +} + +/* Called from RCU critical section */ +hwaddr memory_region_section_get_iotlb(CPUState *cpu, + MemoryRegionSection *section) +{ + AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); + return section - d->map.sections; +} + +static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, + uint16_t section); +static subpage_t *subpage_init(FlatView *fv, hwaddr base); + +static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) = + qemu_anon_ram_alloc; + +/* + * Set a custom physical guest memory alloator. + * Accelerators with unusual needs may need this. Hopefully, we can + * get rid of it eventually. + */ +void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared)) +{ + phys_mem_alloc = alloc; +} + +static uint16_t phys_section_add(PhysPageMap *map, + MemoryRegionSection *section) +{ + /* The physical section number is ORed with a page-aligned + * pointer to produce the iotlb entries. Thus it should + * never overflow into the page-aligned value. + */ + assert(map->sections_nb < TARGET_PAGE_SIZE); + + if (map->sections_nb == map->sections_nb_alloc) { + map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); + map->sections = g_renew(MemoryRegionSection, map->sections, + map->sections_nb_alloc); + } + map->sections[map->sections_nb] = *section; + memory_region_ref(section->mr); + return map->sections_nb++; +} + +static void phys_section_destroy(MemoryRegion *mr) +{ + bool have_sub_page = mr->subpage; + + memory_region_unref(mr); + + if (have_sub_page) { + subpage_t *subpage = container_of(mr, subpage_t, iomem); + object_unref(OBJECT(&subpage->iomem)); + g_free(subpage); + } +} + +static void phys_sections_free(PhysPageMap *map) +{ + while (map->sections_nb > 0) { + MemoryRegionSection *section = &map->sections[--map->sections_nb]; + phys_section_destroy(section->mr); + } + g_free(map->sections); + g_free(map->nodes); +} + +static void register_subpage(FlatView *fv, MemoryRegionSection *section) +{ + AddressSpaceDispatch *d = flatview_to_dispatch(fv); + subpage_t *subpage; + hwaddr base = section->offset_within_address_space + & TARGET_PAGE_MASK; + MemoryRegionSection *existing = phys_page_find(d, base); + MemoryRegionSection subsection = { + .offset_within_address_space = base, + .size = int128_make64(TARGET_PAGE_SIZE), + }; + hwaddr start, end; + + assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); + + if (!(existing->mr->subpage)) { + subpage = subpage_init(fv, base); + subsection.fv = fv; + subsection.mr = &subpage->iomem; + phys_page_set(d, base >> TARGET_PAGE_BITS, 1, + phys_section_add(&d->map, &subsection)); + } else { + subpage = container_of(existing->mr, subpage_t, iomem); + } + start = section->offset_within_address_space & ~TARGET_PAGE_MASK; + end = start + int128_get64(section->size) - 1; + subpage_register(subpage, start, end, + phys_section_add(&d->map, section)); +} + + +static void register_multipage(FlatView *fv, + MemoryRegionSection *section) +{ + AddressSpaceDispatch *d = flatview_to_dispatch(fv); + hwaddr start_addr = section->offset_within_address_space; + uint16_t section_index = phys_section_add(&d->map, section); + uint64_t num_pages = int128_get64(int128_rshift(section->size, + TARGET_PAGE_BITS)); + + assert(num_pages); + phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); +} + +/* + * The range in *section* may look like this: + * + * |s|PPPPPPP|s| + * + * where s stands for subpage and P for page. + */ +void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) +{ + MemoryRegionSection remain = *section; + Int128 page_size = int128_make64(TARGET_PAGE_SIZE); + + /* register first subpage */ + if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { + uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) + - remain.offset_within_address_space; + + MemoryRegionSection now = remain; + now.size = int128_min(int128_make64(left), now.size); + register_subpage(fv, &now); + if (int128_eq(remain.size, now.size)) { + return; + } + remain.size = int128_sub(remain.size, now.size); + remain.offset_within_address_space += int128_get64(now.size); + remain.offset_within_region += int128_get64(now.size); + } + + /* register whole pages */ + if (int128_ge(remain.size, page_size)) { + MemoryRegionSection now = remain; + now.size = int128_and(now.size, int128_neg(page_size)); + register_multipage(fv, &now); + if (int128_eq(remain.size, now.size)) { + return; + } + remain.size = int128_sub(remain.size, now.size); + remain.offset_within_address_space += int128_get64(now.size); + remain.offset_within_region += int128_get64(now.size); + } + + /* register last subpage */ + register_subpage(fv, &remain); +} + +void qemu_flush_coalesced_mmio_buffer(void) +{ + if (kvm_enabled()) + kvm_flush_coalesced_mmio_buffer(); +} + +void qemu_mutex_lock_ramlist(void) +{ + qemu_mutex_lock(&ram_list.mutex); +} + +void qemu_mutex_unlock_ramlist(void) +{ + qemu_mutex_unlock(&ram_list.mutex); +} + +void ram_block_dump(Monitor *mon) +{ + RAMBlock *block; + char *psize; + + RCU_READ_LOCK_GUARD(); + monitor_printf(mon, "%24s %8s %18s %18s %18s\n", + "Block Name", "PSize", "Offset", "Used", "Total"); + RAMBLOCK_FOREACH(block) { + psize = size_to_str(block->page_size); + monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 + " 0x%016" PRIx64 "\n", block->idstr, psize, + (uint64_t)block->offset, + (uint64_t)block->used_length, + (uint64_t)block->max_length); + g_free(psize); + } +} + +#ifdef __linux__ +/* + * FIXME TOCTTOU: this iterates over memory backends' mem-path, which + * may or may not name the same files / on the same filesystem now as + * when we actually open and map them. Iterate over the file + * descriptors instead, and use qemu_fd_getpagesize(). + */ +static int find_min_backend_pagesize(Object *obj, void *opaque) +{ + long *hpsize_min = opaque; + + if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { + HostMemoryBackend *backend = MEMORY_BACKEND(obj); + long hpsize = host_memory_backend_pagesize(backend); + + if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { + *hpsize_min = hpsize; + } + } + + return 0; +} + +static int find_max_backend_pagesize(Object *obj, void *opaque) +{ + long *hpsize_max = opaque; + + if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { + HostMemoryBackend *backend = MEMORY_BACKEND(obj); + long hpsize = host_memory_backend_pagesize(backend); + + if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { + *hpsize_max = hpsize; + } + } + + return 0; +} + +/* + * TODO: We assume right now that all mapped host memory backends are + * used as RAM, however some might be used for different purposes. + */ +long qemu_minrampagesize(void) +{ + long hpsize = LONG_MAX; + Object *memdev_root = object_resolve_path("/objects", NULL); + + object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); + return hpsize; +} + +long qemu_maxrampagesize(void) +{ + long pagesize = 0; + Object *memdev_root = object_resolve_path("/objects", NULL); + + object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); + return pagesize; +} +#else +long qemu_minrampagesize(void) +{ + return qemu_real_host_page_size; +} +long qemu_maxrampagesize(void) +{ + return qemu_real_host_page_size; +} +#endif + +#ifdef CONFIG_POSIX +static int64_t get_file_size(int fd) +{ + int64_t size; +#if defined(__linux__) + struct stat st; + + if (fstat(fd, &st) < 0) { + return -errno; + } + + /* Special handling for devdax character devices */ + if (S_ISCHR(st.st_mode)) { + g_autofree char *subsystem_path = NULL; + g_autofree char *subsystem = NULL; + + subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", + major(st.st_rdev), minor(st.st_rdev)); + subsystem = g_file_read_link(subsystem_path, NULL); + + if (subsystem && g_str_has_suffix(subsystem, "/dax")) { + g_autofree char *size_path = NULL; + g_autofree char *size_str = NULL; + + size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", + major(st.st_rdev), minor(st.st_rdev)); + + if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { + return g_ascii_strtoll(size_str, NULL, 0); + } + } + } +#endif /* defined(__linux__) */ + + /* st.st_size may be zero for special files yet lseek(2) works */ + size = lseek(fd, 0, SEEK_END); + if (size < 0) { + return -errno; + } + return size; +} + +static int64_t get_file_align(int fd) +{ + int64_t align = -1; +#if defined(__linux__) && defined(CONFIG_LIBDAXCTL) + struct stat st; + + if (fstat(fd, &st) < 0) { + return -errno; + } + + /* Special handling for devdax character devices */ + if (S_ISCHR(st.st_mode)) { + g_autofree char *path = NULL; + g_autofree char *rpath = NULL; + struct daxctl_ctx *ctx; + struct daxctl_region *region; + int rc = 0; + + path = g_strdup_printf("/sys/dev/char/%d:%d", + major(st.st_rdev), minor(st.st_rdev)); + rpath = realpath(path, NULL); + + rc = daxctl_new(&ctx); + if (rc) { + return -1; + } + + daxctl_region_foreach(ctx, region) { + if (strstr(rpath, daxctl_region_get_path(region))) { + align = daxctl_region_get_align(region); + break; + } + } + daxctl_unref(ctx); + } +#endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ + + return align; +} + +static int file_ram_open(const char *path, + const char *region_name, + bool *created, + Error **errp) +{ + char *filename; + char *sanitized_name; + char *c; + int fd = -1; + + *created = false; + for (;;) { + fd = open(path, O_RDWR); + if (fd >= 0) { + /* @path names an existing file, use it */ + break; + } + if (errno == ENOENT) { + /* @path names a file that doesn't exist, create it */ + fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); + if (fd >= 0) { + *created = true; + break; + } + } else if (errno == EISDIR) { + /* @path names a directory, create a file there */ + /* Make name safe to use with mkstemp by replacing '/' with '_'. */ + sanitized_name = g_strdup(region_name); + for (c = sanitized_name; *c != '\0'; c++) { + if (*c == '/') { + *c = '_'; + } + } + + filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, + sanitized_name); + g_free(sanitized_name); + + fd = mkstemp(filename); + if (fd >= 0) { + unlink(filename); + g_free(filename); + break; + } + g_free(filename); + } + if (errno != EEXIST && errno != EINTR) { + error_setg_errno(errp, errno, + "can't open backing store %s for guest RAM", + path); + return -1; + } + /* + * Try again on EINTR and EEXIST. The latter happens when + * something else creates the file between our two open(). + */ + } + + return fd; +} + +static void *file_ram_alloc(RAMBlock *block, + ram_addr_t memory, + int fd, + bool truncate, + Error **errp) +{ + void *area; + + block->page_size = qemu_fd_getpagesize(fd); + if (block->mr->align % block->page_size) { + error_setg(errp, "alignment 0x%" PRIx64 + " must be multiples of page size 0x%zx", + block->mr->align, block->page_size); + return NULL; + } else if (block->mr->align && !is_power_of_2(block->mr->align)) { + error_setg(errp, "alignment 0x%" PRIx64 + " must be a power of two", block->mr->align); + return NULL; + } + block->mr->align = MAX(block->page_size, block->mr->align); +#if defined(__s390x__) + if (kvm_enabled()) { + block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); + } +#endif + + if (memory < block->page_size) { + error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " + "or larger than page size 0x%zx", + memory, block->page_size); + return NULL; + } + + memory = ROUND_UP(memory, block->page_size); + + /* + * ftruncate is not supported by hugetlbfs in older + * hosts, so don't bother bailing out on errors. + * If anything goes wrong with it under other filesystems, + * mmap will fail. + * + * Do not truncate the non-empty backend file to avoid corrupting + * the existing data in the file. Disabling shrinking is not + * enough. For example, the current vNVDIMM implementation stores + * the guest NVDIMM labels at the end of the backend file. If the + * backend file is later extended, QEMU will not be able to find + * those labels. Therefore, extending the non-empty backend file + * is disabled as well. + */ + if (truncate && ftruncate(fd, memory)) { + perror("ftruncate"); + } + + area = qemu_ram_mmap(fd, memory, block->mr->align, + block->flags & RAM_SHARED, block->flags & RAM_PMEM); + if (area == MAP_FAILED) { + error_setg_errno(errp, errno, + "unable to map backing store for guest RAM"); + return NULL; + } + + block->fd = fd; + return area; +} +#endif + +/* Allocate space within the ram_addr_t space that governs the + * dirty bitmaps. + * Called with the ramlist lock held. + */ +static ram_addr_t find_ram_offset(ram_addr_t size) +{ + RAMBlock *block, *next_block; + ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; + + assert(size != 0); /* it would hand out same offset multiple times */ + + if (QLIST_EMPTY_RCU(&ram_list.blocks)) { + return 0; + } + + RAMBLOCK_FOREACH(block) { + ram_addr_t candidate, next = RAM_ADDR_MAX; + + /* Align blocks to start on a 'long' in the bitmap + * which makes the bitmap sync'ing take the fast path. + */ + candidate = block->offset + block->max_length; + candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); + + /* Search for the closest following block + * and find the gap. + */ + RAMBLOCK_FOREACH(next_block) { + if (next_block->offset >= candidate) { + next = MIN(next, next_block->offset); + } + } + + /* If it fits remember our place and remember the size + * of gap, but keep going so that we might find a smaller + * gap to fill so avoiding fragmentation. + */ + if (next - candidate >= size && next - candidate < mingap) { + offset = candidate; + mingap = next - candidate; + } + + trace_find_ram_offset_loop(size, candidate, offset, next, mingap); + } + + if (offset == RAM_ADDR_MAX) { + fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", + (uint64_t)size); + abort(); + } + + trace_find_ram_offset(size, offset); + + return offset; +} + +static unsigned long last_ram_page(void) +{ + RAMBlock *block; + ram_addr_t last = 0; + + RCU_READ_LOCK_GUARD(); + RAMBLOCK_FOREACH(block) { + last = MAX(last, block->offset + block->max_length); + } + return last >> TARGET_PAGE_BITS; +} + +static void qemu_ram_setup_dump(void *addr, ram_addr_t size) +{ + int ret; + + /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ + if (!machine_dump_guest_core(current_machine)) { + ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); + if (ret) { + perror("qemu_madvise"); + fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " + "but dump_guest_core=off specified\n"); + } + } +} + +const char *qemu_ram_get_idstr(RAMBlock *rb) +{ + return rb->idstr; +} + +void *qemu_ram_get_host_addr(RAMBlock *rb) +{ + return rb->host; +} + +ram_addr_t qemu_ram_get_offset(RAMBlock *rb) +{ + return rb->offset; +} + +ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) +{ + return rb->used_length; +} + +bool qemu_ram_is_shared(RAMBlock *rb) +{ + return rb->flags & RAM_SHARED; +} + +/* Note: Only set at the start of postcopy */ +bool qemu_ram_is_uf_zeroable(RAMBlock *rb) +{ + return rb->flags & RAM_UF_ZEROPAGE; +} + +void qemu_ram_set_uf_zeroable(RAMBlock *rb) +{ + rb->flags |= RAM_UF_ZEROPAGE; +} + +bool qemu_ram_is_migratable(RAMBlock *rb) +{ + return rb->flags & RAM_MIGRATABLE; +} + +void qemu_ram_set_migratable(RAMBlock *rb) +{ + rb->flags |= RAM_MIGRATABLE; +} + +void qemu_ram_unset_migratable(RAMBlock *rb) +{ + rb->flags &= ~RAM_MIGRATABLE; +} + +/* Called with iothread lock held. */ +void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) +{ + RAMBlock *block; + + assert(new_block); + assert(!new_block->idstr[0]); + + if (dev) { + char *id = qdev_get_dev_path(dev); + if (id) { + snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); + g_free(id); + } + } + pstrcat(new_block->idstr, sizeof(new_block->idstr), name); + + RCU_READ_LOCK_GUARD(); + RAMBLOCK_FOREACH(block) { + if (block != new_block && + !strcmp(block->idstr, new_block->idstr)) { + fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", + new_block->idstr); + abort(); + } + } +} + +/* Called with iothread lock held. */ +void qemu_ram_unset_idstr(RAMBlock *block) +{ + /* FIXME: arch_init.c assumes that this is not called throughout + * migration. Ignore the problem since hot-unplug during migration + * does not work anyway. + */ + if (block) { + memset(block->idstr, 0, sizeof(block->idstr)); + } +} + +size_t qemu_ram_pagesize(RAMBlock *rb) +{ + return rb->page_size; +} + +/* Returns the largest size of page in use */ +size_t qemu_ram_pagesize_largest(void) +{ + RAMBlock *block; + size_t largest = 0; + + RAMBLOCK_FOREACH(block) { + largest = MAX(largest, qemu_ram_pagesize(block)); + } + + return largest; +} + +static int memory_try_enable_merging(void *addr, size_t len) +{ + if (!machine_mem_merge(current_machine)) { + /* disabled by the user */ + return 0; + } + + return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); +} + +/* Only legal before guest might have detected the memory size: e.g. on + * incoming migration, or right after reset. + * + * As memory core doesn't know how is memory accessed, it is up to + * resize callback to update device state and/or add assertions to detect + * misuse, if necessary. + */ +int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) +{ + const ram_addr_t unaligned_size = newsize; + + assert(block); + + newsize = HOST_PAGE_ALIGN(newsize); + + if (block->used_length == newsize) { + /* + * We don't have to resize the ram block (which only knows aligned + * sizes), however, we have to notify if the unaligned size changed. + */ + if (unaligned_size != memory_region_size(block->mr)) { + memory_region_set_size(block->mr, unaligned_size); + if (block->resized) { + block->resized(block->idstr, unaligned_size, block->host); + } + } + return 0; + } + + if (!(block->flags & RAM_RESIZEABLE)) { + error_setg_errno(errp, EINVAL, + "Length mismatch: %s: 0x" RAM_ADDR_FMT + " in != 0x" RAM_ADDR_FMT, block->idstr, + newsize, block->used_length); + return -EINVAL; + } + + if (block->max_length < newsize) { + error_setg_errno(errp, EINVAL, + "Length too large: %s: 0x" RAM_ADDR_FMT + " > 0x" RAM_ADDR_FMT, block->idstr, + newsize, block->max_length); + return -EINVAL; + } + + cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); + block->used_length = newsize; + cpu_physical_memory_set_dirty_range(block->offset, block->used_length, + DIRTY_CLIENTS_ALL); + memory_region_set_size(block->mr, unaligned_size); + if (block->resized) { + block->resized(block->idstr, unaligned_size, block->host); + } + return 0; +} + +/* + * Trigger sync on the given ram block for range [start, start + length] + * with the backing store if one is available. + * Otherwise no-op. + * @Note: this is supposed to be a synchronous op. + */ +void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) +{ + /* The requested range should fit in within the block range */ + g_assert((start + length) <= block->used_length); + +#ifdef CONFIG_LIBPMEM + /* The lack of support for pmem should not block the sync */ + if (ramblock_is_pmem(block)) { + void *addr = ramblock_ptr(block, start); + pmem_persist(addr, length); + return; + } +#endif + if (block->fd >= 0) { + /** + * Case there is no support for PMEM or the memory has not been + * specified as persistent (or is not one) - use the msync. + * Less optimal but still achieves the same goal + */ + void *addr = ramblock_ptr(block, start); + if (qemu_msync(addr, length, block->fd)) { + warn_report("%s: failed to sync memory range: start: " + RAM_ADDR_FMT " length: " RAM_ADDR_FMT, + __func__, start, length); + } + } +} + +/* Called with ram_list.mutex held */ +static void dirty_memory_extend(ram_addr_t old_ram_size, + ram_addr_t new_ram_size) +{ + ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, + DIRTY_MEMORY_BLOCK_SIZE); + ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, + DIRTY_MEMORY_BLOCK_SIZE); + int i; + + /* Only need to extend if block count increased */ + if (new_num_blocks <= old_num_blocks) { + return; + } + + for (i = 0; i < DIRTY_MEMORY_NUM; i++) { + DirtyMemoryBlocks *old_blocks; + DirtyMemoryBlocks *new_blocks; + int j; + + old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); + new_blocks = g_malloc(sizeof(*new_blocks) + + sizeof(new_blocks->blocks[0]) * new_num_blocks); + + if (old_num_blocks) { + memcpy(new_blocks->blocks, old_blocks->blocks, + old_num_blocks * sizeof(old_blocks->blocks[0])); + } + + for (j = old_num_blocks; j < new_num_blocks; j++) { + new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); + } + + qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); + + if (old_blocks) { + g_free_rcu(old_blocks, rcu); + } + } +} + +static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared) +{ + RAMBlock *block; + RAMBlock *last_block = NULL; + ram_addr_t old_ram_size, new_ram_size; + Error *err = NULL; + + old_ram_size = last_ram_page(); + + qemu_mutex_lock_ramlist(); + new_block->offset = find_ram_offset(new_block->max_length); + + if (!new_block->host) { + if (xen_enabled()) { + xen_ram_alloc(new_block->offset, new_block->max_length, + new_block->mr, &err); + if (err) { + error_propagate(errp, err); + qemu_mutex_unlock_ramlist(); + return; + } + } else { + new_block->host = phys_mem_alloc(new_block->max_length, + &new_block->mr->align, shared); + if (!new_block->host) { + error_setg_errno(errp, errno, + "cannot set up guest memory '%s'", + memory_region_name(new_block->mr)); + qemu_mutex_unlock_ramlist(); + return; + } + memory_try_enable_merging(new_block->host, new_block->max_length); + } + } + + new_ram_size = MAX(old_ram_size, + (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); + if (new_ram_size > old_ram_size) { + dirty_memory_extend(old_ram_size, new_ram_size); + } + /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, + * QLIST (which has an RCU-friendly variant) does not have insertion at + * tail, so save the last element in last_block. + */ + RAMBLOCK_FOREACH(block) { + last_block = block; + if (block->max_length < new_block->max_length) { + break; + } + } + if (block) { + QLIST_INSERT_BEFORE_RCU(block, new_block, next); + } else if (last_block) { + QLIST_INSERT_AFTER_RCU(last_block, new_block, next); + } else { /* list is empty */ + QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); + } + ram_list.mru_block = NULL; + + /* Write list before version */ + smp_wmb(); + ram_list.version++; + qemu_mutex_unlock_ramlist(); + + cpu_physical_memory_set_dirty_range(new_block->offset, + new_block->used_length, + DIRTY_CLIENTS_ALL); + + if (new_block->host) { + qemu_ram_setup_dump(new_block->host, new_block->max_length); + qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); + /* + * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU + * Configure it unless the machine is a qtest server, in which case + * KVM is not used and it may be forked (eg for fuzzing purposes). + */ + if (!qtest_enabled()) { + qemu_madvise(new_block->host, new_block->max_length, + QEMU_MADV_DONTFORK); + } + ram_block_notify_add(new_block->host, new_block->max_length); + } +} + +#ifdef CONFIG_POSIX +RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, + uint32_t ram_flags, int fd, + Error **errp) +{ + RAMBlock *new_block; + Error *local_err = NULL; + int64_t file_size, file_align; + + /* Just support these ram flags by now. */ + assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0); + + if (xen_enabled()) { + error_setg(errp, "-mem-path not supported with Xen"); + return NULL; + } + + if (kvm_enabled() && !kvm_has_sync_mmu()) { + error_setg(errp, + "host lacks kvm mmu notifiers, -mem-path unsupported"); + return NULL; + } + + if (phys_mem_alloc != qemu_anon_ram_alloc) { + /* + * file_ram_alloc() needs to allocate just like + * phys_mem_alloc, but we haven't bothered to provide + * a hook there. + */ + error_setg(errp, + "-mem-path not supported with this accelerator"); + return NULL; + } + + size = HOST_PAGE_ALIGN(size); + file_size = get_file_size(fd); + if (file_size > 0 && file_size < size) { + error_setg(errp, "backing store size 0x%" PRIx64 + " does not match 'size' option 0x" RAM_ADDR_FMT, + file_size, size); + return NULL; + } + + file_align = get_file_align(fd); + if (file_align > 0 && mr && file_align > mr->align) { + error_setg(errp, "backing store align 0x%" PRIx64 + " is larger than 'align' option 0x%" PRIx64, + file_align, mr->align); + return NULL; + } + + new_block = g_malloc0(sizeof(*new_block)); + new_block->mr = mr; + new_block->used_length = size; + new_block->max_length = size; + new_block->flags = ram_flags; + new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp); + if (!new_block->host) { + g_free(new_block); + return NULL; + } + + ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED); + if (local_err) { + g_free(new_block); + error_propagate(errp, local_err); + return NULL; + } + return new_block; + +} + + +RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, + uint32_t ram_flags, const char *mem_path, + Error **errp) +{ + int fd; + bool created; + RAMBlock *block; + + fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp); + if (fd < 0) { + return NULL; + } + + block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp); + if (!block) { + if (created) { + unlink(mem_path); + } + close(fd); + return NULL; + } + + return block; +} +#endif + +static +RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, + void (*resized)(const char*, + uint64_t length, + void *host), + void *host, bool resizeable, bool share, + MemoryRegion *mr, Error **errp) +{ + RAMBlock *new_block; + Error *local_err = NULL; + + size = HOST_PAGE_ALIGN(size); + max_size = HOST_PAGE_ALIGN(max_size); + new_block = g_malloc0(sizeof(*new_block)); + new_block->mr = mr; + new_block->resized = resized; + new_block->used_length = size; + new_block->max_length = max_size; + assert(max_size >= size); + new_block->fd = -1; + new_block->page_size = qemu_real_host_page_size; + new_block->host = host; + if (host) { + new_block->flags |= RAM_PREALLOC; + } + if (resizeable) { + new_block->flags |= RAM_RESIZEABLE; + } + ram_block_add(new_block, &local_err, share); + if (local_err) { + g_free(new_block); + error_propagate(errp, local_err); + return NULL; + } + return new_block; +} + +RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, + MemoryRegion *mr, Error **errp) +{ + return qemu_ram_alloc_internal(size, size, NULL, host, false, + false, mr, errp); +} + +RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share, + MemoryRegion *mr, Error **errp) +{ + return qemu_ram_alloc_internal(size, size, NULL, NULL, false, + share, mr, errp); +} + +RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, + void (*resized)(const char*, + uint64_t length, + void *host), + MemoryRegion *mr, Error **errp) +{ + return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, + false, mr, errp); +} + +static void reclaim_ramblock(RAMBlock *block) +{ + if (block->flags & RAM_PREALLOC) { + ; + } else if (xen_enabled()) { + xen_invalidate_map_cache_entry(block->host); +#ifndef _WIN32 + } else if (block->fd >= 0) { + qemu_ram_munmap(block->fd, block->host, block->max_length); + close(block->fd); +#endif + } else { + qemu_anon_ram_free(block->host, block->max_length); + } + g_free(block); +} + +void qemu_ram_free(RAMBlock *block) +{ + if (!block) { + return; + } + + if (block->host) { + ram_block_notify_remove(block->host, block->max_length); + } + + qemu_mutex_lock_ramlist(); + QLIST_REMOVE_RCU(block, next); + ram_list.mru_block = NULL; + /* Write list before version */ + smp_wmb(); + ram_list.version++; + call_rcu(block, reclaim_ramblock, rcu); + qemu_mutex_unlock_ramlist(); +} + +#ifndef _WIN32 +void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) +{ + RAMBlock *block; + ram_addr_t offset; + int flags; + void *area, *vaddr; + + RAMBLOCK_FOREACH(block) { + offset = addr - block->offset; + if (offset < block->max_length) { + vaddr = ramblock_ptr(block, offset); + if (block->flags & RAM_PREALLOC) { + ; + } else if (xen_enabled()) { + abort(); + } else { + flags = MAP_FIXED; + if (block->fd >= 0) { + flags |= (block->flags & RAM_SHARED ? + MAP_SHARED : MAP_PRIVATE); + area = mmap(vaddr, length, PROT_READ | PROT_WRITE, + flags, block->fd, offset); + } else { + /* + * Remap needs to match alloc. Accelerators that + * set phys_mem_alloc never remap. If they did, + * we'd need a remap hook here. + */ + assert(phys_mem_alloc == qemu_anon_ram_alloc); + + flags |= MAP_PRIVATE | MAP_ANONYMOUS; + area = mmap(vaddr, length, PROT_READ | PROT_WRITE, + flags, -1, 0); + } + if (area != vaddr) { + error_report("Could not remap addr: " + RAM_ADDR_FMT "@" RAM_ADDR_FMT "", + length, addr); + exit(1); + } + memory_try_enable_merging(vaddr, length); + qemu_ram_setup_dump(vaddr, length); + } + } + } +} +#endif /* !_WIN32 */ + +/* Return a host pointer to ram allocated with qemu_ram_alloc. + * This should not be used for general purpose DMA. Use address_space_map + * or address_space_rw instead. For local memory (e.g. video ram) that the + * device owns, use memory_region_get_ram_ptr. + * + * Called within RCU critical section. + */ +void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) +{ + RAMBlock *block = ram_block; + + if (block == NULL) { + block = qemu_get_ram_block(addr); + addr -= block->offset; + } + + if (xen_enabled() && block->host == NULL) { + /* We need to check if the requested address is in the RAM + * because we don't want to map the entire memory in QEMU. + * In that case just map until the end of the page. + */ + if (block->offset == 0) { + return xen_map_cache(addr, 0, 0, false); + } + + block->host = xen_map_cache(block->offset, block->max_length, 1, false); + } + return ramblock_ptr(block, addr); +} + +/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr + * but takes a size argument. + * + * Called within RCU critical section. + */ +static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, + hwaddr *size, bool lock) +{ + RAMBlock *block = ram_block; + if (*size == 0) { + return NULL; + } + + if (block == NULL) { + block = qemu_get_ram_block(addr); + addr -= block->offset; + } + *size = MIN(*size, block->max_length - addr); + + if (xen_enabled() && block->host == NULL) { + /* We need to check if the requested address is in the RAM + * because we don't want to map the entire memory in QEMU. + * In that case just map the requested area. + */ + if (block->offset == 0) { + return xen_map_cache(addr, *size, lock, lock); + } + + block->host = xen_map_cache(block->offset, block->max_length, 1, lock); + } + + return ramblock_ptr(block, addr); +} + +/* Return the offset of a hostpointer within a ramblock */ +ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) +{ + ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; + assert((uintptr_t)host >= (uintptr_t)rb->host); + assert(res < rb->max_length); + + return res; +} + +/* + * Translates a host ptr back to a RAMBlock, a ram_addr and an offset + * in that RAMBlock. + * + * ptr: Host pointer to look up + * round_offset: If true round the result offset down to a page boundary + * *ram_addr: set to result ram_addr + * *offset: set to result offset within the RAMBlock + * + * Returns: RAMBlock (or NULL if not found) + * + * By the time this function returns, the returned pointer is not protected + * by RCU anymore. If the caller is not within an RCU critical section and + * does not hold the iothread lock, it must have other means of protecting the + * pointer, such as a reference to the region that includes the incoming + * ram_addr_t. + */ +RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, + ram_addr_t *offset) +{ + RAMBlock *block; + uint8_t *host = ptr; + + if (xen_enabled()) { + ram_addr_t ram_addr; + RCU_READ_LOCK_GUARD(); + ram_addr = xen_ram_addr_from_mapcache(ptr); + block = qemu_get_ram_block(ram_addr); + if (block) { + *offset = ram_addr - block->offset; + } + return block; + } + + RCU_READ_LOCK_GUARD(); + block = qatomic_rcu_read(&ram_list.mru_block); + if (block && block->host && host - block->host < block->max_length) { + goto found; + } + + RAMBLOCK_FOREACH(block) { + /* This case append when the block is not mapped. */ + if (block->host == NULL) { + continue; + } + if (host - block->host < block->max_length) { + goto found; + } + } + + return NULL; + +found: + *offset = (host - block->host); + if (round_offset) { + *offset &= TARGET_PAGE_MASK; + } + return block; +} + +/* + * Finds the named RAMBlock + * + * name: The name of RAMBlock to find + * + * Returns: RAMBlock (or NULL if not found) + */ +RAMBlock *qemu_ram_block_by_name(const char *name) +{ + RAMBlock *block; + + RAMBLOCK_FOREACH(block) { + if (!strcmp(name, block->idstr)) { + return block; + } + } + + return NULL; +} + +/* Some of the softmmu routines need to translate from a host pointer + (typically a TLB entry) back to a ram offset. */ +ram_addr_t qemu_ram_addr_from_host(void *ptr) +{ + RAMBlock *block; + ram_addr_t offset; + + block = qemu_ram_block_from_host(ptr, false, &offset); + if (!block) { + return RAM_ADDR_INVALID; + } + + return block->offset + offset; +} + +/* Generate a debug exception if a watchpoint has been hit. */ +void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, + MemTxAttrs attrs, int flags, uintptr_t ra) +{ + CPUClass *cc = CPU_GET_CLASS(cpu); + CPUWatchpoint *wp; + + assert(tcg_enabled()); + if (cpu->watchpoint_hit) { + /* + * We re-entered the check after replacing the TB. + * Now raise the debug interrupt so that it will + * trigger after the current instruction. + */ + qemu_mutex_lock_iothread(); + cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); + qemu_mutex_unlock_iothread(); + return; + } + + addr = cc->adjust_watchpoint_address(cpu, addr, len); + QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { + if (watchpoint_address_matches(wp, addr, len) + && (wp->flags & flags)) { + if (replay_running_debug()) { + /* + * Don't process the watchpoints when we are + * in a reverse debugging operation. + */ + replay_breakpoint(); + return; + } + if (flags == BP_MEM_READ) { + wp->flags |= BP_WATCHPOINT_HIT_READ; + } else { + wp->flags |= BP_WATCHPOINT_HIT_WRITE; + } + wp->hitaddr = MAX(addr, wp->vaddr); + wp->hitattrs = attrs; + if (!cpu->watchpoint_hit) { + if (wp->flags & BP_CPU && + !cc->debug_check_watchpoint(cpu, wp)) { + wp->flags &= ~BP_WATCHPOINT_HIT; + continue; + } + cpu->watchpoint_hit = wp; + + mmap_lock(); + tb_check_watchpoint(cpu, ra); + if (wp->flags & BP_STOP_BEFORE_ACCESS) { + cpu->exception_index = EXCP_DEBUG; + mmap_unlock(); + cpu_loop_exit_restore(cpu, ra); + } else { + /* Force execution of one insn next time. */ + cpu->cflags_next_tb = 1 | curr_cflags(); + mmap_unlock(); + if (ra) { + cpu_restore_state(cpu, ra, true); + } + cpu_loop_exit_noexc(cpu); + } + } + } else { + wp->flags &= ~BP_WATCHPOINT_HIT; + } + } +} + +static MemTxResult flatview_read(FlatView *fv, hwaddr addr, + MemTxAttrs attrs, void *buf, hwaddr len); +static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, + const void *buf, hwaddr len); +static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, + bool is_write, MemTxAttrs attrs); + +static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, + unsigned len, MemTxAttrs attrs) +{ + subpage_t *subpage = opaque; + uint8_t buf[8]; + MemTxResult res; + +#if defined(DEBUG_SUBPAGE) + printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, + subpage, len, addr); +#endif + res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); + if (res) { + return res; + } + *data = ldn_p(buf, len); + return MEMTX_OK; +} + +static MemTxResult subpage_write(void *opaque, hwaddr addr, + uint64_t value, unsigned len, MemTxAttrs attrs) +{ + subpage_t *subpage = opaque; + uint8_t buf[8]; + +#if defined(DEBUG_SUBPAGE) + printf("%s: subpage %p len %u addr " TARGET_FMT_plx + " value %"PRIx64"\n", + __func__, subpage, len, addr, value); +#endif + stn_p(buf, len, value); + return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); +} + +static bool subpage_accepts(void *opaque, hwaddr addr, + unsigned len, bool is_write, + MemTxAttrs attrs) +{ + subpage_t *subpage = opaque; +#if defined(DEBUG_SUBPAGE) + printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", + __func__, subpage, is_write ? 'w' : 'r', len, addr); +#endif + + return flatview_access_valid(subpage->fv, addr + subpage->base, + len, is_write, attrs); +} + +static const MemoryRegionOps subpage_ops = { + .read_with_attrs = subpage_read, + .write_with_attrs = subpage_write, + .impl.min_access_size = 1, + .impl.max_access_size = 8, + .valid.min_access_size = 1, + .valid.max_access_size = 8, + .valid.accepts = subpage_accepts, + .endianness = DEVICE_NATIVE_ENDIAN, +}; + +static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, + uint16_t section) +{ + int idx, eidx; + + if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) + return -1; + idx = SUBPAGE_IDX(start); + eidx = SUBPAGE_IDX(end); +#if defined(DEBUG_SUBPAGE) + printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", + __func__, mmio, start, end, idx, eidx, section); +#endif + for (; idx <= eidx; idx++) { + mmio->sub_section[idx] = section; + } + + return 0; +} + +static subpage_t *subpage_init(FlatView *fv, hwaddr base) +{ + subpage_t *mmio; + + /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ + mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); + mmio->fv = fv; + mmio->base = base; + memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, + NULL, TARGET_PAGE_SIZE); + mmio->iomem.subpage = true; +#if defined(DEBUG_SUBPAGE) + printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, + mmio, base, TARGET_PAGE_SIZE); +#endif + + return mmio; +} + +static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) +{ + assert(fv); + MemoryRegionSection section = { + .fv = fv, + .mr = mr, + .offset_within_address_space = 0, + .offset_within_region = 0, + .size = int128_2_64(), + }; + + return phys_section_add(map, §ion); +} + +MemoryRegionSection *iotlb_to_section(CPUState *cpu, + hwaddr index, MemTxAttrs attrs) +{ + int asidx = cpu_asidx_from_attrs(cpu, attrs); + CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; + AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch); + MemoryRegionSection *sections = d->map.sections; + + return §ions[index & ~TARGET_PAGE_MASK]; +} + +static void io_mem_init(void) +{ + memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, + NULL, UINT64_MAX); +} + +AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) +{ + AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); + uint16_t n; + + n = dummy_section(&d->map, fv, &io_mem_unassigned); + assert(n == PHYS_SECTION_UNASSIGNED); + + d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; + + return d; +} + +void address_space_dispatch_free(AddressSpaceDispatch *d) +{ + phys_sections_free(&d->map); + g_free(d); +} + +static void do_nothing(CPUState *cpu, run_on_cpu_data d) +{ +} + +static void tcg_log_global_after_sync(MemoryListener *listener) +{ + CPUAddressSpace *cpuas; + + /* Wait for the CPU to end the current TB. This avoids the following + * incorrect race: + * + * vCPU migration + * ---------------------- ------------------------- + * TLB check -> slow path + * notdirty_mem_write + * write to RAM + * mark dirty + * clear dirty flag + * TLB check -> fast path + * read memory + * write to RAM + * + * by pushing the migration thread's memory read after the vCPU thread has + * written the memory. + */ + if (replay_mode == REPLAY_MODE_NONE) { + /* + * VGA can make calls to this function while updating the screen. + * In record/replay mode this causes a deadlock, because + * run_on_cpu waits for rr mutex. Therefore no races are possible + * in this case and no need for making run_on_cpu when + * record/replay is not enabled. + */ + cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); + run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); + } +} + +static void tcg_commit(MemoryListener *listener) +{ + CPUAddressSpace *cpuas; + AddressSpaceDispatch *d; + + assert(tcg_enabled()); + /* since each CPU stores ram addresses in its TLB cache, we must + reset the modified entries */ + cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); + cpu_reloading_memory_map(); + /* The CPU and TLB are protected by the iothread lock. + * We reload the dispatch pointer now because cpu_reloading_memory_map() + * may have split the RCU critical section. + */ + d = address_space_to_dispatch(cpuas->as); + qatomic_rcu_set(&cpuas->memory_dispatch, d); + tlb_flush(cpuas->cpu); +} + +static void memory_map_init(void) +{ + system_memory = g_malloc(sizeof(*system_memory)); + + memory_region_init(system_memory, NULL, "system", UINT64_MAX); + address_space_init(&address_space_memory, system_memory, "memory"); + + system_io = g_malloc(sizeof(*system_io)); + memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", + 65536); + address_space_init(&address_space_io, system_io, "I/O"); +} + +MemoryRegion *get_system_memory(void) +{ + return system_memory; +} + +MemoryRegion *get_system_io(void) +{ + return system_io; +} + +static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, + hwaddr length) +{ + uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); + addr += memory_region_get_ram_addr(mr); + + /* No early return if dirty_log_mask is or becomes 0, because + * cpu_physical_memory_set_dirty_range will still call + * xen_modified_memory. + */ + if (dirty_log_mask) { + dirty_log_mask = + cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); + } + if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { + assert(tcg_enabled()); + tb_invalidate_phys_range(addr, addr + length); + dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); + } + cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); +} + +void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) +{ + /* + * In principle this function would work on other memory region types too, + * but the ROM device use case is the only one where this operation is + * necessary. Other memory regions should use the + * address_space_read/write() APIs. + */ + assert(memory_region_is_romd(mr)); + + invalidate_and_set_dirty(mr, addr, size); +} + +static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) +{ + unsigned access_size_max = mr->ops->valid.max_access_size; + + /* Regions are assumed to support 1-4 byte accesses unless + otherwise specified. */ + if (access_size_max == 0) { + access_size_max = 4; + } + + /* Bound the maximum access by the alignment of the address. */ + if (!mr->ops->impl.unaligned) { + unsigned align_size_max = addr & -addr; + if (align_size_max != 0 && align_size_max < access_size_max) { + access_size_max = align_size_max; + } + } + + /* Don't attempt accesses larger than the maximum. */ + if (l > access_size_max) { + l = access_size_max; + } + l = pow2floor(l); + + return l; +} + +static bool prepare_mmio_access(MemoryRegion *mr) +{ + bool unlocked = !qemu_mutex_iothread_locked(); + bool release_lock = false; + + if (unlocked) { + qemu_mutex_lock_iothread(); + unlocked = false; + release_lock = true; + } + if (mr->flush_coalesced_mmio) { + if (unlocked) { + qemu_mutex_lock_iothread(); + } + qemu_flush_coalesced_mmio_buffer(); + if (unlocked) { + qemu_mutex_unlock_iothread(); + } + } + + return release_lock; +} + +/* Called within RCU critical section. */ +static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, + MemTxAttrs attrs, + const void *ptr, + hwaddr len, hwaddr addr1, + hwaddr l, MemoryRegion *mr) +{ + uint8_t *ram_ptr; + uint64_t val; + MemTxResult result = MEMTX_OK; + bool release_lock = false; + const uint8_t *buf = ptr; + + for (;;) { + if (!memory_access_is_direct(mr, true)) { + release_lock |= prepare_mmio_access(mr); + l = memory_access_size(mr, l, addr1); + /* XXX: could force current_cpu to NULL to avoid + potential bugs */ + val = ldn_he_p(buf, l); + result |= memory_region_dispatch_write(mr, addr1, val, + size_memop(l), attrs); + } else { + /* RAM case */ + ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); + memcpy(ram_ptr, buf, l); + invalidate_and_set_dirty(mr, addr1, l); + } + + if (release_lock) { + qemu_mutex_unlock_iothread(); + release_lock = false; + } + + len -= l; + buf += l; + addr += l; + + if (!len) { + break; + } + + l = len; + mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); + } + + return result; +} + +/* Called from RCU critical section. */ +static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, + const void *buf, hwaddr len) +{ + hwaddr l; + hwaddr addr1; + MemoryRegion *mr; + MemTxResult result = MEMTX_OK; + + l = len; + mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); + result = flatview_write_continue(fv, addr, attrs, buf, len, + addr1, l, mr); + + return result; +} + +/* Called within RCU critical section. */ +MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, + MemTxAttrs attrs, void *ptr, + hwaddr len, hwaddr addr1, hwaddr l, + MemoryRegion *mr) +{ + uint8_t *ram_ptr; + uint64_t val; + MemTxResult result = MEMTX_OK; + bool release_lock = false; + uint8_t *buf = ptr; + + for (;;) { + if (!memory_access_is_direct(mr, false)) { + /* I/O case */ + release_lock |= prepare_mmio_access(mr); + l = memory_access_size(mr, l, addr1); + result |= memory_region_dispatch_read(mr, addr1, &val, + size_memop(l), attrs); + stn_he_p(buf, l, val); + } else { + /* RAM case */ + ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); + memcpy(buf, ram_ptr, l); + } + + if (release_lock) { + qemu_mutex_unlock_iothread(); + release_lock = false; + } + + len -= l; + buf += l; + addr += l; + + if (!len) { + break; + } + + l = len; + mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); + } + + return result; +} + +/* Called from RCU critical section. */ +static MemTxResult flatview_read(FlatView *fv, hwaddr addr, + MemTxAttrs attrs, void *buf, hwaddr len) +{ + hwaddr l; + hwaddr addr1; + MemoryRegion *mr; + + l = len; + mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); + return flatview_read_continue(fv, addr, attrs, buf, len, + addr1, l, mr); +} + +MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, + MemTxAttrs attrs, void *buf, hwaddr len) +{ + MemTxResult result = MEMTX_OK; + FlatView *fv; + + if (len > 0) { + RCU_READ_LOCK_GUARD(); + fv = address_space_to_flatview(as); + result = flatview_read(fv, addr, attrs, buf, len); + } + + return result; +} + +MemTxResult address_space_write(AddressSpace *as, hwaddr addr, + MemTxAttrs attrs, + const void *buf, hwaddr len) +{ + MemTxResult result = MEMTX_OK; + FlatView *fv; + + if (len > 0) { + RCU_READ_LOCK_GUARD(); + fv = address_space_to_flatview(as); + result = flatview_write(fv, addr, attrs, buf, len); + } + + return result; +} + +MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, + void *buf, hwaddr len, bool is_write) +{ + if (is_write) { + return address_space_write(as, addr, attrs, buf, len); + } else { + return address_space_read_full(as, addr, attrs, buf, len); + } +} + +void cpu_physical_memory_rw(hwaddr addr, void *buf, + hwaddr len, bool is_write) +{ + address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, + buf, len, is_write); +} + +enum write_rom_type { + WRITE_DATA, + FLUSH_CACHE, +}; + +static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, + hwaddr addr, + MemTxAttrs attrs, + const void *ptr, + hwaddr len, + enum write_rom_type type) +{ + hwaddr l; + uint8_t *ram_ptr; + hwaddr addr1; + MemoryRegion *mr; + const uint8_t *buf = ptr; + + RCU_READ_LOCK_GUARD(); + while (len > 0) { + l = len; + mr = address_space_translate(as, addr, &addr1, &l, true, attrs); + + if (!(memory_region_is_ram(mr) || + memory_region_is_romd(mr))) { + l = memory_access_size(mr, l, addr1); + } else { + /* ROM/RAM case */ + ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); + switch (type) { + case WRITE_DATA: + memcpy(ram_ptr, buf, l); + invalidate_and_set_dirty(mr, addr1, l); + break; + case FLUSH_CACHE: + flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l); + break; + } + } + len -= l; + buf += l; + addr += l; + } + return MEMTX_OK; +} + +/* used for ROM loading : can write in RAM and ROM */ +MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, + MemTxAttrs attrs, + const void *buf, hwaddr len) +{ + return address_space_write_rom_internal(as, addr, attrs, + buf, len, WRITE_DATA); +} + +void cpu_flush_icache_range(hwaddr start, hwaddr len) +{ + /* + * This function should do the same thing as an icache flush that was + * triggered from within the guest. For TCG we are always cache coherent, + * so there is no need to flush anything. For KVM / Xen we need to flush + * the host's instruction cache at least. + */ + if (tcg_enabled()) { + return; + } + + address_space_write_rom_internal(&address_space_memory, + start, MEMTXATTRS_UNSPECIFIED, + NULL, len, FLUSH_CACHE); +} + +typedef struct { + MemoryRegion *mr; + void *buffer; + hwaddr addr; + hwaddr len; + bool in_use; +} BounceBuffer; + +static BounceBuffer bounce; + +typedef struct MapClient { + QEMUBH *bh; + QLIST_ENTRY(MapClient) link; +} MapClient; + +QemuMutex map_client_list_lock; +static QLIST_HEAD(, MapClient) map_client_list + = QLIST_HEAD_INITIALIZER(map_client_list); + +static void cpu_unregister_map_client_do(MapClient *client) +{ + QLIST_REMOVE(client, link); + g_free(client); +} + +static void cpu_notify_map_clients_locked(void) +{ + MapClient *client; + + while (!QLIST_EMPTY(&map_client_list)) { + client = QLIST_FIRST(&map_client_list); + qemu_bh_schedule(client->bh); + cpu_unregister_map_client_do(client); + } +} + +void cpu_register_map_client(QEMUBH *bh) +{ + MapClient *client = g_malloc(sizeof(*client)); + + qemu_mutex_lock(&map_client_list_lock); + client->bh = bh; + QLIST_INSERT_HEAD(&map_client_list, client, link); + if (!qatomic_read(&bounce.in_use)) { + cpu_notify_map_clients_locked(); + } + qemu_mutex_unlock(&map_client_list_lock); +} + +void cpu_exec_init_all(void) +{ + qemu_mutex_init(&ram_list.mutex); + /* The data structures we set up here depend on knowing the page size, + * so no more changes can be made after this point. + * In an ideal world, nothing we did before we had finished the + * machine setup would care about the target page size, and we could + * do this much later, rather than requiring board models to state + * up front what their requirements are. + */ + finalize_target_page_bits(); + io_mem_init(); + memory_map_init(); + qemu_mutex_init(&map_client_list_lock); +} + +void cpu_unregister_map_client(QEMUBH *bh) +{ + MapClient *client; + + qemu_mutex_lock(&map_client_list_lock); + QLIST_FOREACH(client, &map_client_list, link) { + if (client->bh == bh) { + cpu_unregister_map_client_do(client); + break; + } + } + qemu_mutex_unlock(&map_client_list_lock); +} + +static void cpu_notify_map_clients(void) +{ + qemu_mutex_lock(&map_client_list_lock); + cpu_notify_map_clients_locked(); + qemu_mutex_unlock(&map_client_list_lock); +} + +static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, + bool is_write, MemTxAttrs attrs) +{ + MemoryRegion *mr; + hwaddr l, xlat; + + while (len > 0) { + l = len; + mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); + if (!memory_access_is_direct(mr, is_write)) { + l = memory_access_size(mr, l, addr); + if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { + return false; + } + } + + len -= l; + addr += l; + } + return true; +} + +bool address_space_access_valid(AddressSpace *as, hwaddr addr, + hwaddr len, bool is_write, + MemTxAttrs attrs) +{ + FlatView *fv; + bool result; + + RCU_READ_LOCK_GUARD(); + fv = address_space_to_flatview(as); + result = flatview_access_valid(fv, addr, len, is_write, attrs); + return result; +} + +static hwaddr +flatview_extend_translation(FlatView *fv, hwaddr addr, + hwaddr target_len, + MemoryRegion *mr, hwaddr base, hwaddr len, + bool is_write, MemTxAttrs attrs) +{ + hwaddr done = 0; + hwaddr xlat; + MemoryRegion *this_mr; + + for (;;) { + target_len -= len; + addr += len; + done += len; + if (target_len == 0) { + return done; + } + + len = target_len; + this_mr = flatview_translate(fv, addr, &xlat, + &len, is_write, attrs); + if (this_mr != mr || xlat != base + done) { + return done; + } + } +} + +/* Map a physical memory region into a host virtual address. + * May map a subset of the requested range, given by and returned in *plen. + * May return NULL if resources needed to perform the mapping are exhausted. + * Use only for reads OR writes - not for read-modify-write operations. + * Use cpu_register_map_client() to know when retrying the map operation is + * likely to succeed. + */ +void *address_space_map(AddressSpace *as, + hwaddr addr, + hwaddr *plen, + bool is_write, + MemTxAttrs attrs) +{ + hwaddr len = *plen; + hwaddr l, xlat; + MemoryRegion *mr; + void *ptr; + FlatView *fv; + + if (len == 0) { + return NULL; + } + + l = len; + RCU_READ_LOCK_GUARD(); + fv = address_space_to_flatview(as); + mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); + + if (!memory_access_is_direct(mr, is_write)) { + if (qatomic_xchg(&bounce.in_use, true)) { + *plen = 0; + return NULL; + } + /* Avoid unbounded allocations */ + l = MIN(l, TARGET_PAGE_SIZE); + bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); + bounce.addr = addr; + bounce.len = l; + + memory_region_ref(mr); + bounce.mr = mr; + if (!is_write) { + flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, + bounce.buffer, l); + } + + *plen = l; + return bounce.buffer; + } + + + memory_region_ref(mr); + *plen = flatview_extend_translation(fv, addr, len, mr, xlat, + l, is_write, attrs); + ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); + + return ptr; +} + +/* Unmaps a memory region previously mapped by address_space_map(). + * Will also mark the memory as dirty if is_write is true. access_len gives + * the amount of memory that was actually read or written by the caller. + */ +void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, + bool is_write, hwaddr access_len) +{ + if (buffer != bounce.buffer) { + MemoryRegion *mr; + ram_addr_t addr1; + + mr = memory_region_from_host(buffer, &addr1); + assert(mr != NULL); + if (is_write) { + invalidate_and_set_dirty(mr, addr1, access_len); + } + if (xen_enabled()) { + xen_invalidate_map_cache_entry(buffer); + } + memory_region_unref(mr); + return; + } + if (is_write) { + address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, + bounce.buffer, access_len); + } + qemu_vfree(bounce.buffer); + bounce.buffer = NULL; + memory_region_unref(bounce.mr); + qatomic_mb_set(&bounce.in_use, false); + cpu_notify_map_clients(); +} + +void *cpu_physical_memory_map(hwaddr addr, + hwaddr *plen, + bool is_write) +{ + return address_space_map(&address_space_memory, addr, plen, is_write, + MEMTXATTRS_UNSPECIFIED); +} + +void cpu_physical_memory_unmap(void *buffer, hwaddr len, + bool is_write, hwaddr access_len) +{ + return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); +} + +#define ARG1_DECL AddressSpace *as +#define ARG1 as +#define SUFFIX +#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) +#define RCU_READ_LOCK(...) rcu_read_lock() +#define RCU_READ_UNLOCK(...) rcu_read_unlock() +#include "memory_ldst.c.inc" + +int64_t address_space_cache_init(MemoryRegionCache *cache, + AddressSpace *as, + hwaddr addr, + hwaddr len, + bool is_write) +{ + AddressSpaceDispatch *d; + hwaddr l; + MemoryRegion *mr; + + assert(len > 0); + + l = len; + cache->fv = address_space_get_flatview(as); + d = flatview_to_dispatch(cache->fv); + cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); + + mr = cache->mrs.mr; + memory_region_ref(mr); + if (memory_access_is_direct(mr, is_write)) { + /* We don't care about the memory attributes here as we're only + * doing this if we found actual RAM, which behaves the same + * regardless of attributes; so UNSPECIFIED is fine. + */ + l = flatview_extend_translation(cache->fv, addr, len, mr, + cache->xlat, l, is_write, + MEMTXATTRS_UNSPECIFIED); + cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); + } else { + cache->ptr = NULL; + } + + cache->len = l; + cache->is_write = is_write; + return l; +} + +void address_space_cache_invalidate(MemoryRegionCache *cache, + hwaddr addr, + hwaddr access_len) +{ + assert(cache->is_write); + if (likely(cache->ptr)) { + invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); + } +} + +void address_space_cache_destroy(MemoryRegionCache *cache) +{ + if (!cache->mrs.mr) { + return; + } + + if (xen_enabled()) { + xen_invalidate_map_cache_entry(cache->ptr); + } + memory_region_unref(cache->mrs.mr); + flatview_unref(cache->fv); + cache->mrs.mr = NULL; + cache->fv = NULL; +} + +/* Called from RCU critical section. This function has the same + * semantics as address_space_translate, but it only works on a + * predefined range of a MemoryRegion that was mapped with + * address_space_cache_init. + */ +static inline MemoryRegion *address_space_translate_cached( + MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, + hwaddr *plen, bool is_write, MemTxAttrs attrs) +{ + MemoryRegionSection section; + MemoryRegion *mr; + IOMMUMemoryRegion *iommu_mr; + AddressSpace *target_as; + + assert(!cache->ptr); + *xlat = addr + cache->xlat; + + mr = cache->mrs.mr; + iommu_mr = memory_region_get_iommu(mr); + if (!iommu_mr) { + /* MMIO region. */ + return mr; + } + + section = address_space_translate_iommu(iommu_mr, xlat, plen, + NULL, is_write, true, + &target_as, attrs); + return section.mr; +} + +/* Called from RCU critical section. address_space_read_cached uses this + * out of line function when the target is an MMIO or IOMMU region. + */ +MemTxResult +address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, + void *buf, hwaddr len) +{ + hwaddr addr1, l; + MemoryRegion *mr; + + l = len; + mr = address_space_translate_cached(cache, addr, &addr1, &l, false, + MEMTXATTRS_UNSPECIFIED); + return flatview_read_continue(cache->fv, + addr, MEMTXATTRS_UNSPECIFIED, buf, len, + addr1, l, mr); +} + +/* Called from RCU critical section. address_space_write_cached uses this + * out of line function when the target is an MMIO or IOMMU region. + */ +MemTxResult +address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, + const void *buf, hwaddr len) +{ + hwaddr addr1, l; + MemoryRegion *mr; + + l = len; + mr = address_space_translate_cached(cache, addr, &addr1, &l, true, + MEMTXATTRS_UNSPECIFIED); + return flatview_write_continue(cache->fv, + addr, MEMTXATTRS_UNSPECIFIED, buf, len, + addr1, l, mr); +} + +#define ARG1_DECL MemoryRegionCache *cache +#define ARG1 cache +#define SUFFIX _cached_slow +#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) +#define RCU_READ_LOCK() ((void)0) +#define RCU_READ_UNLOCK() ((void)0) +#include "memory_ldst.c.inc" + +/* virtual memory access for debug (includes writing to ROM) */ +int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, + void *ptr, target_ulong len, bool is_write) +{ + hwaddr phys_addr; + target_ulong l, page; + uint8_t *buf = ptr; + + cpu_synchronize_state(cpu); + while (len > 0) { + int asidx; + MemTxAttrs attrs; + MemTxResult res; + + page = addr & TARGET_PAGE_MASK; + phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); + asidx = cpu_asidx_from_attrs(cpu, attrs); + /* if no physical page mapped, return an error */ + if (phys_addr == -1) + return -1; + l = (page + TARGET_PAGE_SIZE) - addr; + if (l > len) + l = len; + phys_addr += (addr & ~TARGET_PAGE_MASK); + if (is_write) { + res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, + attrs, buf, l); + } else { + res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, + attrs, buf, l); + } + if (res != MEMTX_OK) { + return -1; + } + len -= l; + buf += l; + addr += l; + } + return 0; +} + +/* + * Allows code that needs to deal with migration bitmaps etc to still be built + * target independent. + */ +size_t qemu_target_page_size(void) +{ + return TARGET_PAGE_SIZE; +} + +int qemu_target_page_bits(void) +{ + return TARGET_PAGE_BITS; +} + +int qemu_target_page_bits_min(void) +{ + return TARGET_PAGE_BITS_MIN; +} + +bool cpu_physical_memory_is_io(hwaddr phys_addr) +{ + MemoryRegion*mr; + hwaddr l = 1; + bool res; + + RCU_READ_LOCK_GUARD(); + mr = address_space_translate(&address_space_memory, + phys_addr, &phys_addr, &l, false, + MEMTXATTRS_UNSPECIFIED); + + res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); + return res; +} + +int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) +{ + RAMBlock *block; + int ret = 0; + + RCU_READ_LOCK_GUARD(); + RAMBLOCK_FOREACH(block) { + ret = func(block, opaque); + if (ret) { + break; + } + } + return ret; +} + +/* + * Unmap pages of memory from start to start+length such that + * they a) read as 0, b) Trigger whatever fault mechanism + * the OS provides for postcopy. + * The pages must be unmapped by the end of the function. + * Returns: 0 on success, none-0 on failure + * + */ +int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) +{ + int ret = -1; + + uint8_t *host_startaddr = rb->host + start; + + if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { + error_report("ram_block_discard_range: Unaligned start address: %p", + host_startaddr); + goto err; + } + + if ((start + length) <= rb->used_length) { + bool need_madvise, need_fallocate; + if (!QEMU_IS_ALIGNED(length, rb->page_size)) { + error_report("ram_block_discard_range: Unaligned length: %zx", + length); + goto err; + } + + errno = ENOTSUP; /* If we are missing MADVISE etc */ + + /* The logic here is messy; + * madvise DONTNEED fails for hugepages + * fallocate works on hugepages and shmem + */ + need_madvise = (rb->page_size == qemu_host_page_size); + need_fallocate = rb->fd != -1; + if (need_fallocate) { + /* For a file, this causes the area of the file to be zero'd + * if read, and for hugetlbfs also causes it to be unmapped + * so a userfault will trigger. + */ +#ifdef CONFIG_FALLOCATE_PUNCH_HOLE + ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, + start, length); + if (ret) { + ret = -errno; + error_report("ram_block_discard_range: Failed to fallocate " + "%s:%" PRIx64 " +%zx (%d)", + rb->idstr, start, length, ret); + goto err; + } +#else + ret = -ENOSYS; + error_report("ram_block_discard_range: fallocate not available/file" + "%s:%" PRIx64 " +%zx (%d)", + rb->idstr, start, length, ret); + goto err; +#endif + } + if (need_madvise) { + /* For normal RAM this causes it to be unmapped, + * for shared memory it causes the local mapping to disappear + * and to fall back on the file contents (which we just + * fallocate'd away). + */ +#if defined(CONFIG_MADVISE) + ret = madvise(host_startaddr, length, MADV_DONTNEED); + if (ret) { + ret = -errno; + error_report("ram_block_discard_range: Failed to discard range " + "%s:%" PRIx64 " +%zx (%d)", + rb->idstr, start, length, ret); + goto err; + } +#else + ret = -ENOSYS; + error_report("ram_block_discard_range: MADVISE not available" + "%s:%" PRIx64 " +%zx (%d)", + rb->idstr, start, length, ret); + goto err; +#endif + } + trace_ram_block_discard_range(rb->idstr, host_startaddr, length, + need_madvise, need_fallocate, ret); + } else { + error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 + "/%zx/" RAM_ADDR_FMT")", + rb->idstr, start, length, rb->used_length); + } + +err: + return ret; +} + +bool ramblock_is_pmem(RAMBlock *rb) +{ + return rb->flags & RAM_PMEM; +} + +static void mtree_print_phys_entries(int start, int end, int skip, int ptr) +{ + if (start == end - 1) { + qemu_printf("\t%3d ", start); + } else { + qemu_printf("\t%3d..%-3d ", start, end - 1); + } + qemu_printf(" skip=%d ", skip); + if (ptr == PHYS_MAP_NODE_NIL) { + qemu_printf(" ptr=NIL"); + } else if (!skip) { + qemu_printf(" ptr=#%d", ptr); + } else { + qemu_printf(" ptr=[%d]", ptr); + } + qemu_printf("\n"); +} + +#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ + int128_sub((size), int128_one())) : 0) + +void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) +{ + int i; + + qemu_printf(" Dispatch\n"); + qemu_printf(" Physical sections\n"); + + for (i = 0; i < d->map.sections_nb; ++i) { + MemoryRegionSection *s = d->map.sections + i; + const char *names[] = { " [unassigned]", " [not dirty]", + " [ROM]", " [watch]" }; + + qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx + " %s%s%s%s%s", + i, + s->offset_within_address_space, + s->offset_within_address_space + MR_SIZE(s->mr->size), + s->mr->name ? s->mr->name : "(noname)", + i < ARRAY_SIZE(names) ? names[i] : "", + s->mr == root ? " [ROOT]" : "", + s == d->mru_section ? " [MRU]" : "", + s->mr->is_iommu ? " [iommu]" : ""); + + if (s->mr->alias) { + qemu_printf(" alias=%s", s->mr->alias->name ? + s->mr->alias->name : "noname"); + } + qemu_printf("\n"); + } + + qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", + P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); + for (i = 0; i < d->map.nodes_nb; ++i) { + int j, jprev; + PhysPageEntry prev; + Node *n = d->map.nodes + i; + + qemu_printf(" [%d]\n", i); + + for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { + PhysPageEntry *pe = *n + j; + + if (pe->ptr == prev.ptr && pe->skip == prev.skip) { + continue; + } + + mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); + + jprev = j; + prev = *pe; + } + + if (jprev != ARRAY_SIZE(*n)) { + mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); + } + } +} + +/* + * If positive, discarding RAM is disabled. If negative, discarding RAM is + * required to work and cannot be disabled. + */ +static int ram_block_discard_disabled; + +int ram_block_discard_disable(bool state) +{ + int old; + + if (!state) { + qatomic_dec(&ram_block_discard_disabled); + return 0; + } + + do { + old = qatomic_read(&ram_block_discard_disabled); + if (old < 0) { + return -EBUSY; + } + } while (qatomic_cmpxchg(&ram_block_discard_disabled, + old, old + 1) != old); + return 0; +} + +int ram_block_discard_require(bool state) +{ + int old; + + if (!state) { + qatomic_inc(&ram_block_discard_disabled); + return 0; + } + + do { + old = qatomic_read(&ram_block_discard_disabled); + if (old > 0) { + return -EBUSY; + } + } while (qatomic_cmpxchg(&ram_block_discard_disabled, + old, old - 1) != old); + return 0; +} + +bool ram_block_discard_is_disabled(void) +{ + return qatomic_read(&ram_block_discard_disabled) > 0; +} + +bool ram_block_discard_is_required(void) +{ + return qatomic_read(&ram_block_discard_disabled) < 0; +} diff --git a/softmmu/qdev-monitor.c b/softmmu/qdev-monitor.c new file mode 100644 index 0000000000..bcfb90a08f --- /dev/null +++ b/softmmu/qdev-monitor.c @@ -0,0 +1,1005 @@ +/* + * Dynamic device configuration and creation. + * + * Copyright (c) 2009 CodeSourcery + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +#include "qemu/osdep.h" +#include "hw/sysbus.h" +#include "monitor/hmp.h" +#include "monitor/monitor.h" +#include "monitor/qdev.h" +#include "sysemu/arch_init.h" +#include "qapi/error.h" +#include "qapi/qapi-commands-qdev.h" +#include "qapi/qmp/qdict.h" +#include "qapi/qmp/qerror.h" +#include "qemu/config-file.h" +#include "qemu/error-report.h" +#include "qemu/help_option.h" +#include "qemu/option.h" +#include "qemu/qemu-print.h" +#include "qemu/option_int.h" +#include "sysemu/block-backend.h" +#include "sysemu/sysemu.h" +#include "migration/misc.h" +#include "migration/migration.h" +#include "qemu/cutils.h" +#include "hw/clock.h" + +/* + * Aliases were a bad idea from the start. Let's keep them + * from spreading further. + */ +typedef struct QDevAlias +{ + const char *typename; + const char *alias; + uint32_t arch_mask; +} QDevAlias; + +/* Please keep this table sorted by typename. */ +static const QDevAlias qdev_alias_table[] = { + { "AC97", "ac97" }, /* -soundhw name */ + { "e1000", "e1000-82540em" }, + { "ES1370", "es1370" }, /* -soundhw name */ + { "ich9-ahci", "ahci" }, + { "lsi53c895a", "lsi" }, + { "virtio-9p-ccw", "virtio-9p", QEMU_ARCH_S390X }, + { "virtio-9p-pci", "virtio-9p", QEMU_ARCH_ALL & ~QEMU_ARCH_S390X }, + { "virtio-balloon-ccw", "virtio-balloon", QEMU_ARCH_S390X }, + { "virtio-balloon-pci", "virtio-balloon", + QEMU_ARCH_ALL & ~QEMU_ARCH_S390X }, + { "virtio-blk-ccw", "virtio-blk", QEMU_ARCH_S390X }, + { "virtio-blk-pci", "virtio-blk", QEMU_ARCH_ALL & ~QEMU_ARCH_S390X }, + { "virtio-gpu-ccw", "virtio-gpu", QEMU_ARCH_S390X }, + { "virtio-gpu-pci", "virtio-gpu", QEMU_ARCH_ALL & ~QEMU_ARCH_S390X }, + { "virtio-input-host-ccw", "virtio-input-host", QEMU_ARCH_S390X }, + { "virtio-input-host-pci", "virtio-input-host", + QEMU_ARCH_ALL & ~QEMU_ARCH_S390X }, + { "virtio-iommu-pci", "virtio-iommu", QEMU_ARCH_ALL & ~QEMU_ARCH_S390X }, + { "virtio-keyboard-ccw", "virtio-keyboard", QEMU_ARCH_S390X }, + { "virtio-keyboard-pci", "virtio-keyboard", + QEMU_ARCH_ALL & ~QEMU_ARCH_S390X }, + { "virtio-mouse-ccw", "virtio-mouse", QEMU_ARCH_S390X }, + { "virtio-mouse-pci", "virtio-mouse", QEMU_ARCH_ALL & ~QEMU_ARCH_S390X }, + { "virtio-net-ccw", "virtio-net", QEMU_ARCH_S390X }, + { "virtio-net-pci", "virtio-net", QEMU_ARCH_ALL & ~QEMU_ARCH_S390X }, + { "virtio-rng-ccw", "virtio-rng", QEMU_ARCH_S390X }, + { "virtio-rng-pci", "virtio-rng", QEMU_ARCH_ALL & ~QEMU_ARCH_S390X }, + { "virtio-scsi-ccw", "virtio-scsi", QEMU_ARCH_S390X }, + { "virtio-scsi-pci", "virtio-scsi", QEMU_ARCH_ALL & ~QEMU_ARCH_S390X }, + { "virtio-serial-ccw", "virtio-serial", QEMU_ARCH_S390X }, + { "virtio-serial-pci", "virtio-serial", QEMU_ARCH_ALL & ~QEMU_ARCH_S390X }, + { "virtio-tablet-ccw", "virtio-tablet", QEMU_ARCH_S390X }, + { "virtio-tablet-pci", "virtio-tablet", QEMU_ARCH_ALL & ~QEMU_ARCH_S390X }, + { } +}; + +static const char *qdev_class_get_alias(DeviceClass *dc) +{ + const char *typename = object_class_get_name(OBJECT_CLASS(dc)); + int i; + + for (i = 0; qdev_alias_table[i].typename; i++) { + if (qdev_alias_table[i].arch_mask && + !(qdev_alias_table[i].arch_mask & arch_type)) { + continue; + } + + if (strcmp(qdev_alias_table[i].typename, typename) == 0) { + return qdev_alias_table[i].alias; + } + } + + return NULL; +} + +static bool qdev_class_has_alias(DeviceClass *dc) +{ + return (qdev_class_get_alias(dc) != NULL); +} + +static void qdev_print_devinfo(DeviceClass *dc) +{ + qemu_printf("name \"%s\"", object_class_get_name(OBJECT_CLASS(dc))); + if (dc->bus_type) { + qemu_printf(", bus %s", dc->bus_type); + } + if (qdev_class_has_alias(dc)) { + qemu_printf(", alias \"%s\"", qdev_class_get_alias(dc)); + } + if (dc->desc) { + qemu_printf(", desc \"%s\"", dc->desc); + } + if (!dc->user_creatable) { + qemu_printf(", no-user"); + } + qemu_printf("\n"); +} + +static void qdev_print_devinfos(bool show_no_user) +{ + static const char *cat_name[DEVICE_CATEGORY_MAX + 1] = { + [DEVICE_CATEGORY_BRIDGE] = "Controller/Bridge/Hub", + [DEVICE_CATEGORY_USB] = "USB", + [DEVICE_CATEGORY_STORAGE] = "Storage", + [DEVICE_CATEGORY_NETWORK] = "Network", + [DEVICE_CATEGORY_INPUT] = "Input", + [DEVICE_CATEGORY_DISPLAY] = "Display", + [DEVICE_CATEGORY_SOUND] = "Sound", + [DEVICE_CATEGORY_MISC] = "Misc", + [DEVICE_CATEGORY_CPU] = "CPU", + [DEVICE_CATEGORY_MAX] = "Uncategorized", + }; + GSList *list, *elt; + int i; + bool cat_printed; + + module_load_qom_all(); + list = object_class_get_list_sorted(TYPE_DEVICE, false); + + for (i = 0; i <= DEVICE_CATEGORY_MAX; i++) { + cat_printed = false; + for (elt = list; elt; elt = elt->next) { + DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data, + TYPE_DEVICE); + if ((i < DEVICE_CATEGORY_MAX + ? !test_bit(i, dc->categories) + : !bitmap_empty(dc->categories, DEVICE_CATEGORY_MAX)) + || (!show_no_user + && !dc->user_creatable)) { + continue; + } + if (!cat_printed) { + qemu_printf("%s%s devices:\n", i ? "\n" : "", cat_name[i]); + cat_printed = true; + } + qdev_print_devinfo(dc); + } + } + + g_slist_free(list); +} + +static int set_property(void *opaque, const char *name, const char *value, + Error **errp) +{ + Object *obj = opaque; + + if (strcmp(name, "driver") == 0) + return 0; + if (strcmp(name, "bus") == 0) + return 0; + + if (!object_property_parse(obj, name, value, errp)) { + return -1; + } + return 0; +} + +static const char *find_typename_by_alias(const char *alias) +{ + int i; + + for (i = 0; qdev_alias_table[i].alias; i++) { + if (qdev_alias_table[i].arch_mask && + !(qdev_alias_table[i].arch_mask & arch_type)) { + continue; + } + + if (strcmp(qdev_alias_table[i].alias, alias) == 0) { + return qdev_alias_table[i].typename; + } + } + + return NULL; +} + +static DeviceClass *qdev_get_device_class(const char **driver, Error **errp) +{ + ObjectClass *oc; + DeviceClass *dc; + const char *original_name = *driver; + + oc = module_object_class_by_name(*driver); + if (!oc) { + const char *typename = find_typename_by_alias(*driver); + + if (typename) { + *driver = typename; + oc = module_object_class_by_name(*driver); + } + } + + if (!object_class_dynamic_cast(oc, TYPE_DEVICE)) { + if (*driver != original_name) { + error_setg(errp, "'%s' (alias '%s') is not a valid device model" + " name", original_name, *driver); + } else { + error_setg(errp, "'%s' is not a valid device model name", *driver); + } + return NULL; + } + + if (object_class_is_abstract(oc)) { + error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "driver", + "non-abstract device type"); + return NULL; + } + + dc = DEVICE_CLASS(oc); + if (!dc->user_creatable || + (qdev_hotplug && !dc->hotpluggable)) { + error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "driver", + "pluggable device type"); + return NULL; + } + + return dc; +} + + +int qdev_device_help(QemuOpts *opts) +{ + Error *local_err = NULL; + const char *driver; + ObjectPropertyInfoList *prop_list; + ObjectPropertyInfoList *prop; + GPtrArray *array; + int i; + + driver = qemu_opt_get(opts, "driver"); + if (driver && is_help_option(driver)) { + qdev_print_devinfos(false); + return 1; + } + + if (!driver || !qemu_opt_has_help_opt(opts)) { + return 0; + } + + if (!object_class_by_name(driver)) { + const char *typename = find_typename_by_alias(driver); + + if (typename) { + driver = typename; + } + } + + prop_list = qmp_device_list_properties(driver, &local_err); + if (local_err) { + goto error; + } + + if (prop_list) { + qemu_printf("%s options:\n", driver); + } else { + qemu_printf("There are no options for %s.\n", driver); + } + array = g_ptr_array_new(); + for (prop = prop_list; prop; prop = prop->next) { + g_ptr_array_add(array, + object_property_help(prop->value->name, + prop->value->type, + prop->value->default_value, + prop->value->description)); + } + g_ptr_array_sort(array, (GCompareFunc)qemu_pstrcmp0); + for (i = 0; i < array->len; i++) { + qemu_printf("%s\n", (char *)array->pdata[i]); + } + g_ptr_array_set_free_func(array, g_free); + g_ptr_array_free(array, true); + qapi_free_ObjectPropertyInfoList(prop_list); + return 1; + +error: + error_report_err(local_err); + return 1; +} + +static Object *qdev_get_peripheral(void) +{ + static Object *dev; + + if (dev == NULL) { + dev = container_get(qdev_get_machine(), "/peripheral"); + } + + return dev; +} + +static Object *qdev_get_peripheral_anon(void) +{ + static Object *dev; + + if (dev == NULL) { + dev = container_get(qdev_get_machine(), "/peripheral-anon"); + } + + return dev; +} + +static void qbus_error_append_bus_list_hint(DeviceState *dev, + Error *const *errp) +{ + BusState *child; + const char *sep = " "; + + error_append_hint(errp, "child buses at \"%s\":", + dev->id ? dev->id : object_get_typename(OBJECT(dev))); + QLIST_FOREACH(child, &dev->child_bus, sibling) { + error_append_hint(errp, "%s\"%s\"", sep, child->name); + sep = ", "; + } + error_append_hint(errp, "\n"); +} + +static void qbus_error_append_dev_list_hint(BusState *bus, + Error *const *errp) +{ + BusChild *kid; + const char *sep = " "; + + error_append_hint(errp, "devices at \"%s\":", bus->name); + QTAILQ_FOREACH(kid, &bus->children, sibling) { + DeviceState *dev = kid->child; + error_append_hint(errp, "%s\"%s\"", sep, + object_get_typename(OBJECT(dev))); + if (dev->id) { + error_append_hint(errp, "/\"%s\"", dev->id); + } + sep = ", "; + } + error_append_hint(errp, "\n"); +} + +static BusState *qbus_find_bus(DeviceState *dev, char *elem) +{ + BusState *child; + + QLIST_FOREACH(child, &dev->child_bus, sibling) { + if (strcmp(child->name, elem) == 0) { + return child; + } + } + return NULL; +} + +static DeviceState *qbus_find_dev(BusState *bus, char *elem) +{ + BusChild *kid; + + /* + * try to match in order: + * (1) instance id, if present + * (2) driver name + * (3) driver alias, if present + */ + QTAILQ_FOREACH(kid, &bus->children, sibling) { + DeviceState *dev = kid->child; + if (dev->id && strcmp(dev->id, elem) == 0) { + return dev; + } + } + QTAILQ_FOREACH(kid, &bus->children, sibling) { + DeviceState *dev = kid->child; + if (strcmp(object_get_typename(OBJECT(dev)), elem) == 0) { + return dev; + } + } + QTAILQ_FOREACH(kid, &bus->children, sibling) { + DeviceState *dev = kid->child; + DeviceClass *dc = DEVICE_GET_CLASS(dev); + + if (qdev_class_has_alias(dc) && + strcmp(qdev_class_get_alias(dc), elem) == 0) { + return dev; + } + } + return NULL; +} + +static inline bool qbus_is_full(BusState *bus) +{ + BusClass *bus_class = BUS_GET_CLASS(bus); + return bus_class->max_dev && bus->num_children >= bus_class->max_dev; +} + +/* + * Search the tree rooted at @bus for a bus. + * If @name, search for a bus with that name. Note that bus names + * need not be unique. Yes, that's screwed up. + * Else search for a bus that is a subtype of @bus_typename. + * If more than one exists, prefer one that can take another device. + * Return the bus if found, else %NULL. + */ +static BusState *qbus_find_recursive(BusState *bus, const char *name, + const char *bus_typename) +{ + BusChild *kid; + BusState *pick, *child, *ret; + bool match; + + assert(name || bus_typename); + if (name) { + match = !strcmp(bus->name, name); + } else { + match = !!object_dynamic_cast(OBJECT(bus), bus_typename); + } + + if (match && !qbus_is_full(bus)) { + return bus; /* root matches and isn't full */ + } + + pick = match ? bus : NULL; + + QTAILQ_FOREACH(kid, &bus->children, sibling) { + DeviceState *dev = kid->child; + QLIST_FOREACH(child, &dev->child_bus, sibling) { + ret = qbus_find_recursive(child, name, bus_typename); + if (ret && !qbus_is_full(ret)) { + return ret; /* a descendant matches and isn't full */ + } + if (ret && !pick) { + pick = ret; + } + } + } + + /* root or a descendant matches, but is full */ + return pick; +} + +static BusState *qbus_find(const char *path, Error **errp) +{ + DeviceState *dev; + BusState *bus; + char elem[128]; + int pos, len; + + /* find start element */ + if (path[0] == '/') { + bus = sysbus_get_default(); + pos = 0; + } else { + if (sscanf(path, "%127[^/]%n", elem, &len) != 1) { + assert(!path[0]); + elem[0] = len = 0; + } + bus = qbus_find_recursive(sysbus_get_default(), elem, NULL); + if (!bus) { + error_setg(errp, "Bus '%s' not found", elem); + return NULL; + } + pos = len; + } + + for (;;) { + assert(path[pos] == '/' || !path[pos]); + while (path[pos] == '/') { + pos++; + } + if (path[pos] == '\0') { + break; + } + + /* find device */ + if (sscanf(path+pos, "%127[^/]%n", elem, &len) != 1) { + g_assert_not_reached(); + elem[0] = len = 0; + } + pos += len; + dev = qbus_find_dev(bus, elem); + if (!dev) { + error_set(errp, ERROR_CLASS_DEVICE_NOT_FOUND, + "Device '%s' not found", elem); + qbus_error_append_dev_list_hint(bus, errp); + return NULL; + } + + assert(path[pos] == '/' || !path[pos]); + while (path[pos] == '/') { + pos++; + } + if (path[pos] == '\0') { + /* last specified element is a device. If it has exactly + * one child bus accept it nevertheless */ + if (dev->num_child_bus == 1) { + bus = QLIST_FIRST(&dev->child_bus); + break; + } + if (dev->num_child_bus) { + error_setg(errp, "Device '%s' has multiple child buses", + elem); + qbus_error_append_bus_list_hint(dev, errp); + } else { + error_setg(errp, "Device '%s' has no child bus", elem); + } + return NULL; + } + + /* find bus */ + if (sscanf(path+pos, "%127[^/]%n", elem, &len) != 1) { + g_assert_not_reached(); + elem[0] = len = 0; + } + pos += len; + bus = qbus_find_bus(dev, elem); + if (!bus) { + error_setg(errp, "Bus '%s' not found", elem); + qbus_error_append_bus_list_hint(dev, errp); + return NULL; + } + } + + if (qbus_is_full(bus)) { + error_setg(errp, "Bus '%s' is full", path); + return NULL; + } + return bus; +} + +void qdev_set_id(DeviceState *dev, const char *id) +{ + if (id) { + dev->id = id; + } + + if (dev->id) { + object_property_add_child(qdev_get_peripheral(), dev->id, + OBJECT(dev)); + } else { + static int anon_count; + gchar *name = g_strdup_printf("device[%d]", anon_count++); + object_property_add_child(qdev_get_peripheral_anon(), name, + OBJECT(dev)); + g_free(name); + } +} + +static int is_failover_device(void *opaque, const char *name, const char *value, + Error **errp) +{ + if (strcmp(name, "failover_pair_id") == 0) { + QemuOpts *opts = (QemuOpts *)opaque; + + if (qdev_should_hide_device(opts)) { + return 1; + } + } + + return 0; +} + +static bool should_hide_device(QemuOpts *opts) +{ + if (qemu_opt_foreach(opts, is_failover_device, opts, NULL) == 0) { + return false; + } + return true; +} + +DeviceState *qdev_device_add(QemuOpts *opts, Error **errp) +{ + DeviceClass *dc; + const char *driver, *path; + DeviceState *dev = NULL; + BusState *bus = NULL; + bool hide; + + driver = qemu_opt_get(opts, "driver"); + if (!driver) { + error_setg(errp, QERR_MISSING_PARAMETER, "driver"); + return NULL; + } + + /* find driver */ + dc = qdev_get_device_class(&driver, errp); + if (!dc) { + return NULL; + } + + /* find bus */ + path = qemu_opt_get(opts, "bus"); + if (path != NULL) { + bus = qbus_find(path, errp); + if (!bus) { + return NULL; + } + if (!object_dynamic_cast(OBJECT(bus), dc->bus_type)) { + error_setg(errp, "Device '%s' can't go on %s bus", + driver, object_get_typename(OBJECT(bus))); + return NULL; + } + } else if (dc->bus_type != NULL) { + bus = qbus_find_recursive(sysbus_get_default(), NULL, dc->bus_type); + if (!bus || qbus_is_full(bus)) { + error_setg(errp, "No '%s' bus found for device '%s'", + dc->bus_type, driver); + return NULL; + } + } + hide = should_hide_device(opts); + + if ((hide || qdev_hotplug) && bus && !qbus_is_hotpluggable(bus)) { + error_setg(errp, QERR_BUS_NO_HOTPLUG, bus->name); + return NULL; + } + + if (hide) { + return NULL; + } + + if (!migration_is_idle()) { + error_setg(errp, "device_add not allowed while migrating"); + return NULL; + } + + /* create device */ + dev = qdev_new(driver); + + /* Check whether the hotplug is allowed by the machine */ + if (qdev_hotplug && !qdev_hotplug_allowed(dev, errp)) { + goto err_del_dev; + } + + if (!bus && qdev_hotplug && !qdev_get_machine_hotplug_handler(dev)) { + /* No bus, no machine hotplug handler --> device is not hotpluggable */ + error_setg(errp, "Device '%s' can not be hotplugged on this machine", + driver); + goto err_del_dev; + } + + qdev_set_id(dev, qemu_opts_id(opts)); + + /* set properties */ + if (qemu_opt_foreach(opts, set_property, dev, errp)) { + goto err_del_dev; + } + + dev->opts = opts; + if (!qdev_realize(DEVICE(dev), bus, errp)) { + dev->opts = NULL; + goto err_del_dev; + } + return dev; + +err_del_dev: + if (dev) { + object_unparent(OBJECT(dev)); + object_unref(OBJECT(dev)); + } + return NULL; +} + + +#define qdev_printf(fmt, ...) monitor_printf(mon, "%*s" fmt, indent, "", ## __VA_ARGS__) +static void qbus_print(Monitor *mon, BusState *bus, int indent); + +static void qdev_print_props(Monitor *mon, DeviceState *dev, Property *props, + int indent) +{ + if (!props) + return; + for (; props->name; props++) { + char *value; + char *legacy_name = g_strdup_printf("legacy-%s", props->name); + + if (object_property_get_type(OBJECT(dev), legacy_name, NULL)) { + value = object_property_get_str(OBJECT(dev), legacy_name, NULL); + } else { + value = object_property_print(OBJECT(dev), props->name, true, + NULL); + } + g_free(legacy_name); + + if (!value) { + continue; + } + qdev_printf("%s = %s\n", props->name, + *value ? value : "<null>"); + g_free(value); + } +} + +static void bus_print_dev(BusState *bus, Monitor *mon, DeviceState *dev, int indent) +{ + BusClass *bc = BUS_GET_CLASS(bus); + + if (bc->print_dev) { + bc->print_dev(mon, dev, indent); + } +} + +static void qdev_print(Monitor *mon, DeviceState *dev, int indent) +{ + ObjectClass *class; + BusState *child; + NamedGPIOList *ngl; + NamedClockList *ncl; + + qdev_printf("dev: %s, id \"%s\"\n", object_get_typename(OBJECT(dev)), + dev->id ? dev->id : ""); + indent += 2; + QLIST_FOREACH(ngl, &dev->gpios, node) { + if (ngl->num_in) { + qdev_printf("gpio-in \"%s\" %d\n", ngl->name ? ngl->name : "", + ngl->num_in); + } + if (ngl->num_out) { + qdev_printf("gpio-out \"%s\" %d\n", ngl->name ? ngl->name : "", + ngl->num_out); + } + } + QLIST_FOREACH(ncl, &dev->clocks, node) { + qdev_printf("clock-%s%s \"%s\" freq_hz=%e\n", + ncl->output ? "out" : "in", + ncl->alias ? " (alias)" : "", + ncl->name, + CLOCK_PERIOD_TO_HZ(1.0 * clock_get(ncl->clock))); + } + class = object_get_class(OBJECT(dev)); + do { + qdev_print_props(mon, dev, DEVICE_CLASS(class)->props_, indent); + class = object_class_get_parent(class); + } while (class != object_class_by_name(TYPE_DEVICE)); + bus_print_dev(dev->parent_bus, mon, dev, indent); + QLIST_FOREACH(child, &dev->child_bus, sibling) { + qbus_print(mon, child, indent); + } +} + +static void qbus_print(Monitor *mon, BusState *bus, int indent) +{ + BusChild *kid; + + qdev_printf("bus: %s\n", bus->name); + indent += 2; + qdev_printf("type %s\n", object_get_typename(OBJECT(bus))); + QTAILQ_FOREACH(kid, &bus->children, sibling) { + DeviceState *dev = kid->child; + qdev_print(mon, dev, indent); + } +} +#undef qdev_printf + +void hmp_info_qtree(Monitor *mon, const QDict *qdict) +{ + if (sysbus_get_default()) + qbus_print(mon, sysbus_get_default(), 0); +} + +void hmp_info_qdm(Monitor *mon, const QDict *qdict) +{ + qdev_print_devinfos(true); +} + +void qmp_device_add(QDict *qdict, QObject **ret_data, Error **errp) +{ + QemuOpts *opts; + DeviceState *dev; + + opts = qemu_opts_from_qdict(qemu_find_opts("device"), qdict, errp); + if (!opts) { + return; + } + if (!monitor_cur_is_qmp() && qdev_device_help(opts)) { + qemu_opts_del(opts); + return; + } + dev = qdev_device_add(opts, errp); + + /* + * Drain all pending RCU callbacks. This is done because + * some bus related operations can delay a device removal + * (in this case this can happen if device is added and then + * removed due to a configuration error) + * to a RCU callback, but user might expect that this interface + * will finish its job completely once qmp command returns result + * to the user + */ + drain_call_rcu(); + + if (!dev) { + qemu_opts_del(opts); + return; + } + object_unref(OBJECT(dev)); +} + +static DeviceState *find_device_state(const char *id, Error **errp) +{ + Object *obj; + + if (id[0] == '/') { + obj = object_resolve_path(id, NULL); + } else { + char *root_path = object_get_canonical_path(qdev_get_peripheral()); + char *path = g_strdup_printf("%s/%s", root_path, id); + + g_free(root_path); + obj = object_resolve_path_type(path, TYPE_DEVICE, NULL); + g_free(path); + } + + if (!obj) { + error_set(errp, ERROR_CLASS_DEVICE_NOT_FOUND, + "Device '%s' not found", id); + return NULL; + } + + if (!object_dynamic_cast(obj, TYPE_DEVICE)) { + error_setg(errp, "%s is not a hotpluggable device", id); + return NULL; + } + + return DEVICE(obj); +} + +void qdev_unplug(DeviceState *dev, Error **errp) +{ + DeviceClass *dc = DEVICE_GET_CLASS(dev); + HotplugHandler *hotplug_ctrl; + HotplugHandlerClass *hdc; + Error *local_err = NULL; + + if (dev->parent_bus && !qbus_is_hotpluggable(dev->parent_bus)) { + error_setg(errp, QERR_BUS_NO_HOTPLUG, dev->parent_bus->name); + return; + } + + if (!dc->hotpluggable) { + error_setg(errp, QERR_DEVICE_NO_HOTPLUG, + object_get_typename(OBJECT(dev))); + return; + } + + if (!migration_is_idle() && !dev->allow_unplug_during_migration) { + error_setg(errp, "device_del not allowed while migrating"); + return; + } + + qdev_hot_removed = true; + + hotplug_ctrl = qdev_get_hotplug_handler(dev); + /* hotpluggable device MUST have HotplugHandler, if it doesn't + * then something is very wrong with it */ + g_assert(hotplug_ctrl); + + /* If device supports async unplug just request it to be done, + * otherwise just remove it synchronously */ + hdc = HOTPLUG_HANDLER_GET_CLASS(hotplug_ctrl); + if (hdc->unplug_request) { + hotplug_handler_unplug_request(hotplug_ctrl, dev, &local_err); + } else { + hotplug_handler_unplug(hotplug_ctrl, dev, &local_err); + if (!local_err) { + object_unparent(OBJECT(dev)); + } + } + error_propagate(errp, local_err); +} + +void qmp_device_del(const char *id, Error **errp) +{ + DeviceState *dev = find_device_state(id, errp); + if (dev != NULL) { + if (dev->pending_deleted_event) { + error_setg(errp, "Device %s is already in the " + "process of unplug", id); + return; + } + + qdev_unplug(dev, errp); + } +} + +void hmp_device_add(Monitor *mon, const QDict *qdict) +{ + Error *err = NULL; + + qmp_device_add((QDict *)qdict, NULL, &err); + hmp_handle_error(mon, err); +} + +void hmp_device_del(Monitor *mon, const QDict *qdict) +{ + const char *id = qdict_get_str(qdict, "id"); + Error *err = NULL; + + qmp_device_del(id, &err); + hmp_handle_error(mon, err); +} + +BlockBackend *blk_by_qdev_id(const char *id, Error **errp) +{ + DeviceState *dev; + BlockBackend *blk; + + dev = find_device_state(id, errp); + if (dev == NULL) { + return NULL; + } + + blk = blk_by_dev(dev); + if (!blk) { + error_setg(errp, "Device does not have a block device backend"); + } + return blk; +} + +void qdev_machine_init(void) +{ + qdev_get_peripheral_anon(); + qdev_get_peripheral(); +} + +QemuOptsList qemu_device_opts = { + .name = "device", + .implied_opt_name = "driver", + .head = QTAILQ_HEAD_INITIALIZER(qemu_device_opts.head), + .desc = { + /* + * no elements => accept any + * sanity checking will happen later + * when setting device properties + */ + { /* end of list */ } + }, +}; + +QemuOptsList qemu_global_opts = { + .name = "global", + .head = QTAILQ_HEAD_INITIALIZER(qemu_global_opts.head), + .desc = { + { + .name = "driver", + .type = QEMU_OPT_STRING, + },{ + .name = "property", + .type = QEMU_OPT_STRING, + },{ + .name = "value", + .type = QEMU_OPT_STRING, + }, + { /* end of list */ } + }, +}; + +int qemu_global_option(const char *str) +{ + char driver[64], property[64]; + QemuOpts *opts; + int rc, offset; + + rc = sscanf(str, "%63[^.=].%63[^=]%n", driver, property, &offset); + if (rc == 2 && str[offset] == '=') { + opts = qemu_opts_create(&qemu_global_opts, NULL, 0, &error_abort); + qemu_opt_set(opts, "driver", driver, &error_abort); + qemu_opt_set(opts, "property", property, &error_abort); + qemu_opt_set(opts, "value", str + offset + 1, &error_abort); + return 0; + } + + opts = qemu_opts_parse_noisily(&qemu_global_opts, str, false); + if (!opts) { + return -1; + } + + return 0; +} diff --git a/softmmu/qemu-seccomp.c b/softmmu/qemu-seccomp.c new file mode 100644 index 0000000000..8325ecb766 --- /dev/null +++ b/softmmu/qemu-seccomp.c @@ -0,0 +1,331 @@ +/* + * QEMU seccomp mode 2 support with libseccomp + * + * Copyright IBM, Corp. 2012 + * + * Authors: + * Eduardo Otubo <eotubo@br.ibm.com> + * + * This work is licensed under the terms of the GNU GPL, version 2. See + * the COPYING file in the top-level directory. + * + * Contributions after 2012-01-13 are licensed under the terms of the + * GNU GPL, version 2 or (at your option) any later version. + */ + +#include "qemu/osdep.h" +#include "qapi/error.h" +#include "qemu/config-file.h" +#include "qemu/option.h" +#include "qemu/module.h" +#include <sys/prctl.h> +#include <seccomp.h> +#include "sysemu/seccomp.h" +#include <linux/seccomp.h> + +/* For some architectures (notably ARM) cacheflush is not supported until + * libseccomp 2.2.3, but configure enforces that we are using a more recent + * version on those hosts, so it is OK for this check to be less strict. + */ +#if SCMP_VER_MAJOR >= 3 + #define HAVE_CACHEFLUSH +#elif SCMP_VER_MAJOR == 2 && SCMP_VER_MINOR >= 2 + #define HAVE_CACHEFLUSH +#endif + +struct QemuSeccompSyscall { + int32_t num; + uint8_t set; + uint8_t narg; + const struct scmp_arg_cmp *arg_cmp; +}; + +const struct scmp_arg_cmp sched_setscheduler_arg[] = { + /* was SCMP_A1(SCMP_CMP_NE, SCHED_IDLE), but expanded due to GCC 4.x bug */ + { .arg = 1, .op = SCMP_CMP_NE, .datum_a = SCHED_IDLE } +}; + +static const struct QemuSeccompSyscall blacklist[] = { + /* default set of syscalls to blacklist */ + { SCMP_SYS(reboot), QEMU_SECCOMP_SET_DEFAULT }, + { SCMP_SYS(swapon), QEMU_SECCOMP_SET_DEFAULT }, + { SCMP_SYS(swapoff), QEMU_SECCOMP_SET_DEFAULT }, + { SCMP_SYS(syslog), QEMU_SECCOMP_SET_DEFAULT }, + { SCMP_SYS(mount), QEMU_SECCOMP_SET_DEFAULT }, + { SCMP_SYS(umount), QEMU_SECCOMP_SET_DEFAULT }, + { SCMP_SYS(kexec_load), QEMU_SECCOMP_SET_DEFAULT }, + { SCMP_SYS(afs_syscall), QEMU_SECCOMP_SET_DEFAULT }, + { SCMP_SYS(break), QEMU_SECCOMP_SET_DEFAULT }, + { SCMP_SYS(ftime), QEMU_SECCOMP_SET_DEFAULT }, + { SCMP_SYS(getpmsg), QEMU_SECCOMP_SET_DEFAULT }, + { SCMP_SYS(gtty), QEMU_SECCOMP_SET_DEFAULT }, + { SCMP_SYS(lock), QEMU_SECCOMP_SET_DEFAULT }, + { SCMP_SYS(mpx), QEMU_SECCOMP_SET_DEFAULT }, + { SCMP_SYS(prof), QEMU_SECCOMP_SET_DEFAULT }, + { SCMP_SYS(profil), QEMU_SECCOMP_SET_DEFAULT }, + { SCMP_SYS(putpmsg), QEMU_SECCOMP_SET_DEFAULT }, + { SCMP_SYS(security), QEMU_SECCOMP_SET_DEFAULT }, + { SCMP_SYS(stty), QEMU_SECCOMP_SET_DEFAULT }, + { SCMP_SYS(tuxcall), QEMU_SECCOMP_SET_DEFAULT }, + { SCMP_SYS(ulimit), QEMU_SECCOMP_SET_DEFAULT }, + { SCMP_SYS(vserver), QEMU_SECCOMP_SET_DEFAULT }, + /* obsolete */ + { SCMP_SYS(readdir), QEMU_SECCOMP_SET_OBSOLETE }, + { SCMP_SYS(_sysctl), QEMU_SECCOMP_SET_OBSOLETE }, + { SCMP_SYS(bdflush), QEMU_SECCOMP_SET_OBSOLETE }, + { SCMP_SYS(create_module), QEMU_SECCOMP_SET_OBSOLETE }, + { SCMP_SYS(get_kernel_syms), QEMU_SECCOMP_SET_OBSOLETE }, + { SCMP_SYS(query_module), QEMU_SECCOMP_SET_OBSOLETE }, + { SCMP_SYS(sgetmask), QEMU_SECCOMP_SET_OBSOLETE }, + { SCMP_SYS(ssetmask), QEMU_SECCOMP_SET_OBSOLETE }, + { SCMP_SYS(sysfs), QEMU_SECCOMP_SET_OBSOLETE }, + { SCMP_SYS(uselib), QEMU_SECCOMP_SET_OBSOLETE }, + { SCMP_SYS(ustat), QEMU_SECCOMP_SET_OBSOLETE }, + /* privileged */ + { SCMP_SYS(setuid), QEMU_SECCOMP_SET_PRIVILEGED }, + { SCMP_SYS(setgid), QEMU_SECCOMP_SET_PRIVILEGED }, + { SCMP_SYS(setpgid), QEMU_SECCOMP_SET_PRIVILEGED }, + { SCMP_SYS(setsid), QEMU_SECCOMP_SET_PRIVILEGED }, + { SCMP_SYS(setreuid), QEMU_SECCOMP_SET_PRIVILEGED }, + { SCMP_SYS(setregid), QEMU_SECCOMP_SET_PRIVILEGED }, + { SCMP_SYS(setresuid), QEMU_SECCOMP_SET_PRIVILEGED }, + { SCMP_SYS(setresgid), QEMU_SECCOMP_SET_PRIVILEGED }, + { SCMP_SYS(setfsuid), QEMU_SECCOMP_SET_PRIVILEGED }, + { SCMP_SYS(setfsgid), QEMU_SECCOMP_SET_PRIVILEGED }, + /* spawn */ + { SCMP_SYS(fork), QEMU_SECCOMP_SET_SPAWN }, + { SCMP_SYS(vfork), QEMU_SECCOMP_SET_SPAWN }, + { SCMP_SYS(execve), QEMU_SECCOMP_SET_SPAWN }, + /* resource control */ + { SCMP_SYS(getpriority), QEMU_SECCOMP_SET_RESOURCECTL }, + { SCMP_SYS(setpriority), QEMU_SECCOMP_SET_RESOURCECTL }, + { SCMP_SYS(sched_setparam), QEMU_SECCOMP_SET_RESOURCECTL }, + { SCMP_SYS(sched_getparam), QEMU_SECCOMP_SET_RESOURCECTL }, + { SCMP_SYS(sched_setscheduler), QEMU_SECCOMP_SET_RESOURCECTL, + ARRAY_SIZE(sched_setscheduler_arg), sched_setscheduler_arg }, + { SCMP_SYS(sched_getscheduler), QEMU_SECCOMP_SET_RESOURCECTL }, + { SCMP_SYS(sched_setaffinity), QEMU_SECCOMP_SET_RESOURCECTL }, + { SCMP_SYS(sched_getaffinity), QEMU_SECCOMP_SET_RESOURCECTL }, + { SCMP_SYS(sched_get_priority_max), QEMU_SECCOMP_SET_RESOURCECTL }, + { SCMP_SYS(sched_get_priority_min), QEMU_SECCOMP_SET_RESOURCECTL }, +}; + +static inline __attribute__((unused)) int +qemu_seccomp(unsigned int operation, unsigned int flags, void *args) +{ +#ifdef __NR_seccomp + return syscall(__NR_seccomp, operation, flags, args); +#else + errno = ENOSYS; + return -1; +#endif +} + +static uint32_t qemu_seccomp_get_action(int set) +{ + switch (set) { + case QEMU_SECCOMP_SET_DEFAULT: + case QEMU_SECCOMP_SET_OBSOLETE: + case QEMU_SECCOMP_SET_PRIVILEGED: + case QEMU_SECCOMP_SET_SPAWN: { +#if defined(SECCOMP_GET_ACTION_AVAIL) && defined(SCMP_ACT_KILL_PROCESS) && \ + defined(SECCOMP_RET_KILL_PROCESS) + static int kill_process = -1; + if (kill_process == -1) { + uint32_t action = SECCOMP_RET_KILL_PROCESS; + + if (qemu_seccomp(SECCOMP_GET_ACTION_AVAIL, 0, &action) == 0) { + kill_process = 1; + } else { + kill_process = 0; + } + } + if (kill_process == 1) { + return SCMP_ACT_KILL_PROCESS; + } +#endif + return SCMP_ACT_TRAP; + } + + case QEMU_SECCOMP_SET_RESOURCECTL: + return SCMP_ACT_ERRNO(EPERM); + + default: + g_assert_not_reached(); + } +} + + +static int seccomp_start(uint32_t seccomp_opts, Error **errp) +{ + int rc = -1; + unsigned int i = 0; + scmp_filter_ctx ctx; + + ctx = seccomp_init(SCMP_ACT_ALLOW); + if (ctx == NULL) { + error_setg(errp, "failed to initialize seccomp context"); + goto seccomp_return; + } + + rc = seccomp_attr_set(ctx, SCMP_FLTATR_CTL_TSYNC, 1); + if (rc != 0) { + error_setg_errno(errp, -rc, + "failed to set seccomp thread synchronization"); + goto seccomp_return; + } + + for (i = 0; i < ARRAY_SIZE(blacklist); i++) { + uint32_t action; + if (!(seccomp_opts & blacklist[i].set)) { + continue; + } + + action = qemu_seccomp_get_action(blacklist[i].set); + rc = seccomp_rule_add_array(ctx, action, blacklist[i].num, + blacklist[i].narg, blacklist[i].arg_cmp); + if (rc < 0) { + error_setg_errno(errp, -rc, + "failed to add seccomp blacklist rules"); + goto seccomp_return; + } + } + + rc = seccomp_load(ctx); + if (rc < 0) { + error_setg_errno(errp, -rc, + "failed to load seccomp syscall filter in kernel"); + } + + seccomp_return: + seccomp_release(ctx); + return rc < 0 ? -1 : 0; +} + +#ifdef CONFIG_SECCOMP +int parse_sandbox(void *opaque, QemuOpts *opts, Error **errp) +{ + if (qemu_opt_get_bool(opts, "enable", false)) { + uint32_t seccomp_opts = QEMU_SECCOMP_SET_DEFAULT + | QEMU_SECCOMP_SET_OBSOLETE; + const char *value = NULL; + + value = qemu_opt_get(opts, "obsolete"); + if (value) { + if (g_str_equal(value, "allow")) { + seccomp_opts &= ~QEMU_SECCOMP_SET_OBSOLETE; + } else if (g_str_equal(value, "deny")) { + /* this is the default option, this if is here + * to provide a little bit of consistency for + * the command line */ + } else { + error_setg(errp, "invalid argument for obsolete"); + return -1; + } + } + + value = qemu_opt_get(opts, "elevateprivileges"); + if (value) { + if (g_str_equal(value, "deny")) { + seccomp_opts |= QEMU_SECCOMP_SET_PRIVILEGED; + } else if (g_str_equal(value, "children")) { + seccomp_opts |= QEMU_SECCOMP_SET_PRIVILEGED; + + /* calling prctl directly because we're + * not sure if host has CAP_SYS_ADMIN set*/ + if (prctl(PR_SET_NO_NEW_PRIVS, 1)) { + error_setg(errp, "failed to set no_new_privs aborting"); + return -1; + } + } else if (g_str_equal(value, "allow")) { + /* default value */ + } else { + error_setg(errp, "invalid argument for elevateprivileges"); + return -1; + } + } + + value = qemu_opt_get(opts, "spawn"); + if (value) { + if (g_str_equal(value, "deny")) { + seccomp_opts |= QEMU_SECCOMP_SET_SPAWN; + } else if (g_str_equal(value, "allow")) { + /* default value */ + } else { + error_setg(errp, "invalid argument for spawn"); + return -1; + } + } + + value = qemu_opt_get(opts, "resourcecontrol"); + if (value) { + if (g_str_equal(value, "deny")) { + seccomp_opts |= QEMU_SECCOMP_SET_RESOURCECTL; + } else if (g_str_equal(value, "allow")) { + /* default value */ + } else { + error_setg(errp, "invalid argument for resourcecontrol"); + return -1; + } + } + + if (seccomp_start(seccomp_opts, errp) < 0) { + return -1; + } + } + + return 0; +} + +static QemuOptsList qemu_sandbox_opts = { + .name = "sandbox", + .implied_opt_name = "enable", + .head = QTAILQ_HEAD_INITIALIZER(qemu_sandbox_opts.head), + .desc = { + { + .name = "enable", + .type = QEMU_OPT_BOOL, + }, + { + .name = "obsolete", + .type = QEMU_OPT_STRING, + }, + { + .name = "elevateprivileges", + .type = QEMU_OPT_STRING, + }, + { + .name = "spawn", + .type = QEMU_OPT_STRING, + }, + { + .name = "resourcecontrol", + .type = QEMU_OPT_STRING, + }, + { /* end of list */ } + }, +}; + +static void seccomp_register(void) +{ + bool add = false; + + /* FIXME: use seccomp_api_get() >= 2 check when released */ + +#if defined(SECCOMP_FILTER_FLAG_TSYNC) + int check; + + /* check host TSYNC capability, it returns errno == ENOSYS if unavailable */ + check = qemu_seccomp(SECCOMP_SET_MODE_FILTER, + SECCOMP_FILTER_FLAG_TSYNC, NULL); + if (check < 0 && errno == EFAULT) { + add = true; + } +#endif + + if (add) { + qemu_add_opts(&qemu_sandbox_opts); + } +} +opts_init(seccomp_register); +#endif diff --git a/softmmu/qtest.c b/softmmu/qtest.c index 0d43cf8883..2c6e8dc858 100644 --- a/softmmu/qtest.c +++ b/softmmu/qtest.c @@ -49,92 +49,139 @@ static void *qtest_server_send_opaque; #define FMT_timeval "%ld.%06ld" /** - * QTest Protocol + * DOC: QTest Protocol * * Line based protocol, request/response based. Server can send async messages * so clients should always handle many async messages before the response * comes in. * * Valid requests + * ^^^^^^^^^^^^^^ * * Clock management: + * """"""""""""""""" * * The qtest client is completely in charge of the QEMU_CLOCK_VIRTUAL. qtest commands * let you adjust the value of the clock (monotonically). All the commands * return the current value of the clock in nanoseconds. * + * .. code-block:: none + * * > clock_step * < OK VALUE * - * Advance the clock to the next deadline. Useful when waiting for - * asynchronous events. + * Advance the clock to the next deadline. Useful when waiting for + * asynchronous events. + * + * .. code-block:: none * * > clock_step NS * < OK VALUE * - * Advance the clock by NS nanoseconds. + * Advance the clock by NS nanoseconds. + * + * .. code-block:: none * * > clock_set NS * < OK VALUE * - * Advance the clock to NS nanoseconds (do nothing if it's already past). + * Advance the clock to NS nanoseconds (do nothing if it's already past). * * PIO and memory access: + * """""""""""""""""""""" + * + * .. code-block:: none * * > outb ADDR VALUE * < OK * + * .. code-block:: none + * * > outw ADDR VALUE * < OK * + * .. code-block:: none + * * > outl ADDR VALUE * < OK * + * .. code-block:: none + * * > inb ADDR * < OK VALUE * + * .. code-block:: none + * * > inw ADDR * < OK VALUE * + * .. code-block:: none + * * > inl ADDR * < OK VALUE * + * .. code-block:: none + * * > writeb ADDR VALUE * < OK * + * .. code-block:: none + * * > writew ADDR VALUE * < OK * + * .. code-block:: none + * * > writel ADDR VALUE * < OK * + * .. code-block:: none + * * > writeq ADDR VALUE * < OK * + * .. code-block:: none + * * > readb ADDR * < OK VALUE * + * .. code-block:: none + * * > readw ADDR * < OK VALUE * + * .. code-block:: none + * * > readl ADDR * < OK VALUE * + * .. code-block:: none + * * > readq ADDR * < OK VALUE * + * .. code-block:: none + * * > read ADDR SIZE * < OK DATA * + * .. code-block:: none + * * > write ADDR SIZE DATA * < OK * + * .. code-block:: none + * * > b64read ADDR SIZE * < OK B64_DATA * + * .. code-block:: none + * * > b64write ADDR SIZE B64_DATA * < OK * + * .. code-block:: none + * * > memset ADDR SIZE VALUE * < OK * @@ -149,16 +196,21 @@ static void *qtest_server_send_opaque; * If the sizes do not match, the data will be truncated. * * IRQ management: + * """"""""""""""" + * + * .. code-block:: none * * > irq_intercept_in QOM-PATH * < OK * + * .. code-block:: none + * * > irq_intercept_out QOM-PATH * < OK * * Attach to the gpio-in (resp. gpio-out) pins exported by the device at * QOM-PATH. When the pin is triggered, one of the following async messages - * will be printed to the qtest stream: + * will be printed to the qtest stream:: * * IRQ raise NUM * IRQ lower NUM @@ -168,12 +220,15 @@ static void *qtest_server_send_opaque; * NUM=0 even though it is remapped to GSI 2). * * Setting interrupt level: + * """""""""""""""""""""""" + * + * .. code-block:: none * * > set_irq_in QOM-PATH NAME NUM LEVEL * < OK * - * where NAME is the name of the irq/gpio list, NUM is an IRQ number and - * LEVEL is an signed integer IRQ level. + * where NAME is the name of the irq/gpio list, NUM is an IRQ number and + * LEVEL is an signed integer IRQ level. * * Forcibly set the given interrupt pin to the given level. * diff --git a/softmmu/tpm.c b/softmmu/tpm.c new file mode 100644 index 0000000000..cab206355a --- /dev/null +++ b/softmmu/tpm.c @@ -0,0 +1,265 @@ +/* + * TPM configuration + * + * Copyright (C) 2011-2013 IBM Corporation + * + * Authors: + * Stefan Berger <stefanb@us.ibm.com> + * + * This work is licensed under the terms of the GNU GPL, version 2 or later. + * See the COPYING file in the top-level directory. + * + * Based on net.c + */ + +#include "qemu/osdep.h" + +#include "qapi/error.h" +#include "qapi/qapi-commands-tpm.h" +#include "qapi/qmp/qerror.h" +#include "sysemu/tpm_backend.h" +#include "sysemu/tpm.h" +#include "qemu/config-file.h" +#include "qemu/error-report.h" + +static QLIST_HEAD(, TPMBackend) tpm_backends = + QLIST_HEAD_INITIALIZER(tpm_backends); + +static const TPMBackendClass * +tpm_be_find_by_type(enum TpmType type) +{ + ObjectClass *oc; + char *typename = g_strdup_printf("tpm-%s", TpmType_str(type)); + + oc = object_class_by_name(typename); + g_free(typename); + + if (!object_class_dynamic_cast(oc, TYPE_TPM_BACKEND)) { + return NULL; + } + + return TPM_BACKEND_CLASS(oc); +} + +/* + * Walk the list of available TPM backend drivers and display them on the + * screen. + */ +static void tpm_display_backend_drivers(void) +{ + bool got_one = false; + int i; + + for (i = 0; i < TPM_TYPE__MAX; i++) { + const TPMBackendClass *bc = tpm_be_find_by_type(i); + if (!bc) { + continue; + } + if (!got_one) { + error_printf("Supported TPM types (choose only one):\n"); + got_one = true; + } + error_printf("%12s %s\n", TpmType_str(i), bc->desc); + } + if (!got_one) { + error_printf("No TPM backend types are available\n"); + } +} + +/* + * Find the TPM with the given Id + */ +TPMBackend *qemu_find_tpm_be(const char *id) +{ + TPMBackend *drv; + + if (id) { + QLIST_FOREACH(drv, &tpm_backends, list) { + if (!strcmp(drv->id, id)) { + return drv; + } + } + } + + return NULL; +} + +static int tpm_init_tpmdev(void *dummy, QemuOpts *opts, Error **errp) +{ + /* + * Use of error_report() in a function with an Error ** parameter + * is suspicious. It is okay here. The parameter only exists to + * make the function usable with qemu_opts_foreach(). It is not + * actually used. + */ + const char *value; + const char *id; + const TPMBackendClass *be; + TPMBackend *drv; + Error *local_err = NULL; + int i; + + if (!QLIST_EMPTY(&tpm_backends)) { + error_report("Only one TPM is allowed."); + return 1; + } + + id = qemu_opts_id(opts); + if (id == NULL) { + error_report(QERR_MISSING_PARAMETER, "id"); + return 1; + } + + value = qemu_opt_get(opts, "type"); + if (!value) { + error_report(QERR_MISSING_PARAMETER, "type"); + tpm_display_backend_drivers(); + return 1; + } + + i = qapi_enum_parse(&TpmType_lookup, value, -1, NULL); + be = i >= 0 ? tpm_be_find_by_type(i) : NULL; + if (be == NULL) { + error_report(QERR_INVALID_PARAMETER_VALUE, + "type", "a TPM backend type"); + tpm_display_backend_drivers(); + return 1; + } + + /* validate backend specific opts */ + if (!qemu_opts_validate(opts, be->opts, &local_err)) { + error_report_err(local_err); + return 1; + } + + drv = be->create(opts); + if (!drv) { + return 1; + } + + drv->id = g_strdup(id); + QLIST_INSERT_HEAD(&tpm_backends, drv, list); + + return 0; +} + +/* + * Walk the list of TPM backend drivers that are in use and call their + * destroy function to have them cleaned up. + */ +void tpm_cleanup(void) +{ + TPMBackend *drv, *next; + + QLIST_FOREACH_SAFE(drv, &tpm_backends, list, next) { + QLIST_REMOVE(drv, list); + object_unref(OBJECT(drv)); + } +} + +/* + * Initialize the TPM. Process the tpmdev command line options describing the + * TPM backend. + */ +int tpm_init(void) +{ + if (qemu_opts_foreach(qemu_find_opts("tpmdev"), + tpm_init_tpmdev, NULL, NULL)) { + return -1; + } + + return 0; +} + +/* + * Parse the TPM configuration options. + * To display all available TPM backends the user may use '-tpmdev help' + */ +int tpm_config_parse(QemuOptsList *opts_list, const char *optarg) +{ + QemuOpts *opts; + + if (!strcmp(optarg, "help")) { + tpm_display_backend_drivers(); + return -1; + } + opts = qemu_opts_parse_noisily(opts_list, optarg, true); + if (!opts) { + return -1; + } + return 0; +} + +/* + * Walk the list of active TPM backends and collect information about them. + */ +TPMInfoList *qmp_query_tpm(Error **errp) +{ + TPMBackend *drv; + TPMInfoList *info, *head = NULL, *cur_item = NULL; + + QLIST_FOREACH(drv, &tpm_backends, list) { + if (!drv->tpmif) { + continue; + } + + info = g_new0(TPMInfoList, 1); + info->value = tpm_backend_query_tpm(drv); + + if (!cur_item) { + head = cur_item = info; + } else { + cur_item->next = info; + cur_item = info; + } + } + + return head; +} + +TpmTypeList *qmp_query_tpm_types(Error **errp) +{ + unsigned int i = 0; + TpmTypeList *head = NULL, *prev = NULL, *cur_item; + + for (i = 0; i < TPM_TYPE__MAX; i++) { + if (!tpm_be_find_by_type(i)) { + continue; + } + cur_item = g_new0(TpmTypeList, 1); + cur_item->value = i; + + if (prev) { + prev->next = cur_item; + } + if (!head) { + head = cur_item; + } + prev = cur_item; + } + + return head; +} +TpmModelList *qmp_query_tpm_models(Error **errp) +{ + TpmModelList *head = NULL, *prev = NULL, *cur_item; + GSList *e, *l = object_class_get_list(TYPE_TPM_IF, false); + + for (e = l; e; e = e->next) { + TPMIfClass *c = TPM_IF_CLASS(e->data); + + cur_item = g_new0(TpmModelList, 1); + cur_item->value = c->model; + + if (prev) { + prev->next = cur_item; + } + if (!head) { + head = cur_item; + } + prev = cur_item; + } + g_slist_free(l); + + return head; +} |