aboutsummaryrefslogtreecommitdiff
path: root/softmmu
diff options
context:
space:
mode:
authorClaudio Fontana <cfontana@suse.de>2020-06-29 11:35:02 +0200
committerPaolo Bonzini <pbonzini@redhat.com>2020-07-10 18:02:24 -0400
commitc7f419f5841a840f3b90e839ef014b94131e5df8 (patch)
tree83e6cfae6c5de28dd6ca244a00c8eb2f5cf7a9d6 /softmmu
parent0b33521ea16463d7f942ddb2b354fa029c96231f (diff)
softmmu: move softmmu only files from root
move arch_init, balloon, cpus, ioport, memory, memory_mapping, qtest. They are all specific to CONFIG_SOFTMMU. Signed-off-by: Claudio Fontana <cfontana@suse.de> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Laurent Vivier <lvivier@redhat.com> Reviewed-by: Thomas Huth <thuth@redhat.com> Message-Id: <20200629093504.3228-2-cfontana@suse.de> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'softmmu')
-rw-r--r--softmmu/Makefile.objs10
-rw-r--r--softmmu/arch_init.c113
-rw-r--r--softmmu/balloon.c106
-rw-r--r--softmmu/cpus.c2317
-rw-r--r--softmmu/ioport.c299
-rw-r--r--softmmu/memory.c3250
-rw-r--r--softmmu/memory_mapping.c357
-rw-r--r--softmmu/qtest.c820
8 files changed, 7272 insertions, 0 deletions
diff --git a/softmmu/Makefile.objs b/softmmu/Makefile.objs
index dd15c24346..a4bd9f2f52 100644
--- a/softmmu/Makefile.objs
+++ b/softmmu/Makefile.objs
@@ -1,3 +1,13 @@
softmmu-main-y = softmmu/main.o
+
+obj-y += arch_init.o
+obj-y += cpus.o
+obj-y += balloon.o
+obj-y += ioport.o
+obj-y += memory.o
+obj-y += memory_mapping.o
+
+obj-y += qtest.o
+
obj-y += vl.o
vl.o-cflags := $(GPROF_CFLAGS) $(SDL_CFLAGS)
diff --git a/softmmu/arch_init.c b/softmmu/arch_init.c
new file mode 100644
index 0000000000..8afea4748b
--- /dev/null
+++ b/softmmu/arch_init.c
@@ -0,0 +1,113 @@
+/*
+ * QEMU System Emulator
+ *
+ * Copyright (c) 2003-2008 Fabrice Bellard
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+#include "qemu/osdep.h"
+#include "cpu.h"
+#include "sysemu/sysemu.h"
+#include "sysemu/arch_init.h"
+#include "hw/pci/pci.h"
+#include "hw/audio/soundhw.h"
+#include "qapi/error.h"
+#include "qemu/config-file.h"
+#include "qemu/error-report.h"
+#include "hw/acpi/acpi.h"
+#include "qemu/help_option.h"
+
+#ifdef TARGET_SPARC
+int graphic_width = 1024;
+int graphic_height = 768;
+int graphic_depth = 8;
+#elif defined(TARGET_M68K)
+int graphic_width = 800;
+int graphic_height = 600;
+int graphic_depth = 8;
+#else
+int graphic_width = 800;
+int graphic_height = 600;
+int graphic_depth = 32;
+#endif
+
+
+#if defined(TARGET_ALPHA)
+#define QEMU_ARCH QEMU_ARCH_ALPHA
+#elif defined(TARGET_ARM)
+#define QEMU_ARCH QEMU_ARCH_ARM
+#elif defined(TARGET_CRIS)
+#define QEMU_ARCH QEMU_ARCH_CRIS
+#elif defined(TARGET_HPPA)
+#define QEMU_ARCH QEMU_ARCH_HPPA
+#elif defined(TARGET_I386)
+#define QEMU_ARCH QEMU_ARCH_I386
+#elif defined(TARGET_LM32)
+#define QEMU_ARCH QEMU_ARCH_LM32
+#elif defined(TARGET_M68K)
+#define QEMU_ARCH QEMU_ARCH_M68K
+#elif defined(TARGET_MICROBLAZE)
+#define QEMU_ARCH QEMU_ARCH_MICROBLAZE
+#elif defined(TARGET_MIPS)
+#define QEMU_ARCH QEMU_ARCH_MIPS
+#elif defined(TARGET_MOXIE)
+#define QEMU_ARCH QEMU_ARCH_MOXIE
+#elif defined(TARGET_NIOS2)
+#define QEMU_ARCH QEMU_ARCH_NIOS2
+#elif defined(TARGET_OPENRISC)
+#define QEMU_ARCH QEMU_ARCH_OPENRISC
+#elif defined(TARGET_PPC)
+#define QEMU_ARCH QEMU_ARCH_PPC
+#elif defined(TARGET_RISCV)
+#define QEMU_ARCH QEMU_ARCH_RISCV
+#elif defined(TARGET_RX)
+#define QEMU_ARCH QEMU_ARCH_RX
+#elif defined(TARGET_S390X)
+#define QEMU_ARCH QEMU_ARCH_S390X
+#elif defined(TARGET_SH4)
+#define QEMU_ARCH QEMU_ARCH_SH4
+#elif defined(TARGET_SPARC)
+#define QEMU_ARCH QEMU_ARCH_SPARC
+#elif defined(TARGET_TRICORE)
+#define QEMU_ARCH QEMU_ARCH_TRICORE
+#elif defined(TARGET_UNICORE32)
+#define QEMU_ARCH QEMU_ARCH_UNICORE32
+#elif defined(TARGET_XTENSA)
+#define QEMU_ARCH QEMU_ARCH_XTENSA
+#endif
+
+const uint32_t arch_type = QEMU_ARCH;
+
+int kvm_available(void)
+{
+#ifdef CONFIG_KVM
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+int xen_available(void)
+{
+#ifdef CONFIG_XEN
+ return 1;
+#else
+ return 0;
+#endif
+}
diff --git a/softmmu/balloon.c b/softmmu/balloon.c
new file mode 100644
index 0000000000..354408c6ea
--- /dev/null
+++ b/softmmu/balloon.c
@@ -0,0 +1,106 @@
+/*
+ * Generic Balloon handlers and management
+ *
+ * Copyright (c) 2003-2008 Fabrice Bellard
+ * Copyright (C) 2011 Red Hat, Inc.
+ * Copyright (C) 2011 Amit Shah <amit.shah@redhat.com>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/atomic.h"
+#include "sysemu/kvm.h"
+#include "sysemu/balloon.h"
+#include "trace-root.h"
+#include "qapi/error.h"
+#include "qapi/qapi-commands-misc.h"
+#include "qapi/qmp/qerror.h"
+
+static QEMUBalloonEvent *balloon_event_fn;
+static QEMUBalloonStatus *balloon_stat_fn;
+static void *balloon_opaque;
+
+static bool have_balloon(Error **errp)
+{
+ if (kvm_enabled() && !kvm_has_sync_mmu()) {
+ error_set(errp, ERROR_CLASS_KVM_MISSING_CAP,
+ "Using KVM without synchronous MMU, balloon unavailable");
+ return false;
+ }
+ if (!balloon_event_fn) {
+ error_set(errp, ERROR_CLASS_DEVICE_NOT_ACTIVE,
+ "No balloon device has been activated");
+ return false;
+ }
+ return true;
+}
+
+int qemu_add_balloon_handler(QEMUBalloonEvent *event_func,
+ QEMUBalloonStatus *stat_func, void *opaque)
+{
+ if (balloon_event_fn || balloon_stat_fn || balloon_opaque) {
+ /* We're already registered one balloon handler. How many can
+ * a guest really have?
+ */
+ return -1;
+ }
+ balloon_event_fn = event_func;
+ balloon_stat_fn = stat_func;
+ balloon_opaque = opaque;
+ return 0;
+}
+
+void qemu_remove_balloon_handler(void *opaque)
+{
+ if (balloon_opaque != opaque) {
+ return;
+ }
+ balloon_event_fn = NULL;
+ balloon_stat_fn = NULL;
+ balloon_opaque = NULL;
+}
+
+BalloonInfo *qmp_query_balloon(Error **errp)
+{
+ BalloonInfo *info;
+
+ if (!have_balloon(errp)) {
+ return NULL;
+ }
+
+ info = g_malloc0(sizeof(*info));
+ balloon_stat_fn(balloon_opaque, info);
+ return info;
+}
+
+void qmp_balloon(int64_t target, Error **errp)
+{
+ if (!have_balloon(errp)) {
+ return;
+ }
+
+ if (target <= 0) {
+ error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "target", "a size");
+ return;
+ }
+
+ trace_balloon_event(balloon_opaque, target);
+ balloon_event_fn(balloon_opaque, target);
+}
diff --git a/softmmu/cpus.c b/softmmu/cpus.c
new file mode 100644
index 0000000000..d94456ed29
--- /dev/null
+++ b/softmmu/cpus.c
@@ -0,0 +1,2317 @@
+/*
+ * QEMU System Emulator
+ *
+ * Copyright (c) 2003-2008 Fabrice Bellard
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu-common.h"
+#include "qemu/config-file.h"
+#include "qemu/cutils.h"
+#include "migration/vmstate.h"
+#include "monitor/monitor.h"
+#include "qapi/error.h"
+#include "qapi/qapi-commands-misc.h"
+#include "qapi/qapi-events-run-state.h"
+#include "qapi/qmp/qerror.h"
+#include "qemu/error-report.h"
+#include "qemu/qemu-print.h"
+#include "sysemu/tcg.h"
+#include "sysemu/block-backend.h"
+#include "exec/gdbstub.h"
+#include "sysemu/dma.h"
+#include "sysemu/hw_accel.h"
+#include "sysemu/kvm.h"
+#include "sysemu/hax.h"
+#include "sysemu/hvf.h"
+#include "sysemu/whpx.h"
+#include "exec/exec-all.h"
+
+#include "qemu/thread.h"
+#include "qemu/plugin.h"
+#include "sysemu/cpus.h"
+#include "sysemu/qtest.h"
+#include "qemu/main-loop.h"
+#include "qemu/option.h"
+#include "qemu/bitmap.h"
+#include "qemu/seqlock.h"
+#include "qemu/guest-random.h"
+#include "tcg/tcg.h"
+#include "hw/nmi.h"
+#include "sysemu/replay.h"
+#include "sysemu/runstate.h"
+#include "hw/boards.h"
+#include "hw/hw.h"
+
+#ifdef CONFIG_LINUX
+
+#include <sys/prctl.h>
+
+#ifndef PR_MCE_KILL
+#define PR_MCE_KILL 33
+#endif
+
+#ifndef PR_MCE_KILL_SET
+#define PR_MCE_KILL_SET 1
+#endif
+
+#ifndef PR_MCE_KILL_EARLY
+#define PR_MCE_KILL_EARLY 1
+#endif
+
+#endif /* CONFIG_LINUX */
+
+static QemuMutex qemu_global_mutex;
+
+int64_t max_delay;
+int64_t max_advance;
+
+/* vcpu throttling controls */
+static QEMUTimer *throttle_timer;
+static unsigned int throttle_percentage;
+
+#define CPU_THROTTLE_PCT_MIN 1
+#define CPU_THROTTLE_PCT_MAX 99
+#define CPU_THROTTLE_TIMESLICE_NS 10000000
+
+bool cpu_is_stopped(CPUState *cpu)
+{
+ return cpu->stopped || !runstate_is_running();
+}
+
+static inline bool cpu_work_list_empty(CPUState *cpu)
+{
+ bool ret;
+
+ qemu_mutex_lock(&cpu->work_mutex);
+ ret = QSIMPLEQ_EMPTY(&cpu->work_list);
+ qemu_mutex_unlock(&cpu->work_mutex);
+ return ret;
+}
+
+static bool cpu_thread_is_idle(CPUState *cpu)
+{
+ if (cpu->stop || !cpu_work_list_empty(cpu)) {
+ return false;
+ }
+ if (cpu_is_stopped(cpu)) {
+ return true;
+ }
+ if (!cpu->halted || cpu_has_work(cpu) ||
+ kvm_halt_in_kernel()) {
+ return false;
+ }
+ return true;
+}
+
+static bool all_cpu_threads_idle(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ if (!cpu_thread_is_idle(cpu)) {
+ return false;
+ }
+ }
+ return true;
+}
+
+/***********************************************************/
+/* guest cycle counter */
+
+/* Protected by TimersState seqlock */
+
+static bool icount_sleep = true;
+/* Arbitrarily pick 1MIPS as the minimum allowable speed. */
+#define MAX_ICOUNT_SHIFT 10
+
+typedef struct TimersState {
+ /* Protected by BQL. */
+ int64_t cpu_ticks_prev;
+ int64_t cpu_ticks_offset;
+
+ /* Protect fields that can be respectively read outside the
+ * BQL, and written from multiple threads.
+ */
+ QemuSeqLock vm_clock_seqlock;
+ QemuSpin vm_clock_lock;
+
+ int16_t cpu_ticks_enabled;
+
+ /* Conversion factor from emulated instructions to virtual clock ticks. */
+ int16_t icount_time_shift;
+
+ /* Compensate for varying guest execution speed. */
+ int64_t qemu_icount_bias;
+
+ int64_t vm_clock_warp_start;
+ int64_t cpu_clock_offset;
+
+ /* Only written by TCG thread */
+ int64_t qemu_icount;
+
+ /* for adjusting icount */
+ QEMUTimer *icount_rt_timer;
+ QEMUTimer *icount_vm_timer;
+ QEMUTimer *icount_warp_timer;
+} TimersState;
+
+static TimersState timers_state;
+bool mttcg_enabled;
+
+
+/* The current number of executed instructions is based on what we
+ * originally budgeted minus the current state of the decrementing
+ * icount counters in extra/u16.low.
+ */
+static int64_t cpu_get_icount_executed(CPUState *cpu)
+{
+ return (cpu->icount_budget -
+ (cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra));
+}
+
+/*
+ * Update the global shared timer_state.qemu_icount to take into
+ * account executed instructions. This is done by the TCG vCPU
+ * thread so the main-loop can see time has moved forward.
+ */
+static void cpu_update_icount_locked(CPUState *cpu)
+{
+ int64_t executed = cpu_get_icount_executed(cpu);
+ cpu->icount_budget -= executed;
+
+ atomic_set_i64(&timers_state.qemu_icount,
+ timers_state.qemu_icount + executed);
+}
+
+/*
+ * Update the global shared timer_state.qemu_icount to take into
+ * account executed instructions. This is done by the TCG vCPU
+ * thread so the main-loop can see time has moved forward.
+ */
+void cpu_update_icount(CPUState *cpu)
+{
+ seqlock_write_lock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ cpu_update_icount_locked(cpu);
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+}
+
+static int64_t cpu_get_icount_raw_locked(void)
+{
+ CPUState *cpu = current_cpu;
+
+ if (cpu && cpu->running) {
+ if (!cpu->can_do_io) {
+ error_report("Bad icount read");
+ exit(1);
+ }
+ /* Take into account what has run */
+ cpu_update_icount_locked(cpu);
+ }
+ /* The read is protected by the seqlock, but needs atomic64 to avoid UB */
+ return atomic_read_i64(&timers_state.qemu_icount);
+}
+
+static int64_t cpu_get_icount_locked(void)
+{
+ int64_t icount = cpu_get_icount_raw_locked();
+ return atomic_read_i64(&timers_state.qemu_icount_bias) +
+ cpu_icount_to_ns(icount);
+}
+
+int64_t cpu_get_icount_raw(void)
+{
+ int64_t icount;
+ unsigned start;
+
+ do {
+ start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
+ icount = cpu_get_icount_raw_locked();
+ } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
+
+ return icount;
+}
+
+/* Return the virtual CPU time, based on the instruction counter. */
+int64_t cpu_get_icount(void)
+{
+ int64_t icount;
+ unsigned start;
+
+ do {
+ start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
+ icount = cpu_get_icount_locked();
+ } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
+
+ return icount;
+}
+
+int64_t cpu_icount_to_ns(int64_t icount)
+{
+ return icount << atomic_read(&timers_state.icount_time_shift);
+}
+
+static int64_t cpu_get_ticks_locked(void)
+{
+ int64_t ticks = timers_state.cpu_ticks_offset;
+ if (timers_state.cpu_ticks_enabled) {
+ ticks += cpu_get_host_ticks();
+ }
+
+ if (timers_state.cpu_ticks_prev > ticks) {
+ /* Non increasing ticks may happen if the host uses software suspend. */
+ timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
+ ticks = timers_state.cpu_ticks_prev;
+ }
+
+ timers_state.cpu_ticks_prev = ticks;
+ return ticks;
+}
+
+/* return the time elapsed in VM between vm_start and vm_stop. Unless
+ * icount is active, cpu_get_ticks() uses units of the host CPU cycle
+ * counter.
+ */
+int64_t cpu_get_ticks(void)
+{
+ int64_t ticks;
+
+ if (use_icount) {
+ return cpu_get_icount();
+ }
+
+ qemu_spin_lock(&timers_state.vm_clock_lock);
+ ticks = cpu_get_ticks_locked();
+ qemu_spin_unlock(&timers_state.vm_clock_lock);
+ return ticks;
+}
+
+static int64_t cpu_get_clock_locked(void)
+{
+ int64_t time;
+
+ time = timers_state.cpu_clock_offset;
+ if (timers_state.cpu_ticks_enabled) {
+ time += get_clock();
+ }
+
+ return time;
+}
+
+/* Return the monotonic time elapsed in VM, i.e.,
+ * the time between vm_start and vm_stop
+ */
+int64_t cpu_get_clock(void)
+{
+ int64_t ti;
+ unsigned start;
+
+ do {
+ start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
+ ti = cpu_get_clock_locked();
+ } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
+
+ return ti;
+}
+
+/* enable cpu_get_ticks()
+ * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
+ */
+void cpu_enable_ticks(void)
+{
+ seqlock_write_lock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ if (!timers_state.cpu_ticks_enabled) {
+ timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
+ timers_state.cpu_clock_offset -= get_clock();
+ timers_state.cpu_ticks_enabled = 1;
+ }
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+}
+
+/* disable cpu_get_ticks() : the clock is stopped. You must not call
+ * cpu_get_ticks() after that.
+ * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
+ */
+void cpu_disable_ticks(void)
+{
+ seqlock_write_lock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ if (timers_state.cpu_ticks_enabled) {
+ timers_state.cpu_ticks_offset += cpu_get_host_ticks();
+ timers_state.cpu_clock_offset = cpu_get_clock_locked();
+ timers_state.cpu_ticks_enabled = 0;
+ }
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+}
+
+/* Correlation between real and virtual time is always going to be
+ fairly approximate, so ignore small variation.
+ When the guest is idle real and virtual time will be aligned in
+ the IO wait loop. */
+#define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
+
+static void icount_adjust(void)
+{
+ int64_t cur_time;
+ int64_t cur_icount;
+ int64_t delta;
+
+ /* Protected by TimersState mutex. */
+ static int64_t last_delta;
+
+ /* If the VM is not running, then do nothing. */
+ if (!runstate_is_running()) {
+ return;
+ }
+
+ seqlock_write_lock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ cur_time = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
+ cpu_get_clock_locked());
+ cur_icount = cpu_get_icount_locked();
+
+ delta = cur_icount - cur_time;
+ /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
+ if (delta > 0
+ && last_delta + ICOUNT_WOBBLE < delta * 2
+ && timers_state.icount_time_shift > 0) {
+ /* The guest is getting too far ahead. Slow time down. */
+ atomic_set(&timers_state.icount_time_shift,
+ timers_state.icount_time_shift - 1);
+ }
+ if (delta < 0
+ && last_delta - ICOUNT_WOBBLE > delta * 2
+ && timers_state.icount_time_shift < MAX_ICOUNT_SHIFT) {
+ /* The guest is getting too far behind. Speed time up. */
+ atomic_set(&timers_state.icount_time_shift,
+ timers_state.icount_time_shift + 1);
+ }
+ last_delta = delta;
+ atomic_set_i64(&timers_state.qemu_icount_bias,
+ cur_icount - (timers_state.qemu_icount
+ << timers_state.icount_time_shift));
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+}
+
+static void icount_adjust_rt(void *opaque)
+{
+ timer_mod(timers_state.icount_rt_timer,
+ qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
+ icount_adjust();
+}
+
+static void icount_adjust_vm(void *opaque)
+{
+ timer_mod(timers_state.icount_vm_timer,
+ qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
+ NANOSECONDS_PER_SECOND / 10);
+ icount_adjust();
+}
+
+static int64_t qemu_icount_round(int64_t count)
+{
+ int shift = atomic_read(&timers_state.icount_time_shift);
+ return (count + (1 << shift) - 1) >> shift;
+}
+
+static void icount_warp_rt(void)
+{
+ unsigned seq;
+ int64_t warp_start;
+
+ /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
+ * changes from -1 to another value, so the race here is okay.
+ */
+ do {
+ seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
+ warp_start = timers_state.vm_clock_warp_start;
+ } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
+
+ if (warp_start == -1) {
+ return;
+ }
+
+ seqlock_write_lock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ if (runstate_is_running()) {
+ int64_t clock = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
+ cpu_get_clock_locked());
+ int64_t warp_delta;
+
+ warp_delta = clock - timers_state.vm_clock_warp_start;
+ if (use_icount == 2) {
+ /*
+ * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
+ * far ahead of real time.
+ */
+ int64_t cur_icount = cpu_get_icount_locked();
+ int64_t delta = clock - cur_icount;
+ warp_delta = MIN(warp_delta, delta);
+ }
+ atomic_set_i64(&timers_state.qemu_icount_bias,
+ timers_state.qemu_icount_bias + warp_delta);
+ }
+ timers_state.vm_clock_warp_start = -1;
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+
+ if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+ }
+}
+
+static void icount_timer_cb(void *opaque)
+{
+ /* No need for a checkpoint because the timer already synchronizes
+ * with CHECKPOINT_CLOCK_VIRTUAL_RT.
+ */
+ icount_warp_rt();
+}
+
+void qtest_clock_warp(int64_t dest)
+{
+ int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
+ AioContext *aio_context;
+ assert(qtest_enabled());
+ aio_context = qemu_get_aio_context();
+ while (clock < dest) {
+ int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
+ QEMU_TIMER_ATTR_ALL);
+ int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
+
+ seqlock_write_lock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ atomic_set_i64(&timers_state.qemu_icount_bias,
+ timers_state.qemu_icount_bias + warp);
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+
+ qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
+ timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
+ clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
+ }
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+}
+
+void qemu_start_warp_timer(void)
+{
+ int64_t clock;
+ int64_t deadline;
+
+ if (!use_icount) {
+ return;
+ }
+
+ /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
+ * do not fire, so computing the deadline does not make sense.
+ */
+ if (!runstate_is_running()) {
+ return;
+ }
+
+ if (replay_mode != REPLAY_MODE_PLAY) {
+ if (!all_cpu_threads_idle()) {
+ return;
+ }
+
+ if (qtest_enabled()) {
+ /* When testing, qtest commands advance icount. */
+ return;
+ }
+
+ replay_checkpoint(CHECKPOINT_CLOCK_WARP_START);
+ } else {
+ /* warp clock deterministically in record/replay mode */
+ if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
+ /* vCPU is sleeping and warp can't be started.
+ It is probably a race condition: notification sent
+ to vCPU was processed in advance and vCPU went to sleep.
+ Therefore we have to wake it up for doing someting. */
+ if (replay_has_checkpoint()) {
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+ }
+ return;
+ }
+ }
+
+ /* We want to use the earliest deadline from ALL vm_clocks */
+ clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
+ deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
+ ~QEMU_TIMER_ATTR_EXTERNAL);
+ if (deadline < 0) {
+ static bool notified;
+ if (!icount_sleep && !notified) {
+ warn_report("icount sleep disabled and no active timers");
+ notified = true;
+ }
+ return;
+ }
+
+ if (deadline > 0) {
+ /*
+ * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
+ * sleep. Otherwise, the CPU might be waiting for a future timer
+ * interrupt to wake it up, but the interrupt never comes because
+ * the vCPU isn't running any insns and thus doesn't advance the
+ * QEMU_CLOCK_VIRTUAL.
+ */
+ if (!icount_sleep) {
+ /*
+ * We never let VCPUs sleep in no sleep icount mode.
+ * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
+ * to the next QEMU_CLOCK_VIRTUAL event and notify it.
+ * It is useful when we want a deterministic execution time,
+ * isolated from host latencies.
+ */
+ seqlock_write_lock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ atomic_set_i64(&timers_state.qemu_icount_bias,
+ timers_state.qemu_icount_bias + deadline);
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+ } else {
+ /*
+ * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
+ * "real" time, (related to the time left until the next event) has
+ * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
+ * This avoids that the warps are visible externally; for example,
+ * you will not be sending network packets continuously instead of
+ * every 100ms.
+ */
+ seqlock_write_lock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ if (timers_state.vm_clock_warp_start == -1
+ || timers_state.vm_clock_warp_start > clock) {
+ timers_state.vm_clock_warp_start = clock;
+ }
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ timer_mod_anticipate(timers_state.icount_warp_timer,
+ clock + deadline);
+ }
+ } else if (deadline == 0) {
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+ }
+}
+
+static void qemu_account_warp_timer(void)
+{
+ if (!use_icount || !icount_sleep) {
+ return;
+ }
+
+ /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
+ * do not fire, so computing the deadline does not make sense.
+ */
+ if (!runstate_is_running()) {
+ return;
+ }
+
+ /* warp clock deterministically in record/replay mode */
+ if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
+ return;
+ }
+
+ timer_del(timers_state.icount_warp_timer);
+ icount_warp_rt();
+}
+
+static bool icount_state_needed(void *opaque)
+{
+ return use_icount;
+}
+
+static bool warp_timer_state_needed(void *opaque)
+{
+ TimersState *s = opaque;
+ return s->icount_warp_timer != NULL;
+}
+
+static bool adjust_timers_state_needed(void *opaque)
+{
+ TimersState *s = opaque;
+ return s->icount_rt_timer != NULL;
+}
+
+static bool shift_state_needed(void *opaque)
+{
+ return use_icount == 2;
+}
+
+/*
+ * Subsection for warp timer migration is optional, because may not be created
+ */
+static const VMStateDescription icount_vmstate_warp_timer = {
+ .name = "timer/icount/warp_timer",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .needed = warp_timer_state_needed,
+ .fields = (VMStateField[]) {
+ VMSTATE_INT64(vm_clock_warp_start, TimersState),
+ VMSTATE_TIMER_PTR(icount_warp_timer, TimersState),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+static const VMStateDescription icount_vmstate_adjust_timers = {
+ .name = "timer/icount/timers",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .needed = adjust_timers_state_needed,
+ .fields = (VMStateField[]) {
+ VMSTATE_TIMER_PTR(icount_rt_timer, TimersState),
+ VMSTATE_TIMER_PTR(icount_vm_timer, TimersState),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+static const VMStateDescription icount_vmstate_shift = {
+ .name = "timer/icount/shift",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .needed = shift_state_needed,
+ .fields = (VMStateField[]) {
+ VMSTATE_INT16(icount_time_shift, TimersState),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+/*
+ * This is a subsection for icount migration.
+ */
+static const VMStateDescription icount_vmstate_timers = {
+ .name = "timer/icount",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .needed = icount_state_needed,
+ .fields = (VMStateField[]) {
+ VMSTATE_INT64(qemu_icount_bias, TimersState),
+ VMSTATE_INT64(qemu_icount, TimersState),
+ VMSTATE_END_OF_LIST()
+ },
+ .subsections = (const VMStateDescription*[]) {
+ &icount_vmstate_warp_timer,
+ &icount_vmstate_adjust_timers,
+ &icount_vmstate_shift,
+ NULL
+ }
+};
+
+static const VMStateDescription vmstate_timers = {
+ .name = "timer",
+ .version_id = 2,
+ .minimum_version_id = 1,
+ .fields = (VMStateField[]) {
+ VMSTATE_INT64(cpu_ticks_offset, TimersState),
+ VMSTATE_UNUSED(8),
+ VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
+ VMSTATE_END_OF_LIST()
+ },
+ .subsections = (const VMStateDescription*[]) {
+ &icount_vmstate_timers,
+ NULL
+ }
+};
+
+static void cpu_throttle_thread(CPUState *cpu, run_on_cpu_data opaque)
+{
+ double pct;
+ double throttle_ratio;
+ int64_t sleeptime_ns, endtime_ns;
+
+ if (!cpu_throttle_get_percentage()) {
+ return;
+ }
+
+ pct = (double)cpu_throttle_get_percentage()/100;
+ throttle_ratio = pct / (1 - pct);
+ /* Add 1ns to fix double's rounding error (like 0.9999999...) */
+ sleeptime_ns = (int64_t)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS + 1);
+ endtime_ns = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + sleeptime_ns;
+ while (sleeptime_ns > 0 && !cpu->stop) {
+ if (sleeptime_ns > SCALE_MS) {
+ qemu_cond_timedwait(cpu->halt_cond, &qemu_global_mutex,
+ sleeptime_ns / SCALE_MS);
+ } else {
+ qemu_mutex_unlock_iothread();
+ g_usleep(sleeptime_ns / SCALE_US);
+ qemu_mutex_lock_iothread();
+ }
+ sleeptime_ns = endtime_ns - qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
+ }
+ atomic_set(&cpu->throttle_thread_scheduled, 0);
+}
+
+static void cpu_throttle_timer_tick(void *opaque)
+{
+ CPUState *cpu;
+ double pct;
+
+ /* Stop the timer if needed */
+ if (!cpu_throttle_get_percentage()) {
+ return;
+ }
+ CPU_FOREACH(cpu) {
+ if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
+ async_run_on_cpu(cpu, cpu_throttle_thread,
+ RUN_ON_CPU_NULL);
+ }
+ }
+
+ pct = (double)cpu_throttle_get_percentage()/100;
+ timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
+ CPU_THROTTLE_TIMESLICE_NS / (1-pct));
+}
+
+void cpu_throttle_set(int new_throttle_pct)
+{
+ /* Ensure throttle percentage is within valid range */
+ new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
+ new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);
+
+ atomic_set(&throttle_percentage, new_throttle_pct);
+
+ timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
+ CPU_THROTTLE_TIMESLICE_NS);
+}
+
+void cpu_throttle_stop(void)
+{
+ atomic_set(&throttle_percentage, 0);
+}
+
+bool cpu_throttle_active(void)
+{
+ return (cpu_throttle_get_percentage() != 0);
+}
+
+int cpu_throttle_get_percentage(void)
+{
+ return atomic_read(&throttle_percentage);
+}
+
+void cpu_ticks_init(void)
+{
+ seqlock_init(&timers_state.vm_clock_seqlock);
+ qemu_spin_init(&timers_state.vm_clock_lock);
+ vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
+ throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
+ cpu_throttle_timer_tick, NULL);
+}
+
+void configure_icount(QemuOpts *opts, Error **errp)
+{
+ const char *option = qemu_opt_get(opts, "shift");
+ bool sleep = qemu_opt_get_bool(opts, "sleep", true);
+ bool align = qemu_opt_get_bool(opts, "align", false);
+ long time_shift = -1;
+
+ if (!option) {
+ if (qemu_opt_get(opts, "align") != NULL) {
+ error_setg(errp, "Please specify shift option when using align");
+ }
+ return;
+ }
+
+ if (align && !sleep) {
+ error_setg(errp, "align=on and sleep=off are incompatible");
+ return;
+ }
+
+ if (strcmp(option, "auto") != 0) {
+ if (qemu_strtol(option, NULL, 0, &time_shift) < 0
+ || time_shift < 0 || time_shift > MAX_ICOUNT_SHIFT) {
+ error_setg(errp, "icount: Invalid shift value");
+ return;
+ }
+ } else if (icount_align_option) {
+ error_setg(errp, "shift=auto and align=on are incompatible");
+ return;
+ } else if (!icount_sleep) {
+ error_setg(errp, "shift=auto and sleep=off are incompatible");
+ return;
+ }
+
+ icount_sleep = sleep;
+ if (icount_sleep) {
+ timers_state.icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
+ icount_timer_cb, NULL);
+ }
+
+ icount_align_option = align;
+
+ if (time_shift >= 0) {
+ timers_state.icount_time_shift = time_shift;
+ use_icount = 1;
+ return;
+ }
+
+ use_icount = 2;
+
+ /* 125MIPS seems a reasonable initial guess at the guest speed.
+ It will be corrected fairly quickly anyway. */
+ timers_state.icount_time_shift = 3;
+
+ /* Have both realtime and virtual time triggers for speed adjustment.
+ The realtime trigger catches emulated time passing too slowly,
+ the virtual time trigger catches emulated time passing too fast.
+ Realtime triggers occur even when idle, so use them less frequently
+ than VM triggers. */
+ timers_state.vm_clock_warp_start = -1;
+ timers_state.icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
+ icount_adjust_rt, NULL);
+ timer_mod(timers_state.icount_rt_timer,
+ qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
+ timers_state.icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
+ icount_adjust_vm, NULL);
+ timer_mod(timers_state.icount_vm_timer,
+ qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
+ NANOSECONDS_PER_SECOND / 10);
+}
+
+/***********************************************************/
+/* TCG vCPU kick timer
+ *
+ * The kick timer is responsible for moving single threaded vCPU
+ * emulation on to the next vCPU. If more than one vCPU is running a
+ * timer event with force a cpu->exit so the next vCPU can get
+ * scheduled.
+ *
+ * The timer is removed if all vCPUs are idle and restarted again once
+ * idleness is complete.
+ */
+
+static QEMUTimer *tcg_kick_vcpu_timer;
+static CPUState *tcg_current_rr_cpu;
+
+#define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10)
+
+static inline int64_t qemu_tcg_next_kick(void)
+{
+ return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD;
+}
+
+/* Kick the currently round-robin scheduled vCPU to next */
+static void qemu_cpu_kick_rr_next_cpu(void)
+{
+ CPUState *cpu;
+ do {
+ cpu = atomic_mb_read(&tcg_current_rr_cpu);
+ if (cpu) {
+ cpu_exit(cpu);
+ }
+ } while (cpu != atomic_mb_read(&tcg_current_rr_cpu));
+}
+
+/* Kick all RR vCPUs */
+static void qemu_cpu_kick_rr_cpus(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ cpu_exit(cpu);
+ };
+}
+
+static void do_nothing(CPUState *cpu, run_on_cpu_data unused)
+{
+}
+
+void qemu_timer_notify_cb(void *opaque, QEMUClockType type)
+{
+ if (!use_icount || type != QEMU_CLOCK_VIRTUAL) {
+ qemu_notify_event();
+ return;
+ }
+
+ if (qemu_in_vcpu_thread()) {
+ /* A CPU is currently running; kick it back out to the
+ * tcg_cpu_exec() loop so it will recalculate its
+ * icount deadline immediately.
+ */
+ qemu_cpu_kick(current_cpu);
+ } else if (first_cpu) {
+ /* qemu_cpu_kick is not enough to kick a halted CPU out of
+ * qemu_tcg_wait_io_event. async_run_on_cpu, instead,
+ * causes cpu_thread_is_idle to return false. This way,
+ * handle_icount_deadline can run.
+ * If we have no CPUs at all for some reason, we don't
+ * need to do anything.
+ */
+ async_run_on_cpu(first_cpu, do_nothing, RUN_ON_CPU_NULL);
+ }
+}
+
+static void kick_tcg_thread(void *opaque)
+{
+ timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
+ qemu_cpu_kick_rr_next_cpu();
+}
+
+static void start_tcg_kick_timer(void)
+{
+ assert(!mttcg_enabled);
+ if (!tcg_kick_vcpu_timer && CPU_NEXT(first_cpu)) {
+ tcg_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
+ kick_tcg_thread, NULL);
+ }
+ if (tcg_kick_vcpu_timer && !timer_pending(tcg_kick_vcpu_timer)) {
+ timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
+ }
+}
+
+static void stop_tcg_kick_timer(void)
+{
+ assert(!mttcg_enabled);
+ if (tcg_kick_vcpu_timer && timer_pending(tcg_kick_vcpu_timer)) {
+ timer_del(tcg_kick_vcpu_timer);
+ }
+}
+
+/***********************************************************/
+void hw_error(const char *fmt, ...)
+{
+ va_list ap;
+ CPUState *cpu;
+
+ va_start(ap, fmt);
+ fprintf(stderr, "qemu: hardware error: ");
+ vfprintf(stderr, fmt, ap);
+ fprintf(stderr, "\n");
+ CPU_FOREACH(cpu) {
+ fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
+ cpu_dump_state(cpu, stderr, CPU_DUMP_FPU);
+ }
+ va_end(ap);
+ abort();
+}
+
+void cpu_synchronize_all_states(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ cpu_synchronize_state(cpu);
+ }
+}
+
+void cpu_synchronize_all_post_reset(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ cpu_synchronize_post_reset(cpu);
+ }
+}
+
+void cpu_synchronize_all_post_init(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ cpu_synchronize_post_init(cpu);
+ }
+}
+
+void cpu_synchronize_all_pre_loadvm(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ cpu_synchronize_pre_loadvm(cpu);
+ }
+}
+
+static int do_vm_stop(RunState state, bool send_stop)
+{
+ int ret = 0;
+
+ if (runstate_is_running()) {
+ runstate_set(state);
+ cpu_disable_ticks();
+ pause_all_vcpus();
+ vm_state_notify(0, state);
+ if (send_stop) {
+ qapi_event_send_stop();
+ }
+ }
+
+ bdrv_drain_all();
+ ret = bdrv_flush_all();
+
+ return ret;
+}
+
+/* Special vm_stop() variant for terminating the process. Historically clients
+ * did not expect a QMP STOP event and so we need to retain compatibility.
+ */
+int vm_shutdown(void)
+{
+ return do_vm_stop(RUN_STATE_SHUTDOWN, false);
+}
+
+static bool cpu_can_run(CPUState *cpu)
+{
+ if (cpu->stop) {
+ return false;
+ }
+ if (cpu_is_stopped(cpu)) {
+ return false;
+ }
+ return true;
+}
+
+static void cpu_handle_guest_debug(CPUState *cpu)
+{
+ gdb_set_stop_cpu(cpu);
+ qemu_system_debug_request();
+ cpu->stopped = true;
+}
+
+#ifdef CONFIG_LINUX
+static void sigbus_reraise(void)
+{
+ sigset_t set;
+ struct sigaction action;
+
+ memset(&action, 0, sizeof(action));
+ action.sa_handler = SIG_DFL;
+ if (!sigaction(SIGBUS, &action, NULL)) {
+ raise(SIGBUS);
+ sigemptyset(&set);
+ sigaddset(&set, SIGBUS);
+ pthread_sigmask(SIG_UNBLOCK, &set, NULL);
+ }
+ perror("Failed to re-raise SIGBUS!\n");
+ abort();
+}
+
+static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx)
+{
+ if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) {
+ sigbus_reraise();
+ }
+
+ if (current_cpu) {
+ /* Called asynchronously in VCPU thread. */
+ if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) {
+ sigbus_reraise();
+ }
+ } else {
+ /* Called synchronously (via signalfd) in main thread. */
+ if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) {
+ sigbus_reraise();
+ }
+ }
+}
+
+static void qemu_init_sigbus(void)
+{
+ struct sigaction action;
+
+ memset(&action, 0, sizeof(action));
+ action.sa_flags = SA_SIGINFO;
+ action.sa_sigaction = sigbus_handler;
+ sigaction(SIGBUS, &action, NULL);
+
+ prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
+}
+#else /* !CONFIG_LINUX */
+static void qemu_init_sigbus(void)
+{
+}
+#endif /* !CONFIG_LINUX */
+
+static QemuThread io_thread;
+
+/* cpu creation */
+static QemuCond qemu_cpu_cond;
+/* system init */
+static QemuCond qemu_pause_cond;
+
+void qemu_init_cpu_loop(void)
+{
+ qemu_init_sigbus();
+ qemu_cond_init(&qemu_cpu_cond);
+ qemu_cond_init(&qemu_pause_cond);
+ qemu_mutex_init(&qemu_global_mutex);
+
+ qemu_thread_get_self(&io_thread);
+}
+
+void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
+{
+ do_run_on_cpu(cpu, func, data, &qemu_global_mutex);
+}
+
+static void qemu_kvm_destroy_vcpu(CPUState *cpu)
+{
+ if (kvm_destroy_vcpu(cpu) < 0) {
+ error_report("kvm_destroy_vcpu failed");
+ exit(EXIT_FAILURE);
+ }
+}
+
+static void qemu_tcg_destroy_vcpu(CPUState *cpu)
+{
+}
+
+static void qemu_cpu_stop(CPUState *cpu, bool exit)
+{
+ g_assert(qemu_cpu_is_self(cpu));
+ cpu->stop = false;
+ cpu->stopped = true;
+ if (exit) {
+ cpu_exit(cpu);
+ }
+ qemu_cond_broadcast(&qemu_pause_cond);
+}
+
+static void qemu_wait_io_event_common(CPUState *cpu)
+{
+ atomic_mb_set(&cpu->thread_kicked, false);
+ if (cpu->stop) {
+ qemu_cpu_stop(cpu, false);
+ }
+ process_queued_cpu_work(cpu);
+}
+
+static void qemu_tcg_rr_wait_io_event(void)
+{
+ CPUState *cpu;
+
+ while (all_cpu_threads_idle()) {
+ stop_tcg_kick_timer();
+ qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
+ }
+
+ start_tcg_kick_timer();
+
+ CPU_FOREACH(cpu) {
+ qemu_wait_io_event_common(cpu);
+ }
+}
+
+static void qemu_wait_io_event(CPUState *cpu)
+{
+ bool slept = false;
+
+ while (cpu_thread_is_idle(cpu)) {
+ if (!slept) {
+ slept = true;
+ qemu_plugin_vcpu_idle_cb(cpu);
+ }
+ qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
+ }
+ if (slept) {
+ qemu_plugin_vcpu_resume_cb(cpu);
+ }
+
+#ifdef _WIN32
+ /* Eat dummy APC queued by qemu_cpu_kick_thread. */
+ if (!tcg_enabled()) {
+ SleepEx(0, TRUE);
+ }
+#endif
+ qemu_wait_io_event_common(cpu);
+}
+
+static void *qemu_kvm_cpu_thread_fn(void *arg)
+{
+ CPUState *cpu = arg;
+ int r;
+
+ rcu_register_thread();
+
+ qemu_mutex_lock_iothread();
+ qemu_thread_get_self(cpu->thread);
+ cpu->thread_id = qemu_get_thread_id();
+ cpu->can_do_io = 1;
+ current_cpu = cpu;
+
+ r = kvm_init_vcpu(cpu);
+ if (r < 0) {
+ error_report("kvm_init_vcpu failed: %s", strerror(-r));
+ exit(1);
+ }
+
+ kvm_init_cpu_signals(cpu);
+
+ /* signal CPU creation */
+ cpu->created = true;
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_guest_random_seed_thread_part2(cpu->random_seed);
+
+ do {
+ if (cpu_can_run(cpu)) {
+ r = kvm_cpu_exec(cpu);
+ if (r == EXCP_DEBUG) {
+ cpu_handle_guest_debug(cpu);
+ }
+ }
+ qemu_wait_io_event(cpu);
+ } while (!cpu->unplug || cpu_can_run(cpu));
+
+ qemu_kvm_destroy_vcpu(cpu);
+ cpu->created = false;
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_mutex_unlock_iothread();
+ rcu_unregister_thread();
+ return NULL;
+}
+
+static void *qemu_dummy_cpu_thread_fn(void *arg)
+{
+#ifdef _WIN32
+ error_report("qtest is not supported under Windows");
+ exit(1);
+#else
+ CPUState *cpu = arg;
+ sigset_t waitset;
+ int r;
+
+ rcu_register_thread();
+
+ qemu_mutex_lock_iothread();
+ qemu_thread_get_self(cpu->thread);
+ cpu->thread_id = qemu_get_thread_id();
+ cpu->can_do_io = 1;
+ current_cpu = cpu;
+
+ sigemptyset(&waitset);
+ sigaddset(&waitset, SIG_IPI);
+
+ /* signal CPU creation */
+ cpu->created = true;
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_guest_random_seed_thread_part2(cpu->random_seed);
+
+ do {
+ qemu_mutex_unlock_iothread();
+ do {
+ int sig;
+ r = sigwait(&waitset, &sig);
+ } while (r == -1 && (errno == EAGAIN || errno == EINTR));
+ if (r == -1) {
+ perror("sigwait");
+ exit(1);
+ }
+ qemu_mutex_lock_iothread();
+ qemu_wait_io_event(cpu);
+ } while (!cpu->unplug);
+
+ qemu_mutex_unlock_iothread();
+ rcu_unregister_thread();
+ return NULL;
+#endif
+}
+
+static int64_t tcg_get_icount_limit(void)
+{
+ int64_t deadline;
+
+ if (replay_mode != REPLAY_MODE_PLAY) {
+ /*
+ * Include all the timers, because they may need an attention.
+ * Too long CPU execution may create unnecessary delay in UI.
+ */
+ deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
+ QEMU_TIMER_ATTR_ALL);
+ /* Check realtime timers, because they help with input processing */
+ deadline = qemu_soonest_timeout(deadline,
+ qemu_clock_deadline_ns_all(QEMU_CLOCK_REALTIME,
+ QEMU_TIMER_ATTR_ALL));
+
+ /* Maintain prior (possibly buggy) behaviour where if no deadline
+ * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
+ * INT32_MAX nanoseconds ahead, we still use INT32_MAX
+ * nanoseconds.
+ */
+ if ((deadline < 0) || (deadline > INT32_MAX)) {
+ deadline = INT32_MAX;
+ }
+
+ return qemu_icount_round(deadline);
+ } else {
+ return replay_get_instructions();
+ }
+}
+
+static void notify_aio_contexts(void)
+{
+ /* Wake up other AioContexts. */
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+ qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
+}
+
+static void handle_icount_deadline(void)
+{
+ assert(qemu_in_vcpu_thread());
+ if (use_icount) {
+ int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
+ QEMU_TIMER_ATTR_ALL);
+
+ if (deadline == 0) {
+ notify_aio_contexts();
+ }
+ }
+}
+
+static void prepare_icount_for_run(CPUState *cpu)
+{
+ if (use_icount) {
+ int insns_left;
+
+ /* These should always be cleared by process_icount_data after
+ * each vCPU execution. However u16.high can be raised
+ * asynchronously by cpu_exit/cpu_interrupt/tcg_handle_interrupt
+ */
+ g_assert(cpu_neg(cpu)->icount_decr.u16.low == 0);
+ g_assert(cpu->icount_extra == 0);
+
+ cpu->icount_budget = tcg_get_icount_limit();
+ insns_left = MIN(0xffff, cpu->icount_budget);
+ cpu_neg(cpu)->icount_decr.u16.low = insns_left;
+ cpu->icount_extra = cpu->icount_budget - insns_left;
+
+ replay_mutex_lock();
+
+ if (cpu->icount_budget == 0 && replay_has_checkpoint()) {
+ notify_aio_contexts();
+ }
+ }
+}
+
+static void process_icount_data(CPUState *cpu)
+{
+ if (use_icount) {
+ /* Account for executed instructions */
+ cpu_update_icount(cpu);
+
+ /* Reset the counters */
+ cpu_neg(cpu)->icount_decr.u16.low = 0;
+ cpu->icount_extra = 0;
+ cpu->icount_budget = 0;
+
+ replay_account_executed_instructions();
+
+ replay_mutex_unlock();
+ }
+}
+
+
+static int tcg_cpu_exec(CPUState *cpu)
+{
+ int ret;
+#ifdef CONFIG_PROFILER
+ int64_t ti;
+#endif
+
+ assert(tcg_enabled());
+#ifdef CONFIG_PROFILER
+ ti = profile_getclock();
+#endif
+ cpu_exec_start(cpu);
+ ret = cpu_exec(cpu);
+ cpu_exec_end(cpu);
+#ifdef CONFIG_PROFILER
+ atomic_set(&tcg_ctx->prof.cpu_exec_time,
+ tcg_ctx->prof.cpu_exec_time + profile_getclock() - ti);
+#endif
+ return ret;
+}
+
+/* Destroy any remaining vCPUs which have been unplugged and have
+ * finished running
+ */
+static void deal_with_unplugged_cpus(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ if (cpu->unplug && !cpu_can_run(cpu)) {
+ qemu_tcg_destroy_vcpu(cpu);
+ cpu->created = false;
+ qemu_cond_signal(&qemu_cpu_cond);
+ break;
+ }
+ }
+}
+
+/* Single-threaded TCG
+ *
+ * In the single-threaded case each vCPU is simulated in turn. If
+ * there is more than a single vCPU we create a simple timer to kick
+ * the vCPU and ensure we don't get stuck in a tight loop in one vCPU.
+ * This is done explicitly rather than relying on side-effects
+ * elsewhere.
+ */
+
+static void *qemu_tcg_rr_cpu_thread_fn(void *arg)
+{
+ CPUState *cpu = arg;
+
+ assert(tcg_enabled());
+ rcu_register_thread();
+ tcg_register_thread();
+
+ qemu_mutex_lock_iothread();
+ qemu_thread_get_self(cpu->thread);
+
+ cpu->thread_id = qemu_get_thread_id();
+ cpu->created = true;
+ cpu->can_do_io = 1;
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_guest_random_seed_thread_part2(cpu->random_seed);
+
+ /* wait for initial kick-off after machine start */
+ while (first_cpu->stopped) {
+ qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
+
+ /* process any pending work */
+ CPU_FOREACH(cpu) {
+ current_cpu = cpu;
+ qemu_wait_io_event_common(cpu);
+ }
+ }
+
+ start_tcg_kick_timer();
+
+ cpu = first_cpu;
+
+ /* process any pending work */
+ cpu->exit_request = 1;
+
+ while (1) {
+ qemu_mutex_unlock_iothread();
+ replay_mutex_lock();
+ qemu_mutex_lock_iothread();
+ /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
+ qemu_account_warp_timer();
+
+ /* Run the timers here. This is much more efficient than
+ * waking up the I/O thread and waiting for completion.
+ */
+ handle_icount_deadline();
+
+ replay_mutex_unlock();
+
+ if (!cpu) {
+ cpu = first_cpu;
+ }
+
+ while (cpu && cpu_work_list_empty(cpu) && !cpu->exit_request) {
+
+ atomic_mb_set(&tcg_current_rr_cpu, cpu);
+ current_cpu = cpu;
+
+ qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
+ (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
+
+ if (cpu_can_run(cpu)) {
+ int r;
+
+ qemu_mutex_unlock_iothread();
+ prepare_icount_for_run(cpu);
+
+ r = tcg_cpu_exec(cpu);
+
+ process_icount_data(cpu);
+ qemu_mutex_lock_iothread();
+
+ if (r == EXCP_DEBUG) {
+ cpu_handle_guest_debug(cpu);
+ break;
+ } else if (r == EXCP_ATOMIC) {
+ qemu_mutex_unlock_iothread();
+ cpu_exec_step_atomic(cpu);
+ qemu_mutex_lock_iothread();
+ break;
+ }
+ } else if (cpu->stop) {
+ if (cpu->unplug) {
+ cpu = CPU_NEXT(cpu);
+ }
+ break;
+ }
+
+ cpu = CPU_NEXT(cpu);
+ } /* while (cpu && !cpu->exit_request).. */
+
+ /* Does not need atomic_mb_set because a spurious wakeup is okay. */
+ atomic_set(&tcg_current_rr_cpu, NULL);
+
+ if (cpu && cpu->exit_request) {
+ atomic_mb_set(&cpu->exit_request, 0);
+ }
+
+ if (use_icount && all_cpu_threads_idle()) {
+ /*
+ * When all cpus are sleeping (e.g in WFI), to avoid a deadlock
+ * in the main_loop, wake it up in order to start the warp timer.
+ */
+ qemu_notify_event();
+ }
+
+ qemu_tcg_rr_wait_io_event();
+ deal_with_unplugged_cpus();
+ }
+
+ rcu_unregister_thread();
+ return NULL;
+}
+
+static void *qemu_hax_cpu_thread_fn(void *arg)
+{
+ CPUState *cpu = arg;
+ int r;
+
+ rcu_register_thread();
+ qemu_mutex_lock_iothread();
+ qemu_thread_get_self(cpu->thread);
+
+ cpu->thread_id = qemu_get_thread_id();
+ cpu->created = true;
+ current_cpu = cpu;
+
+ hax_init_vcpu(cpu);
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_guest_random_seed_thread_part2(cpu->random_seed);
+
+ do {
+ if (cpu_can_run(cpu)) {
+ r = hax_smp_cpu_exec(cpu);
+ if (r == EXCP_DEBUG) {
+ cpu_handle_guest_debug(cpu);
+ }
+ }
+
+ qemu_wait_io_event(cpu);
+ } while (!cpu->unplug || cpu_can_run(cpu));
+ rcu_unregister_thread();
+ return NULL;
+}
+
+/* The HVF-specific vCPU thread function. This one should only run when the host
+ * CPU supports the VMX "unrestricted guest" feature. */
+static void *qemu_hvf_cpu_thread_fn(void *arg)
+{
+ CPUState *cpu = arg;
+
+ int r;
+
+ assert(hvf_enabled());
+
+ rcu_register_thread();
+
+ qemu_mutex_lock_iothread();
+ qemu_thread_get_self(cpu->thread);
+
+ cpu->thread_id = qemu_get_thread_id();
+ cpu->can_do_io = 1;
+ current_cpu = cpu;
+
+ hvf_init_vcpu(cpu);
+
+ /* signal CPU creation */
+ cpu->created = true;
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_guest_random_seed_thread_part2(cpu->random_seed);
+
+ do {
+ if (cpu_can_run(cpu)) {
+ r = hvf_vcpu_exec(cpu);
+ if (r == EXCP_DEBUG) {
+ cpu_handle_guest_debug(cpu);
+ }
+ }
+ qemu_wait_io_event(cpu);
+ } while (!cpu->unplug || cpu_can_run(cpu));
+
+ hvf_vcpu_destroy(cpu);
+ cpu->created = false;
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_mutex_unlock_iothread();
+ rcu_unregister_thread();
+ return NULL;
+}
+
+static void *qemu_whpx_cpu_thread_fn(void *arg)
+{
+ CPUState *cpu = arg;
+ int r;
+
+ rcu_register_thread();
+
+ qemu_mutex_lock_iothread();
+ qemu_thread_get_self(cpu->thread);
+ cpu->thread_id = qemu_get_thread_id();
+ current_cpu = cpu;
+
+ r = whpx_init_vcpu(cpu);
+ if (r < 0) {
+ fprintf(stderr, "whpx_init_vcpu failed: %s\n", strerror(-r));
+ exit(1);
+ }
+
+ /* signal CPU creation */
+ cpu->created = true;
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_guest_random_seed_thread_part2(cpu->random_seed);
+
+ do {
+ if (cpu_can_run(cpu)) {
+ r = whpx_vcpu_exec(cpu);
+ if (r == EXCP_DEBUG) {
+ cpu_handle_guest_debug(cpu);
+ }
+ }
+ while (cpu_thread_is_idle(cpu)) {
+ qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
+ }
+ qemu_wait_io_event_common(cpu);
+ } while (!cpu->unplug || cpu_can_run(cpu));
+
+ whpx_destroy_vcpu(cpu);
+ cpu->created = false;
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_mutex_unlock_iothread();
+ rcu_unregister_thread();
+ return NULL;
+}
+
+#ifdef _WIN32
+static void CALLBACK dummy_apc_func(ULONG_PTR unused)
+{
+}
+#endif
+
+/* Multi-threaded TCG
+ *
+ * In the multi-threaded case each vCPU has its own thread. The TLS
+ * variable current_cpu can be used deep in the code to find the
+ * current CPUState for a given thread.
+ */
+
+static void *qemu_tcg_cpu_thread_fn(void *arg)
+{
+ CPUState *cpu = arg;
+
+ assert(tcg_enabled());
+ g_assert(!use_icount);
+
+ rcu_register_thread();
+ tcg_register_thread();
+
+ qemu_mutex_lock_iothread();
+ qemu_thread_get_self(cpu->thread);
+
+ cpu->thread_id = qemu_get_thread_id();
+ cpu->created = true;
+ cpu->can_do_io = 1;
+ current_cpu = cpu;
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_guest_random_seed_thread_part2(cpu->random_seed);
+
+ /* process any pending work */
+ cpu->exit_request = 1;
+
+ do {
+ if (cpu_can_run(cpu)) {
+ int r;
+ qemu_mutex_unlock_iothread();
+ r = tcg_cpu_exec(cpu);
+ qemu_mutex_lock_iothread();
+ switch (r) {
+ case EXCP_DEBUG:
+ cpu_handle_guest_debug(cpu);
+ break;
+ case EXCP_HALTED:
+ /* during start-up the vCPU is reset and the thread is
+ * kicked several times. If we don't ensure we go back
+ * to sleep in the halted state we won't cleanly
+ * start-up when the vCPU is enabled.
+ *
+ * cpu->halted should ensure we sleep in wait_io_event
+ */
+ g_assert(cpu->halted);
+ break;
+ case EXCP_ATOMIC:
+ qemu_mutex_unlock_iothread();
+ cpu_exec_step_atomic(cpu);
+ qemu_mutex_lock_iothread();
+ default:
+ /* Ignore everything else? */
+ break;
+ }
+ }
+
+ atomic_mb_set(&cpu->exit_request, 0);
+ qemu_wait_io_event(cpu);
+ } while (!cpu->unplug || cpu_can_run(cpu));
+
+ qemu_tcg_destroy_vcpu(cpu);
+ cpu->created = false;
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_mutex_unlock_iothread();
+ rcu_unregister_thread();
+ return NULL;
+}
+
+static void qemu_cpu_kick_thread(CPUState *cpu)
+{
+#ifndef _WIN32
+ int err;
+
+ if (cpu->thread_kicked) {
+ return;
+ }
+ cpu->thread_kicked = true;
+ err = pthread_kill(cpu->thread->thread, SIG_IPI);
+ if (err && err != ESRCH) {
+ fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
+ exit(1);
+ }
+#else /* _WIN32 */
+ if (!qemu_cpu_is_self(cpu)) {
+ if (whpx_enabled()) {
+ whpx_vcpu_kick(cpu);
+ } else if (!QueueUserAPC(dummy_apc_func, cpu->hThread, 0)) {
+ fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n",
+ __func__, GetLastError());
+ exit(1);
+ }
+ }
+#endif
+}
+
+void qemu_cpu_kick(CPUState *cpu)
+{
+ qemu_cond_broadcast(cpu->halt_cond);
+ if (tcg_enabled()) {
+ if (qemu_tcg_mttcg_enabled()) {
+ cpu_exit(cpu);
+ } else {
+ qemu_cpu_kick_rr_cpus();
+ }
+ } else {
+ if (hax_enabled()) {
+ /*
+ * FIXME: race condition with the exit_request check in
+ * hax_vcpu_hax_exec
+ */
+ cpu->exit_request = 1;
+ }
+ qemu_cpu_kick_thread(cpu);
+ }
+}
+
+void qemu_cpu_kick_self(void)
+{
+ assert(current_cpu);
+ qemu_cpu_kick_thread(current_cpu);
+}
+
+bool qemu_cpu_is_self(CPUState *cpu)
+{
+ return qemu_thread_is_self(cpu->thread);
+}
+
+bool qemu_in_vcpu_thread(void)
+{
+ return current_cpu && qemu_cpu_is_self(current_cpu);
+}
+
+static __thread bool iothread_locked = false;
+
+bool qemu_mutex_iothread_locked(void)
+{
+ return iothread_locked;
+}
+
+/*
+ * The BQL is taken from so many places that it is worth profiling the
+ * callers directly, instead of funneling them all through a single function.
+ */
+void qemu_mutex_lock_iothread_impl(const char *file, int line)
+{
+ QemuMutexLockFunc bql_lock = atomic_read(&qemu_bql_mutex_lock_func);
+
+ g_assert(!qemu_mutex_iothread_locked());
+ bql_lock(&qemu_global_mutex, file, line);
+ iothread_locked = true;
+}
+
+void qemu_mutex_unlock_iothread(void)
+{
+ g_assert(qemu_mutex_iothread_locked());
+ iothread_locked = false;
+ qemu_mutex_unlock(&qemu_global_mutex);
+}
+
+void qemu_cond_wait_iothread(QemuCond *cond)
+{
+ qemu_cond_wait(cond, &qemu_global_mutex);
+}
+
+static bool all_vcpus_paused(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ if (!cpu->stopped) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+void pause_all_vcpus(void)
+{
+ CPUState *cpu;
+
+ qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
+ CPU_FOREACH(cpu) {
+ if (qemu_cpu_is_self(cpu)) {
+ qemu_cpu_stop(cpu, true);
+ } else {
+ cpu->stop = true;
+ qemu_cpu_kick(cpu);
+ }
+ }
+
+ /* We need to drop the replay_lock so any vCPU threads woken up
+ * can finish their replay tasks
+ */
+ replay_mutex_unlock();
+
+ while (!all_vcpus_paused()) {
+ qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
+ CPU_FOREACH(cpu) {
+ qemu_cpu_kick(cpu);
+ }
+ }
+
+ qemu_mutex_unlock_iothread();
+ replay_mutex_lock();
+ qemu_mutex_lock_iothread();
+}
+
+void cpu_resume(CPUState *cpu)
+{
+ cpu->stop = false;
+ cpu->stopped = false;
+ qemu_cpu_kick(cpu);
+}
+
+void resume_all_vcpus(void)
+{
+ CPUState *cpu;
+
+ if (!runstate_is_running()) {
+ return;
+ }
+
+ qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
+ CPU_FOREACH(cpu) {
+ cpu_resume(cpu);
+ }
+}
+
+void cpu_remove_sync(CPUState *cpu)
+{
+ cpu->stop = true;
+ cpu->unplug = true;
+ qemu_cpu_kick(cpu);
+ qemu_mutex_unlock_iothread();
+ qemu_thread_join(cpu->thread);
+ qemu_mutex_lock_iothread();
+}
+
+/* For temporary buffers for forming a name */
+#define VCPU_THREAD_NAME_SIZE 16
+
+static void qemu_tcg_init_vcpu(CPUState *cpu)
+{
+ char thread_name[VCPU_THREAD_NAME_SIZE];
+ static QemuCond *single_tcg_halt_cond;
+ static QemuThread *single_tcg_cpu_thread;
+ static int tcg_region_inited;
+
+ assert(tcg_enabled());
+ /*
+ * Initialize TCG regions--once. Now is a good time, because:
+ * (1) TCG's init context, prologue and target globals have been set up.
+ * (2) qemu_tcg_mttcg_enabled() works now (TCG init code runs before the
+ * -accel flag is processed, so the check doesn't work then).
+ */
+ if (!tcg_region_inited) {
+ tcg_region_inited = 1;
+ tcg_region_init();
+ }
+
+ if (qemu_tcg_mttcg_enabled() || !single_tcg_cpu_thread) {
+ cpu->thread = g_malloc0(sizeof(QemuThread));
+ cpu->halt_cond = g_malloc0(sizeof(QemuCond));
+ qemu_cond_init(cpu->halt_cond);
+
+ if (qemu_tcg_mttcg_enabled()) {
+ /* create a thread per vCPU with TCG (MTTCG) */
+ parallel_cpus = true;
+ snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
+ cpu->cpu_index);
+
+ qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
+ cpu, QEMU_THREAD_JOINABLE);
+
+ } else {
+ /* share a single thread for all cpus with TCG */
+ snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG");
+ qemu_thread_create(cpu->thread, thread_name,
+ qemu_tcg_rr_cpu_thread_fn,
+ cpu, QEMU_THREAD_JOINABLE);
+
+ single_tcg_halt_cond = cpu->halt_cond;
+ single_tcg_cpu_thread = cpu->thread;
+ }
+#ifdef _WIN32
+ cpu->hThread = qemu_thread_get_handle(cpu->thread);
+#endif
+ } else {
+ /* For non-MTTCG cases we share the thread */
+ cpu->thread = single_tcg_cpu_thread;
+ cpu->halt_cond = single_tcg_halt_cond;
+ cpu->thread_id = first_cpu->thread_id;
+ cpu->can_do_io = 1;
+ cpu->created = true;
+ }
+}
+
+static void qemu_hax_start_vcpu(CPUState *cpu)
+{
+ char thread_name[VCPU_THREAD_NAME_SIZE];
+
+ cpu->thread = g_malloc0(sizeof(QemuThread));
+ cpu->halt_cond = g_malloc0(sizeof(QemuCond));
+ qemu_cond_init(cpu->halt_cond);
+
+ snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HAX",
+ cpu->cpu_index);
+ qemu_thread_create(cpu->thread, thread_name, qemu_hax_cpu_thread_fn,
+ cpu, QEMU_THREAD_JOINABLE);
+#ifdef _WIN32
+ cpu->hThread = qemu_thread_get_handle(cpu->thread);
+#endif
+}
+
+static void qemu_kvm_start_vcpu(CPUState *cpu)
+{
+ char thread_name[VCPU_THREAD_NAME_SIZE];
+
+ cpu->thread = g_malloc0(sizeof(QemuThread));
+ cpu->halt_cond = g_malloc0(sizeof(QemuCond));
+ qemu_cond_init(cpu->halt_cond);
+ snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
+ cpu->cpu_index);
+ qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
+ cpu, QEMU_THREAD_JOINABLE);
+}
+
+static void qemu_hvf_start_vcpu(CPUState *cpu)
+{
+ char thread_name[VCPU_THREAD_NAME_SIZE];
+
+ /* HVF currently does not support TCG, and only runs in
+ * unrestricted-guest mode. */
+ assert(hvf_enabled());
+
+ cpu->thread = g_malloc0(sizeof(QemuThread));
+ cpu->halt_cond = g_malloc0(sizeof(QemuCond));
+ qemu_cond_init(cpu->halt_cond);
+
+ snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
+ cpu->cpu_index);
+ qemu_thread_create(cpu->thread, thread_name, qemu_hvf_cpu_thread_fn,
+ cpu, QEMU_THREAD_JOINABLE);
+}
+
+static void qemu_whpx_start_vcpu(CPUState *cpu)
+{
+ char thread_name[VCPU_THREAD_NAME_SIZE];
+
+ cpu->thread = g_malloc0(sizeof(QemuThread));
+ cpu->halt_cond = g_malloc0(sizeof(QemuCond));
+ qemu_cond_init(cpu->halt_cond);
+ snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/WHPX",
+ cpu->cpu_index);
+ qemu_thread_create(cpu->thread, thread_name, qemu_whpx_cpu_thread_fn,
+ cpu, QEMU_THREAD_JOINABLE);
+#ifdef _WIN32
+ cpu->hThread = qemu_thread_get_handle(cpu->thread);
+#endif
+}
+
+static void qemu_dummy_start_vcpu(CPUState *cpu)
+{
+ char thread_name[VCPU_THREAD_NAME_SIZE];
+
+ cpu->thread = g_malloc0(sizeof(QemuThread));
+ cpu->halt_cond = g_malloc0(sizeof(QemuCond));
+ qemu_cond_init(cpu->halt_cond);
+ snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
+ cpu->cpu_index);
+ qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
+ QEMU_THREAD_JOINABLE);
+}
+
+void qemu_init_vcpu(CPUState *cpu)
+{
+ MachineState *ms = MACHINE(qdev_get_machine());
+
+ cpu->nr_cores = ms->smp.cores;
+ cpu->nr_threads = ms->smp.threads;
+ cpu->stopped = true;
+ cpu->random_seed = qemu_guest_random_seed_thread_part1();
+
+ if (!cpu->as) {
+ /* If the target cpu hasn't set up any address spaces itself,
+ * give it the default one.
+ */
+ cpu->num_ases = 1;
+ cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory);
+ }
+
+ if (kvm_enabled()) {
+ qemu_kvm_start_vcpu(cpu);
+ } else if (hax_enabled()) {
+ qemu_hax_start_vcpu(cpu);
+ } else if (hvf_enabled()) {
+ qemu_hvf_start_vcpu(cpu);
+ } else if (tcg_enabled()) {
+ qemu_tcg_init_vcpu(cpu);
+ } else if (whpx_enabled()) {
+ qemu_whpx_start_vcpu(cpu);
+ } else {
+ qemu_dummy_start_vcpu(cpu);
+ }
+
+ while (!cpu->created) {
+ qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
+ }
+}
+
+void cpu_stop_current(void)
+{
+ if (current_cpu) {
+ current_cpu->stop = true;
+ cpu_exit(current_cpu);
+ }
+}
+
+int vm_stop(RunState state)
+{
+ if (qemu_in_vcpu_thread()) {
+ qemu_system_vmstop_request_prepare();
+ qemu_system_vmstop_request(state);
+ /*
+ * FIXME: should not return to device code in case
+ * vm_stop() has been requested.
+ */
+ cpu_stop_current();
+ return 0;
+ }
+
+ return do_vm_stop(state, true);
+}
+
+/**
+ * Prepare for (re)starting the VM.
+ * Returns -1 if the vCPUs are not to be restarted (e.g. if they are already
+ * running or in case of an error condition), 0 otherwise.
+ */
+int vm_prepare_start(void)
+{
+ RunState requested;
+
+ qemu_vmstop_requested(&requested);
+ if (runstate_is_running() && requested == RUN_STATE__MAX) {
+ return -1;
+ }
+
+ /* Ensure that a STOP/RESUME pair of events is emitted if a
+ * vmstop request was pending. The BLOCK_IO_ERROR event, for
+ * example, according to documentation is always followed by
+ * the STOP event.
+ */
+ if (runstate_is_running()) {
+ qapi_event_send_stop();
+ qapi_event_send_resume();
+ return -1;
+ }
+
+ /* We are sending this now, but the CPUs will be resumed shortly later */
+ qapi_event_send_resume();
+
+ cpu_enable_ticks();
+ runstate_set(RUN_STATE_RUNNING);
+ vm_state_notify(1, RUN_STATE_RUNNING);
+ return 0;
+}
+
+void vm_start(void)
+{
+ if (!vm_prepare_start()) {
+ resume_all_vcpus();
+ }
+}
+
+/* does a state transition even if the VM is already stopped,
+ current state is forgotten forever */
+int vm_stop_force_state(RunState state)
+{
+ if (runstate_is_running()) {
+ return vm_stop(state);
+ } else {
+ runstate_set(state);
+
+ bdrv_drain_all();
+ /* Make sure to return an error if the flush in a previous vm_stop()
+ * failed. */
+ return bdrv_flush_all();
+ }
+}
+
+void list_cpus(const char *optarg)
+{
+ /* XXX: implement xxx_cpu_list for targets that still miss it */
+#if defined(cpu_list)
+ cpu_list();
+#endif
+}
+
+void qmp_memsave(int64_t addr, int64_t size, const char *filename,
+ bool has_cpu, int64_t cpu_index, Error **errp)
+{
+ FILE *f;
+ uint32_t l;
+ CPUState *cpu;
+ uint8_t buf[1024];
+ int64_t orig_addr = addr, orig_size = size;
+
+ if (!has_cpu) {
+ cpu_index = 0;
+ }
+
+ cpu = qemu_get_cpu(cpu_index);
+ if (cpu == NULL) {
+ error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
+ "a CPU number");
+ return;
+ }
+
+ f = fopen(filename, "wb");
+ if (!f) {
+ error_setg_file_open(errp, errno, filename);
+ return;
+ }
+
+ while (size != 0) {
+ l = sizeof(buf);
+ if (l > size)
+ l = size;
+ if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
+ error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
+ " specified", orig_addr, orig_size);
+ goto exit;
+ }
+ if (fwrite(buf, 1, l, f) != l) {
+ error_setg(errp, QERR_IO_ERROR);
+ goto exit;
+ }
+ addr += l;
+ size -= l;
+ }
+
+exit:
+ fclose(f);
+}
+
+void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
+ Error **errp)
+{
+ FILE *f;
+ uint32_t l;
+ uint8_t buf[1024];
+
+ f = fopen(filename, "wb");
+ if (!f) {
+ error_setg_file_open(errp, errno, filename);
+ return;
+ }
+
+ while (size != 0) {
+ l = sizeof(buf);
+ if (l > size)
+ l = size;
+ cpu_physical_memory_read(addr, buf, l);
+ if (fwrite(buf, 1, l, f) != l) {
+ error_setg(errp, QERR_IO_ERROR);
+ goto exit;
+ }
+ addr += l;
+ size -= l;
+ }
+
+exit:
+ fclose(f);
+}
+
+void qmp_inject_nmi(Error **errp)
+{
+ nmi_monitor_handle(monitor_get_cpu_index(), errp);
+}
+
+void dump_drift_info(void)
+{
+ if (!use_icount) {
+ return;
+ }
+
+ qemu_printf("Host - Guest clock %"PRIi64" ms\n",
+ (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
+ if (icount_align_option) {
+ qemu_printf("Max guest delay %"PRIi64" ms\n",
+ -max_delay / SCALE_MS);
+ qemu_printf("Max guest advance %"PRIi64" ms\n",
+ max_advance / SCALE_MS);
+ } else {
+ qemu_printf("Max guest delay NA\n");
+ qemu_printf("Max guest advance NA\n");
+ }
+}
diff --git a/softmmu/ioport.c b/softmmu/ioport.c
new file mode 100644
index 0000000000..04e360e79a
--- /dev/null
+++ b/softmmu/ioport.c
@@ -0,0 +1,299 @@
+/*
+ * QEMU System Emulator
+ *
+ * Copyright (c) 2003-2008 Fabrice Bellard
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+/*
+ * splitted out ioport related stuffs from vl.c.
+ */
+
+#include "qemu/osdep.h"
+#include "cpu.h"
+#include "exec/ioport.h"
+#include "trace-root.h"
+#include "exec/memory.h"
+#include "exec/address-spaces.h"
+
+typedef struct MemoryRegionPortioList {
+ MemoryRegion mr;
+ void *portio_opaque;
+ MemoryRegionPortio ports[];
+} MemoryRegionPortioList;
+
+static uint64_t unassigned_io_read(void *opaque, hwaddr addr, unsigned size)
+{
+ return -1ULL;
+}
+
+static void unassigned_io_write(void *opaque, hwaddr addr, uint64_t val,
+ unsigned size)
+{
+}
+
+const MemoryRegionOps unassigned_io_ops = {
+ .read = unassigned_io_read,
+ .write = unassigned_io_write,
+ .endianness = DEVICE_NATIVE_ENDIAN,
+};
+
+void cpu_outb(uint32_t addr, uint8_t val)
+{
+ trace_cpu_out(addr, 'b', val);
+ address_space_write(&address_space_io, addr, MEMTXATTRS_UNSPECIFIED,
+ &val, 1);
+}
+
+void cpu_outw(uint32_t addr, uint16_t val)
+{
+ uint8_t buf[2];
+
+ trace_cpu_out(addr, 'w', val);
+ stw_p(buf, val);
+ address_space_write(&address_space_io, addr, MEMTXATTRS_UNSPECIFIED,
+ buf, 2);
+}
+
+void cpu_outl(uint32_t addr, uint32_t val)
+{
+ uint8_t buf[4];
+
+ trace_cpu_out(addr, 'l', val);
+ stl_p(buf, val);
+ address_space_write(&address_space_io, addr, MEMTXATTRS_UNSPECIFIED,
+ buf, 4);
+}
+
+uint8_t cpu_inb(uint32_t addr)
+{
+ uint8_t val;
+
+ address_space_read(&address_space_io, addr, MEMTXATTRS_UNSPECIFIED,
+ &val, 1);
+ trace_cpu_in(addr, 'b', val);
+ return val;
+}
+
+uint16_t cpu_inw(uint32_t addr)
+{
+ uint8_t buf[2];
+ uint16_t val;
+
+ address_space_read(&address_space_io, addr, MEMTXATTRS_UNSPECIFIED, buf, 2);
+ val = lduw_p(buf);
+ trace_cpu_in(addr, 'w', val);
+ return val;
+}
+
+uint32_t cpu_inl(uint32_t addr)
+{
+ uint8_t buf[4];
+ uint32_t val;
+
+ address_space_read(&address_space_io, addr, MEMTXATTRS_UNSPECIFIED, buf, 4);
+ val = ldl_p(buf);
+ trace_cpu_in(addr, 'l', val);
+ return val;
+}
+
+void portio_list_init(PortioList *piolist,
+ Object *owner,
+ const MemoryRegionPortio *callbacks,
+ void *opaque, const char *name)
+{
+ unsigned n = 0;
+
+ while (callbacks[n].size) {
+ ++n;
+ }
+
+ piolist->ports = callbacks;
+ piolist->nr = 0;
+ piolist->regions = g_new0(MemoryRegion *, n);
+ piolist->address_space = NULL;
+ piolist->opaque = opaque;
+ piolist->owner = owner;
+ piolist->name = name;
+ piolist->flush_coalesced_mmio = false;
+}
+
+void portio_list_set_flush_coalesced(PortioList *piolist)
+{
+ piolist->flush_coalesced_mmio = true;
+}
+
+void portio_list_destroy(PortioList *piolist)
+{
+ MemoryRegionPortioList *mrpio;
+ unsigned i;
+
+ for (i = 0; i < piolist->nr; ++i) {
+ mrpio = container_of(piolist->regions[i], MemoryRegionPortioList, mr);
+ object_unparent(OBJECT(&mrpio->mr));
+ g_free(mrpio);
+ }
+ g_free(piolist->regions);
+}
+
+static const MemoryRegionPortio *find_portio(MemoryRegionPortioList *mrpio,
+ uint64_t offset, unsigned size,
+ bool write)
+{
+ const MemoryRegionPortio *mrp;
+
+ for (mrp = mrpio->ports; mrp->size; ++mrp) {
+ if (offset >= mrp->offset && offset < mrp->offset + mrp->len &&
+ size == mrp->size &&
+ (write ? (bool)mrp->write : (bool)mrp->read)) {
+ return mrp;
+ }
+ }
+ return NULL;
+}
+
+static uint64_t portio_read(void *opaque, hwaddr addr, unsigned size)
+{
+ MemoryRegionPortioList *mrpio = opaque;
+ const MemoryRegionPortio *mrp = find_portio(mrpio, addr, size, false);
+ uint64_t data;
+
+ data = ((uint64_t)1 << (size * 8)) - 1;
+ if (mrp) {
+ data = mrp->read(mrpio->portio_opaque, mrp->base + addr);
+ } else if (size == 2) {
+ mrp = find_portio(mrpio, addr, 1, false);
+ if (mrp) {
+ data = mrp->read(mrpio->portio_opaque, mrp->base + addr);
+ if (addr + 1 < mrp->offset + mrp->len) {
+ data |= mrp->read(mrpio->portio_opaque, mrp->base + addr + 1) << 8;
+ } else {
+ data |= 0xff00;
+ }
+ }
+ }
+ return data;
+}
+
+static void portio_write(void *opaque, hwaddr addr, uint64_t data,
+ unsigned size)
+{
+ MemoryRegionPortioList *mrpio = opaque;
+ const MemoryRegionPortio *mrp = find_portio(mrpio, addr, size, true);
+
+ if (mrp) {
+ mrp->write(mrpio->portio_opaque, mrp->base + addr, data);
+ } else if (size == 2) {
+ mrp = find_portio(mrpio, addr, 1, true);
+ if (mrp) {
+ mrp->write(mrpio->portio_opaque, mrp->base + addr, data & 0xff);
+ if (addr + 1 < mrp->offset + mrp->len) {
+ mrp->write(mrpio->portio_opaque, mrp->base + addr + 1, data >> 8);
+ }
+ }
+ }
+}
+
+static const MemoryRegionOps portio_ops = {
+ .read = portio_read,
+ .write = portio_write,
+ .endianness = DEVICE_LITTLE_ENDIAN,
+ .valid.unaligned = true,
+ .impl.unaligned = true,
+};
+
+static void portio_list_add_1(PortioList *piolist,
+ const MemoryRegionPortio *pio_init,
+ unsigned count, unsigned start,
+ unsigned off_low, unsigned off_high)
+{
+ MemoryRegionPortioList *mrpio;
+ unsigned i;
+
+ /* Copy the sub-list and null-terminate it. */
+ mrpio = g_malloc0(sizeof(MemoryRegionPortioList) +
+ sizeof(MemoryRegionPortio) * (count + 1));
+ mrpio->portio_opaque = piolist->opaque;
+ memcpy(mrpio->ports, pio_init, sizeof(MemoryRegionPortio) * count);
+ memset(mrpio->ports + count, 0, sizeof(MemoryRegionPortio));
+
+ /* Adjust the offsets to all be zero-based for the region. */
+ for (i = 0; i < count; ++i) {
+ mrpio->ports[i].offset -= off_low;
+ mrpio->ports[i].base = start + off_low;
+ }
+
+ memory_region_init_io(&mrpio->mr, piolist->owner, &portio_ops, mrpio,
+ piolist->name, off_high - off_low);
+ if (piolist->flush_coalesced_mmio) {
+ memory_region_set_flush_coalesced(&mrpio->mr);
+ }
+ memory_region_add_subregion(piolist->address_space,
+ start + off_low, &mrpio->mr);
+ piolist->regions[piolist->nr] = &mrpio->mr;
+ ++piolist->nr;
+}
+
+void portio_list_add(PortioList *piolist,
+ MemoryRegion *address_space,
+ uint32_t start)
+{
+ const MemoryRegionPortio *pio, *pio_start = piolist->ports;
+ unsigned int off_low, off_high, off_last, count;
+
+ piolist->address_space = address_space;
+
+ /* Handle the first entry specially. */
+ off_last = off_low = pio_start->offset;
+ off_high = off_low + pio_start->len + pio_start->size - 1;
+ count = 1;
+
+ for (pio = pio_start + 1; pio->size != 0; pio++, count++) {
+ /* All entries must be sorted by offset. */
+ assert(pio->offset >= off_last);
+ off_last = pio->offset;
+
+ /* If we see a hole, break the region. */
+ if (off_last > off_high) {
+ portio_list_add_1(piolist, pio_start, count, start, off_low,
+ off_high);
+ /* ... and start collecting anew. */
+ pio_start = pio;
+ off_low = off_last;
+ off_high = off_low + pio->len + pio_start->size - 1;
+ count = 0;
+ } else if (off_last + pio->len > off_high) {
+ off_high = off_last + pio->len + pio_start->size - 1;
+ }
+ }
+
+ /* There will always be an open sub-list. */
+ portio_list_add_1(piolist, pio_start, count, start, off_low, off_high);
+}
+
+void portio_list_del(PortioList *piolist)
+{
+ MemoryRegionPortioList *mrpio;
+ unsigned i;
+
+ for (i = 0; i < piolist->nr; ++i) {
+ mrpio = container_of(piolist->regions[i], MemoryRegionPortioList, mr);
+ memory_region_del_subregion(piolist->address_space, &mrpio->mr);
+ }
+}
diff --git a/softmmu/memory.c b/softmmu/memory.c
new file mode 100644
index 0000000000..9200b20130
--- /dev/null
+++ b/softmmu/memory.c
@@ -0,0 +1,3250 @@
+/*
+ * Physical memory management
+ *
+ * Copyright 2011 Red Hat, Inc. and/or its affiliates
+ *
+ * Authors:
+ * Avi Kivity <avi@redhat.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ *
+ * Contributions after 2012-01-13 are licensed under the terms of the
+ * GNU GPL, version 2 or (at your option) any later version.
+ */
+
+#include "qemu/osdep.h"
+#include "qapi/error.h"
+#include "cpu.h"
+#include "exec/memory.h"
+#include "exec/address-spaces.h"
+#include "qapi/visitor.h"
+#include "qemu/bitops.h"
+#include "qemu/error-report.h"
+#include "qemu/main-loop.h"
+#include "qemu/qemu-print.h"
+#include "qom/object.h"
+#include "trace-root.h"
+
+#include "exec/memory-internal.h"
+#include "exec/ram_addr.h"
+#include "sysemu/kvm.h"
+#include "sysemu/runstate.h"
+#include "sysemu/tcg.h"
+#include "sysemu/accel.h"
+#include "hw/boards.h"
+#include "migration/vmstate.h"
+
+//#define DEBUG_UNASSIGNED
+
+static unsigned memory_region_transaction_depth;
+static bool memory_region_update_pending;
+static bool ioeventfd_update_pending;
+bool global_dirty_log;
+
+static QTAILQ_HEAD(, MemoryListener) memory_listeners
+ = QTAILQ_HEAD_INITIALIZER(memory_listeners);
+
+static QTAILQ_HEAD(, AddressSpace) address_spaces
+ = QTAILQ_HEAD_INITIALIZER(address_spaces);
+
+static GHashTable *flat_views;
+
+typedef struct AddrRange AddrRange;
+
+/*
+ * Note that signed integers are needed for negative offsetting in aliases
+ * (large MemoryRegion::alias_offset).
+ */
+struct AddrRange {
+ Int128 start;
+ Int128 size;
+};
+
+static AddrRange addrrange_make(Int128 start, Int128 size)
+{
+ return (AddrRange) { start, size };
+}
+
+static bool addrrange_equal(AddrRange r1, AddrRange r2)
+{
+ return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
+}
+
+static Int128 addrrange_end(AddrRange r)
+{
+ return int128_add(r.start, r.size);
+}
+
+static AddrRange addrrange_shift(AddrRange range, Int128 delta)
+{
+ int128_addto(&range.start, delta);
+ return range;
+}
+
+static bool addrrange_contains(AddrRange range, Int128 addr)
+{
+ return int128_ge(addr, range.start)
+ && int128_lt(addr, addrrange_end(range));
+}
+
+static bool addrrange_intersects(AddrRange r1, AddrRange r2)
+{
+ return addrrange_contains(r1, r2.start)
+ || addrrange_contains(r2, r1.start);
+}
+
+static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
+{
+ Int128 start = int128_max(r1.start, r2.start);
+ Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
+ return addrrange_make(start, int128_sub(end, start));
+}
+
+enum ListenerDirection { Forward, Reverse };
+
+#define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
+ do { \
+ MemoryListener *_listener; \
+ \
+ switch (_direction) { \
+ case Forward: \
+ QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
+ if (_listener->_callback) { \
+ _listener->_callback(_listener, ##_args); \
+ } \
+ } \
+ break; \
+ case Reverse: \
+ QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
+ if (_listener->_callback) { \
+ _listener->_callback(_listener, ##_args); \
+ } \
+ } \
+ break; \
+ default: \
+ abort(); \
+ } \
+ } while (0)
+
+#define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
+ do { \
+ MemoryListener *_listener; \
+ \
+ switch (_direction) { \
+ case Forward: \
+ QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
+ if (_listener->_callback) { \
+ _listener->_callback(_listener, _section, ##_args); \
+ } \
+ } \
+ break; \
+ case Reverse: \
+ QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
+ if (_listener->_callback) { \
+ _listener->_callback(_listener, _section, ##_args); \
+ } \
+ } \
+ break; \
+ default: \
+ abort(); \
+ } \
+ } while (0)
+
+/* No need to ref/unref .mr, the FlatRange keeps it alive. */
+#define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
+ do { \
+ MemoryRegionSection mrs = section_from_flat_range(fr, \
+ address_space_to_flatview(as)); \
+ MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
+ } while(0)
+
+struct CoalescedMemoryRange {
+ AddrRange addr;
+ QTAILQ_ENTRY(CoalescedMemoryRange) link;
+};
+
+struct MemoryRegionIoeventfd {
+ AddrRange addr;
+ bool match_data;
+ uint64_t data;
+ EventNotifier *e;
+};
+
+static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
+ MemoryRegionIoeventfd *b)
+{
+ if (int128_lt(a->addr.start, b->addr.start)) {
+ return true;
+ } else if (int128_gt(a->addr.start, b->addr.start)) {
+ return false;
+ } else if (int128_lt(a->addr.size, b->addr.size)) {
+ return true;
+ } else if (int128_gt(a->addr.size, b->addr.size)) {
+ return false;
+ } else if (a->match_data < b->match_data) {
+ return true;
+ } else if (a->match_data > b->match_data) {
+ return false;
+ } else if (a->match_data) {
+ if (a->data < b->data) {
+ return true;
+ } else if (a->data > b->data) {
+ return false;
+ }
+ }
+ if (a->e < b->e) {
+ return true;
+ } else if (a->e > b->e) {
+ return false;
+ }
+ return false;
+}
+
+static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
+ MemoryRegionIoeventfd *b)
+{
+ return !memory_region_ioeventfd_before(a, b)
+ && !memory_region_ioeventfd_before(b, a);
+}
+
+/* Range of memory in the global map. Addresses are absolute. */
+struct FlatRange {
+ MemoryRegion *mr;
+ hwaddr offset_in_region;
+ AddrRange addr;
+ uint8_t dirty_log_mask;
+ bool romd_mode;
+ bool readonly;
+ bool nonvolatile;
+};
+
+#define FOR_EACH_FLAT_RANGE(var, view) \
+ for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
+
+static inline MemoryRegionSection
+section_from_flat_range(FlatRange *fr, FlatView *fv)
+{
+ return (MemoryRegionSection) {
+ .mr = fr->mr,
+ .fv = fv,
+ .offset_within_region = fr->offset_in_region,
+ .size = fr->addr.size,
+ .offset_within_address_space = int128_get64(fr->addr.start),
+ .readonly = fr->readonly,
+ .nonvolatile = fr->nonvolatile,
+ };
+}
+
+static bool flatrange_equal(FlatRange *a, FlatRange *b)
+{
+ return a->mr == b->mr
+ && addrrange_equal(a->addr, b->addr)
+ && a->offset_in_region == b->offset_in_region
+ && a->romd_mode == b->romd_mode
+ && a->readonly == b->readonly
+ && a->nonvolatile == b->nonvolatile;
+}
+
+static FlatView *flatview_new(MemoryRegion *mr_root)
+{
+ FlatView *view;
+
+ view = g_new0(FlatView, 1);
+ view->ref = 1;
+ view->root = mr_root;
+ memory_region_ref(mr_root);
+ trace_flatview_new(view, mr_root);
+
+ return view;
+}
+
+/* Insert a range into a given position. Caller is responsible for maintaining
+ * sorting order.
+ */
+static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
+{
+ if (view->nr == view->nr_allocated) {
+ view->nr_allocated = MAX(2 * view->nr, 10);
+ view->ranges = g_realloc(view->ranges,
+ view->nr_allocated * sizeof(*view->ranges));
+ }
+ memmove(view->ranges + pos + 1, view->ranges + pos,
+ (view->nr - pos) * sizeof(FlatRange));
+ view->ranges[pos] = *range;
+ memory_region_ref(range->mr);
+ ++view->nr;
+}
+
+static void flatview_destroy(FlatView *view)
+{
+ int i;
+
+ trace_flatview_destroy(view, view->root);
+ if (view->dispatch) {
+ address_space_dispatch_free(view->dispatch);
+ }
+ for (i = 0; i < view->nr; i++) {
+ memory_region_unref(view->ranges[i].mr);
+ }
+ g_free(view->ranges);
+ memory_region_unref(view->root);
+ g_free(view);
+}
+
+static bool flatview_ref(FlatView *view)
+{
+ return atomic_fetch_inc_nonzero(&view->ref) > 0;
+}
+
+void flatview_unref(FlatView *view)
+{
+ if (atomic_fetch_dec(&view->ref) == 1) {
+ trace_flatview_destroy_rcu(view, view->root);
+ assert(view->root);
+ call_rcu(view, flatview_destroy, rcu);
+ }
+}
+
+static bool can_merge(FlatRange *r1, FlatRange *r2)
+{
+ return int128_eq(addrrange_end(r1->addr), r2->addr.start)
+ && r1->mr == r2->mr
+ && int128_eq(int128_add(int128_make64(r1->offset_in_region),
+ r1->addr.size),
+ int128_make64(r2->offset_in_region))
+ && r1->dirty_log_mask == r2->dirty_log_mask
+ && r1->romd_mode == r2->romd_mode
+ && r1->readonly == r2->readonly
+ && r1->nonvolatile == r2->nonvolatile;
+}
+
+/* Attempt to simplify a view by merging adjacent ranges */
+static void flatview_simplify(FlatView *view)
+{
+ unsigned i, j, k;
+
+ i = 0;
+ while (i < view->nr) {
+ j = i + 1;
+ while (j < view->nr
+ && can_merge(&view->ranges[j-1], &view->ranges[j])) {
+ int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
+ ++j;
+ }
+ ++i;
+ for (k = i; k < j; k++) {
+ memory_region_unref(view->ranges[k].mr);
+ }
+ memmove(&view->ranges[i], &view->ranges[j],
+ (view->nr - j) * sizeof(view->ranges[j]));
+ view->nr -= j - i;
+ }
+}
+
+static bool memory_region_big_endian(MemoryRegion *mr)
+{
+#ifdef TARGET_WORDS_BIGENDIAN
+ return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
+#else
+ return mr->ops->endianness == DEVICE_BIG_ENDIAN;
+#endif
+}
+
+static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
+{
+ if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
+ switch (op & MO_SIZE) {
+ case MO_8:
+ break;
+ case MO_16:
+ *data = bswap16(*data);
+ break;
+ case MO_32:
+ *data = bswap32(*data);
+ break;
+ case MO_64:
+ *data = bswap64(*data);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ }
+}
+
+static inline void memory_region_shift_read_access(uint64_t *value,
+ signed shift,
+ uint64_t mask,
+ uint64_t tmp)
+{
+ if (shift >= 0) {
+ *value |= (tmp & mask) << shift;
+ } else {
+ *value |= (tmp & mask) >> -shift;
+ }
+}
+
+static inline uint64_t memory_region_shift_write_access(uint64_t *value,
+ signed shift,
+ uint64_t mask)
+{
+ uint64_t tmp;
+
+ if (shift >= 0) {
+ tmp = (*value >> shift) & mask;
+ } else {
+ tmp = (*value << -shift) & mask;
+ }
+
+ return tmp;
+}
+
+static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
+{
+ MemoryRegion *root;
+ hwaddr abs_addr = offset;
+
+ abs_addr += mr->addr;
+ for (root = mr; root->container; ) {
+ root = root->container;
+ abs_addr += root->addr;
+ }
+
+ return abs_addr;
+}
+
+static int get_cpu_index(void)
+{
+ if (current_cpu) {
+ return current_cpu->cpu_index;
+ }
+ return -1;
+}
+
+static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
+ hwaddr addr,
+ uint64_t *value,
+ unsigned size,
+ signed shift,
+ uint64_t mask,
+ MemTxAttrs attrs)
+{
+ uint64_t tmp;
+
+ tmp = mr->ops->read(mr->opaque, addr, size);
+ if (mr->subpage) {
+ trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
+ } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
+ hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
+ trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
+ }
+ memory_region_shift_read_access(value, shift, mask, tmp);
+ return MEMTX_OK;
+}
+
+static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
+ hwaddr addr,
+ uint64_t *value,
+ unsigned size,
+ signed shift,
+ uint64_t mask,
+ MemTxAttrs attrs)
+{
+ uint64_t tmp = 0;
+ MemTxResult r;
+
+ r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
+ if (mr->subpage) {
+ trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
+ } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
+ hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
+ trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
+ }
+ memory_region_shift_read_access(value, shift, mask, tmp);
+ return r;
+}
+
+static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
+ hwaddr addr,
+ uint64_t *value,
+ unsigned size,
+ signed shift,
+ uint64_t mask,
+ MemTxAttrs attrs)
+{
+ uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
+
+ if (mr->subpage) {
+ trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
+ } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
+ hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
+ trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
+ }
+ mr->ops->write(mr->opaque, addr, tmp, size);
+ return MEMTX_OK;
+}
+
+static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
+ hwaddr addr,
+ uint64_t *value,
+ unsigned size,
+ signed shift,
+ uint64_t mask,
+ MemTxAttrs attrs)
+{
+ uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
+
+ if (mr->subpage) {
+ trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
+ } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
+ hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
+ trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
+ }
+ return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
+}
+
+static MemTxResult access_with_adjusted_size(hwaddr addr,
+ uint64_t *value,
+ unsigned size,
+ unsigned access_size_min,
+ unsigned access_size_max,
+ MemTxResult (*access_fn)
+ (MemoryRegion *mr,
+ hwaddr addr,
+ uint64_t *value,
+ unsigned size,
+ signed shift,
+ uint64_t mask,
+ MemTxAttrs attrs),
+ MemoryRegion *mr,
+ MemTxAttrs attrs)
+{
+ uint64_t access_mask;
+ unsigned access_size;
+ unsigned i;
+ MemTxResult r = MEMTX_OK;
+
+ if (!access_size_min) {
+ access_size_min = 1;
+ }
+ if (!access_size_max) {
+ access_size_max = 4;
+ }
+
+ /* FIXME: support unaligned access? */
+ access_size = MAX(MIN(size, access_size_max), access_size_min);
+ access_mask = MAKE_64BIT_MASK(0, access_size * 8);
+ if (memory_region_big_endian(mr)) {
+ for (i = 0; i < size; i += access_size) {
+ r |= access_fn(mr, addr + i, value, access_size,
+ (size - access_size - i) * 8, access_mask, attrs);
+ }
+ } else {
+ for (i = 0; i < size; i += access_size) {
+ r |= access_fn(mr, addr + i, value, access_size, i * 8,
+ access_mask, attrs);
+ }
+ }
+ return r;
+}
+
+static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
+{
+ AddressSpace *as;
+
+ while (mr->container) {
+ mr = mr->container;
+ }
+ QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
+ if (mr == as->root) {
+ return as;
+ }
+ }
+ return NULL;
+}
+
+/* Render a memory region into the global view. Ranges in @view obscure
+ * ranges in @mr.
+ */
+static void render_memory_region(FlatView *view,
+ MemoryRegion *mr,
+ Int128 base,
+ AddrRange clip,
+ bool readonly,
+ bool nonvolatile)
+{
+ MemoryRegion *subregion;
+ unsigned i;
+ hwaddr offset_in_region;
+ Int128 remain;
+ Int128 now;
+ FlatRange fr;
+ AddrRange tmp;
+
+ if (!mr->enabled) {
+ return;
+ }
+
+ int128_addto(&base, int128_make64(mr->addr));
+ readonly |= mr->readonly;
+ nonvolatile |= mr->nonvolatile;
+
+ tmp = addrrange_make(base, mr->size);
+
+ if (!addrrange_intersects(tmp, clip)) {
+ return;
+ }
+
+ clip = addrrange_intersection(tmp, clip);
+
+ if (mr->alias) {
+ int128_subfrom(&base, int128_make64(mr->alias->addr));
+ int128_subfrom(&base, int128_make64(mr->alias_offset));
+ render_memory_region(view, mr->alias, base, clip,
+ readonly, nonvolatile);
+ return;
+ }
+
+ /* Render subregions in priority order. */
+ QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
+ render_memory_region(view, subregion, base, clip,
+ readonly, nonvolatile);
+ }
+
+ if (!mr->terminates) {
+ return;
+ }
+
+ offset_in_region = int128_get64(int128_sub(clip.start, base));
+ base = clip.start;
+ remain = clip.size;
+
+ fr.mr = mr;
+ fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
+ fr.romd_mode = mr->romd_mode;
+ fr.readonly = readonly;
+ fr.nonvolatile = nonvolatile;
+
+ /* Render the region itself into any gaps left by the current view. */
+ for (i = 0; i < view->nr && int128_nz(remain); ++i) {
+ if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
+ continue;
+ }
+ if (int128_lt(base, view->ranges[i].addr.start)) {
+ now = int128_min(remain,
+ int128_sub(view->ranges[i].addr.start, base));
+ fr.offset_in_region = offset_in_region;
+ fr.addr = addrrange_make(base, now);
+ flatview_insert(view, i, &fr);
+ ++i;
+ int128_addto(&base, now);
+ offset_in_region += int128_get64(now);
+ int128_subfrom(&remain, now);
+ }
+ now = int128_sub(int128_min(int128_add(base, remain),
+ addrrange_end(view->ranges[i].addr)),
+ base);
+ int128_addto(&base, now);
+ offset_in_region += int128_get64(now);
+ int128_subfrom(&remain, now);
+ }
+ if (int128_nz(remain)) {
+ fr.offset_in_region = offset_in_region;
+ fr.addr = addrrange_make(base, remain);
+ flatview_insert(view, i, &fr);
+ }
+}
+
+static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
+{
+ while (mr->enabled) {
+ if (mr->alias) {
+ if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
+ /* The alias is included in its entirety. Use it as
+ * the "real" root, so that we can share more FlatViews.
+ */
+ mr = mr->alias;
+ continue;
+ }
+ } else if (!mr->terminates) {
+ unsigned int found = 0;
+ MemoryRegion *child, *next = NULL;
+ QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
+ if (child->enabled) {
+ if (++found > 1) {
+ next = NULL;
+ break;
+ }
+ if (!child->addr && int128_ge(mr->size, child->size)) {
+ /* A child is included in its entirety. If it's the only
+ * enabled one, use it in the hope of finding an alias down the
+ * way. This will also let us share FlatViews.
+ */
+ next = child;
+ }
+ }
+ }
+ if (found == 0) {
+ return NULL;
+ }
+ if (next) {
+ mr = next;
+ continue;
+ }
+ }
+
+ return mr;
+ }
+
+ return NULL;
+}
+
+/* Render a memory topology into a list of disjoint absolute ranges. */
+static FlatView *generate_memory_topology(MemoryRegion *mr)
+{
+ int i;
+ FlatView *view;
+
+ view = flatview_new(mr);
+
+ if (mr) {
+ render_memory_region(view, mr, int128_zero(),
+ addrrange_make(int128_zero(), int128_2_64()),
+ false, false);
+ }
+ flatview_simplify(view);
+
+ view->dispatch = address_space_dispatch_new(view);
+ for (i = 0; i < view->nr; i++) {
+ MemoryRegionSection mrs =
+ section_from_flat_range(&view->ranges[i], view);
+ flatview_add_to_dispatch(view, &mrs);
+ }
+ address_space_dispatch_compact(view->dispatch);
+ g_hash_table_replace(flat_views, mr, view);
+
+ return view;
+}
+
+static void address_space_add_del_ioeventfds(AddressSpace *as,
+ MemoryRegionIoeventfd *fds_new,
+ unsigned fds_new_nb,
+ MemoryRegionIoeventfd *fds_old,
+ unsigned fds_old_nb)
+{
+ unsigned iold, inew;
+ MemoryRegionIoeventfd *fd;
+ MemoryRegionSection section;
+
+ /* Generate a symmetric difference of the old and new fd sets, adding
+ * and deleting as necessary.
+ */
+
+ iold = inew = 0;
+ while (iold < fds_old_nb || inew < fds_new_nb) {
+ if (iold < fds_old_nb
+ && (inew == fds_new_nb
+ || memory_region_ioeventfd_before(&fds_old[iold],
+ &fds_new[inew]))) {
+ fd = &fds_old[iold];
+ section = (MemoryRegionSection) {
+ .fv = address_space_to_flatview(as),
+ .offset_within_address_space = int128_get64(fd->addr.start),
+ .size = fd->addr.size,
+ };
+ MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
+ fd->match_data, fd->data, fd->e);
+ ++iold;
+ } else if (inew < fds_new_nb
+ && (iold == fds_old_nb
+ || memory_region_ioeventfd_before(&fds_new[inew],
+ &fds_old[iold]))) {
+ fd = &fds_new[inew];
+ section = (MemoryRegionSection) {
+ .fv = address_space_to_flatview(as),
+ .offset_within_address_space = int128_get64(fd->addr.start),
+ .size = fd->addr.size,
+ };
+ MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
+ fd->match_data, fd->data, fd->e);
+ ++inew;
+ } else {
+ ++iold;
+ ++inew;
+ }
+ }
+}
+
+FlatView *address_space_get_flatview(AddressSpace *as)
+{
+ FlatView *view;
+
+ RCU_READ_LOCK_GUARD();
+ do {
+ view = address_space_to_flatview(as);
+ /* If somebody has replaced as->current_map concurrently,
+ * flatview_ref returns false.
+ */
+ } while (!flatview_ref(view));
+ return view;
+}
+
+static void address_space_update_ioeventfds(AddressSpace *as)
+{
+ FlatView *view;
+ FlatRange *fr;
+ unsigned ioeventfd_nb = 0;
+ unsigned ioeventfd_max;
+ MemoryRegionIoeventfd *ioeventfds;
+ AddrRange tmp;
+ unsigned i;
+
+ /*
+ * It is likely that the number of ioeventfds hasn't changed much, so use
+ * the previous size as the starting value, with some headroom to avoid
+ * gratuitous reallocations.
+ */
+ ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
+ ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
+
+ view = address_space_get_flatview(as);
+ FOR_EACH_FLAT_RANGE(fr, view) {
+ for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
+ tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
+ int128_sub(fr->addr.start,
+ int128_make64(fr->offset_in_region)));
+ if (addrrange_intersects(fr->addr, tmp)) {
+ ++ioeventfd_nb;
+ if (ioeventfd_nb > ioeventfd_max) {
+ ioeventfd_max = MAX(ioeventfd_max * 2, 4);
+ ioeventfds = g_realloc(ioeventfds,
+ ioeventfd_max * sizeof(*ioeventfds));
+ }
+ ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
+ ioeventfds[ioeventfd_nb-1].addr = tmp;
+ }
+ }
+ }
+
+ address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
+ as->ioeventfds, as->ioeventfd_nb);
+
+ g_free(as->ioeventfds);
+ as->ioeventfds = ioeventfds;
+ as->ioeventfd_nb = ioeventfd_nb;
+ flatview_unref(view);
+}
+
+/*
+ * Notify the memory listeners about the coalesced IO change events of
+ * range `cmr'. Only the part that has intersection of the specified
+ * FlatRange will be sent.
+ */
+static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
+ CoalescedMemoryRange *cmr, bool add)
+{
+ AddrRange tmp;
+
+ tmp = addrrange_shift(cmr->addr,
+ int128_sub(fr->addr.start,
+ int128_make64(fr->offset_in_region)));
+ if (!addrrange_intersects(tmp, fr->addr)) {
+ return;
+ }
+ tmp = addrrange_intersection(tmp, fr->addr);
+
+ if (add) {
+ MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
+ int128_get64(tmp.start),
+ int128_get64(tmp.size));
+ } else {
+ MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
+ int128_get64(tmp.start),
+ int128_get64(tmp.size));
+ }
+}
+
+static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
+{
+ CoalescedMemoryRange *cmr;
+
+ QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
+ flat_range_coalesced_io_notify(fr, as, cmr, false);
+ }
+}
+
+static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
+{
+ MemoryRegion *mr = fr->mr;
+ CoalescedMemoryRange *cmr;
+
+ if (QTAILQ_EMPTY(&mr->coalesced)) {
+ return;
+ }
+
+ QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
+ flat_range_coalesced_io_notify(fr, as, cmr, true);
+ }
+}
+
+static void address_space_update_topology_pass(AddressSpace *as,
+ const FlatView *old_view,
+ const FlatView *new_view,
+ bool adding)
+{
+ unsigned iold, inew;
+ FlatRange *frold, *frnew;
+
+ /* Generate a symmetric difference of the old and new memory maps.
+ * Kill ranges in the old map, and instantiate ranges in the new map.
+ */
+ iold = inew = 0;
+ while (iold < old_view->nr || inew < new_view->nr) {
+ if (iold < old_view->nr) {
+ frold = &old_view->ranges[iold];
+ } else {
+ frold = NULL;
+ }
+ if (inew < new_view->nr) {
+ frnew = &new_view->ranges[inew];
+ } else {
+ frnew = NULL;
+ }
+
+ if (frold
+ && (!frnew
+ || int128_lt(frold->addr.start, frnew->addr.start)
+ || (int128_eq(frold->addr.start, frnew->addr.start)
+ && !flatrange_equal(frold, frnew)))) {
+ /* In old but not in new, or in both but attributes changed. */
+
+ if (!adding) {
+ flat_range_coalesced_io_del(frold, as);
+ MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
+ }
+
+ ++iold;
+ } else if (frold && frnew && flatrange_equal(frold, frnew)) {
+ /* In both and unchanged (except logging may have changed) */
+
+ if (adding) {
+ MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
+ if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
+ MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
+ frold->dirty_log_mask,
+ frnew->dirty_log_mask);
+ }
+ if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
+ MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
+ frold->dirty_log_mask,
+ frnew->dirty_log_mask);
+ }
+ }
+
+ ++iold;
+ ++inew;
+ } else {
+ /* In new */
+
+ if (adding) {
+ MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
+ flat_range_coalesced_io_add(frnew, as);
+ }
+
+ ++inew;
+ }
+ }
+}
+
+static void flatviews_init(void)
+{
+ static FlatView *empty_view;
+
+ if (flat_views) {
+ return;
+ }
+
+ flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
+ (GDestroyNotify) flatview_unref);
+ if (!empty_view) {
+ empty_view = generate_memory_topology(NULL);
+ /* We keep it alive forever in the global variable. */
+ flatview_ref(empty_view);
+ } else {
+ g_hash_table_replace(flat_views, NULL, empty_view);
+ flatview_ref(empty_view);
+ }
+}
+
+static void flatviews_reset(void)
+{
+ AddressSpace *as;
+
+ if (flat_views) {
+ g_hash_table_unref(flat_views);
+ flat_views = NULL;
+ }
+ flatviews_init();
+
+ /* Render unique FVs */
+ QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
+ MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
+
+ if (g_hash_table_lookup(flat_views, physmr)) {
+ continue;
+ }
+
+ generate_memory_topology(physmr);
+ }
+}
+
+static void address_space_set_flatview(AddressSpace *as)
+{
+ FlatView *old_view = address_space_to_flatview(as);
+ MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
+ FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
+
+ assert(new_view);
+
+ if (old_view == new_view) {
+ return;
+ }
+
+ if (old_view) {
+ flatview_ref(old_view);
+ }
+
+ flatview_ref(new_view);
+
+ if (!QTAILQ_EMPTY(&as->listeners)) {
+ FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
+
+ if (!old_view2) {
+ old_view2 = &tmpview;
+ }
+ address_space_update_topology_pass(as, old_view2, new_view, false);
+ address_space_update_topology_pass(as, old_view2, new_view, true);
+ }
+
+ /* Writes are protected by the BQL. */
+ atomic_rcu_set(&as->current_map, new_view);
+ if (old_view) {
+ flatview_unref(old_view);
+ }
+
+ /* Note that all the old MemoryRegions are still alive up to this
+ * point. This relieves most MemoryListeners from the need to
+ * ref/unref the MemoryRegions they get---unless they use them
+ * outside the iothread mutex, in which case precise reference
+ * counting is necessary.
+ */
+ if (old_view) {
+ flatview_unref(old_view);
+ }
+}
+
+static void address_space_update_topology(AddressSpace *as)
+{
+ MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
+
+ flatviews_init();
+ if (!g_hash_table_lookup(flat_views, physmr)) {
+ generate_memory_topology(physmr);
+ }
+ address_space_set_flatview(as);
+}
+
+void memory_region_transaction_begin(void)
+{
+ qemu_flush_coalesced_mmio_buffer();
+ ++memory_region_transaction_depth;
+}
+
+void memory_region_transaction_commit(void)
+{
+ AddressSpace *as;
+
+ assert(memory_region_transaction_depth);
+ assert(qemu_mutex_iothread_locked());
+
+ --memory_region_transaction_depth;
+ if (!memory_region_transaction_depth) {
+ if (memory_region_update_pending) {
+ flatviews_reset();
+
+ MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
+
+ QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
+ address_space_set_flatview(as);
+ address_space_update_ioeventfds(as);
+ }
+ memory_region_update_pending = false;
+ ioeventfd_update_pending = false;
+ MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
+ } else if (ioeventfd_update_pending) {
+ QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
+ address_space_update_ioeventfds(as);
+ }
+ ioeventfd_update_pending = false;
+ }
+ }
+}
+
+static void memory_region_destructor_none(MemoryRegion *mr)
+{
+}
+
+static void memory_region_destructor_ram(MemoryRegion *mr)
+{
+ qemu_ram_free(mr->ram_block);
+}
+
+static bool memory_region_need_escape(char c)
+{
+ return c == '/' || c == '[' || c == '\\' || c == ']';
+}
+
+static char *memory_region_escape_name(const char *name)
+{
+ const char *p;
+ char *escaped, *q;
+ uint8_t c;
+ size_t bytes = 0;
+
+ for (p = name; *p; p++) {
+ bytes += memory_region_need_escape(*p) ? 4 : 1;
+ }
+ if (bytes == p - name) {
+ return g_memdup(name, bytes + 1);
+ }
+
+ escaped = g_malloc(bytes + 1);
+ for (p = name, q = escaped; *p; p++) {
+ c = *p;
+ if (unlikely(memory_region_need_escape(c))) {
+ *q++ = '\\';
+ *q++ = 'x';
+ *q++ = "0123456789abcdef"[c >> 4];
+ c = "0123456789abcdef"[c & 15];
+ }
+ *q++ = c;
+ }
+ *q = 0;
+ return escaped;
+}
+
+static void memory_region_do_init(MemoryRegion *mr,
+ Object *owner,
+ const char *name,
+ uint64_t size)
+{
+ mr->size = int128_make64(size);
+ if (size == UINT64_MAX) {
+ mr->size = int128_2_64();
+ }
+ mr->name = g_strdup(name);
+ mr->owner = owner;
+ mr->ram_block = NULL;
+
+ if (name) {
+ char *escaped_name = memory_region_escape_name(name);
+ char *name_array = g_strdup_printf("%s[*]", escaped_name);
+
+ if (!owner) {
+ owner = container_get(qdev_get_machine(), "/unattached");
+ }
+
+ object_property_add_child(owner, name_array, OBJECT(mr));
+ object_unref(OBJECT(mr));
+ g_free(name_array);
+ g_free(escaped_name);
+ }
+}
+
+void memory_region_init(MemoryRegion *mr,
+ Object *owner,
+ const char *name,
+ uint64_t size)
+{
+ object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
+ memory_region_do_init(mr, owner, name, size);
+}
+
+static void memory_region_get_container(Object *obj, Visitor *v,
+ const char *name, void *opaque,
+ Error **errp)
+{
+ MemoryRegion *mr = MEMORY_REGION(obj);
+ char *path = (char *)"";
+
+ if (mr->container) {
+ path = object_get_canonical_path(OBJECT(mr->container));
+ }
+ visit_type_str(v, name, &path, errp);
+ if (mr->container) {
+ g_free(path);
+ }
+}
+
+static Object *memory_region_resolve_container(Object *obj, void *opaque,
+ const char *part)
+{
+ MemoryRegion *mr = MEMORY_REGION(obj);
+
+ return OBJECT(mr->container);
+}
+
+static void memory_region_get_priority(Object *obj, Visitor *v,
+ const char *name, void *opaque,
+ Error **errp)
+{
+ MemoryRegion *mr = MEMORY_REGION(obj);
+ int32_t value = mr->priority;
+
+ visit_type_int32(v, name, &value, errp);
+}
+
+static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
+ void *opaque, Error **errp)
+{
+ MemoryRegion *mr = MEMORY_REGION(obj);
+ uint64_t value = memory_region_size(mr);
+
+ visit_type_uint64(v, name, &value, errp);
+}
+
+static void memory_region_initfn(Object *obj)
+{
+ MemoryRegion *mr = MEMORY_REGION(obj);
+ ObjectProperty *op;
+
+ mr->ops = &unassigned_mem_ops;
+ mr->enabled = true;
+ mr->romd_mode = true;
+ mr->global_locking = true;
+ mr->destructor = memory_region_destructor_none;
+ QTAILQ_INIT(&mr->subregions);
+ QTAILQ_INIT(&mr->coalesced);
+
+ op = object_property_add(OBJECT(mr), "container",
+ "link<" TYPE_MEMORY_REGION ">",
+ memory_region_get_container,
+ NULL, /* memory_region_set_container */
+ NULL, NULL);
+ op->resolve = memory_region_resolve_container;
+
+ object_property_add_uint64_ptr(OBJECT(mr), "addr",
+ &mr->addr, OBJ_PROP_FLAG_READ);
+ object_property_add(OBJECT(mr), "priority", "uint32",
+ memory_region_get_priority,
+ NULL, /* memory_region_set_priority */
+ NULL, NULL);
+ object_property_add(OBJECT(mr), "size", "uint64",
+ memory_region_get_size,
+ NULL, /* memory_region_set_size, */
+ NULL, NULL);
+}
+
+static void iommu_memory_region_initfn(Object *obj)
+{
+ MemoryRegion *mr = MEMORY_REGION(obj);
+
+ mr->is_iommu = true;
+}
+
+static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
+ unsigned size)
+{
+#ifdef DEBUG_UNASSIGNED
+ printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
+#endif
+ return 0;
+}
+
+static void unassigned_mem_write(void *opaque, hwaddr addr,
+ uint64_t val, unsigned size)
+{
+#ifdef DEBUG_UNASSIGNED
+ printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
+#endif
+}
+
+static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
+ unsigned size, bool is_write,
+ MemTxAttrs attrs)
+{
+ return false;
+}
+
+const MemoryRegionOps unassigned_mem_ops = {
+ .valid.accepts = unassigned_mem_accepts,
+ .endianness = DEVICE_NATIVE_ENDIAN,
+};
+
+static uint64_t memory_region_ram_device_read(void *opaque,
+ hwaddr addr, unsigned size)
+{
+ MemoryRegion *mr = opaque;
+ uint64_t data = (uint64_t)~0;
+
+ switch (size) {
+ case 1:
+ data = *(uint8_t *)(mr->ram_block->host + addr);
+ break;
+ case 2:
+ data = *(uint16_t *)(mr->ram_block->host + addr);
+ break;
+ case 4:
+ data = *(uint32_t *)(mr->ram_block->host + addr);
+ break;
+ case 8:
+ data = *(uint64_t *)(mr->ram_block->host + addr);
+ break;
+ }
+
+ trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
+
+ return data;
+}
+
+static void memory_region_ram_device_write(void *opaque, hwaddr addr,
+ uint64_t data, unsigned size)
+{
+ MemoryRegion *mr = opaque;
+
+ trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
+
+ switch (size) {
+ case 1:
+ *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
+ break;
+ case 2:
+ *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
+ break;
+ case 4:
+ *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
+ break;
+ case 8:
+ *(uint64_t *)(mr->ram_block->host + addr) = data;
+ break;
+ }
+}
+
+static const MemoryRegionOps ram_device_mem_ops = {
+ .read = memory_region_ram_device_read,
+ .write = memory_region_ram_device_write,
+ .endianness = DEVICE_HOST_ENDIAN,
+ .valid = {
+ .min_access_size = 1,
+ .max_access_size = 8,
+ .unaligned = true,
+ },
+ .impl = {
+ .min_access_size = 1,
+ .max_access_size = 8,
+ .unaligned = true,
+ },
+};
+
+bool memory_region_access_valid(MemoryRegion *mr,
+ hwaddr addr,
+ unsigned size,
+ bool is_write,
+ MemTxAttrs attrs)
+{
+ if (mr->ops->valid.accepts
+ && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
+ return false;
+ }
+
+ if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
+ return false;
+ }
+
+ /* Treat zero as compatibility all valid */
+ if (!mr->ops->valid.max_access_size) {
+ return true;
+ }
+
+ if (size > mr->ops->valid.max_access_size
+ || size < mr->ops->valid.min_access_size) {
+ return false;
+ }
+ return true;
+}
+
+static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
+ hwaddr addr,
+ uint64_t *pval,
+ unsigned size,
+ MemTxAttrs attrs)
+{
+ *pval = 0;
+
+ if (mr->ops->read) {
+ return access_with_adjusted_size(addr, pval, size,
+ mr->ops->impl.min_access_size,
+ mr->ops->impl.max_access_size,
+ memory_region_read_accessor,
+ mr, attrs);
+ } else {
+ return access_with_adjusted_size(addr, pval, size,
+ mr->ops->impl.min_access_size,
+ mr->ops->impl.max_access_size,
+ memory_region_read_with_attrs_accessor,
+ mr, attrs);
+ }
+}
+
+MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
+ hwaddr addr,
+ uint64_t *pval,
+ MemOp op,
+ MemTxAttrs attrs)
+{
+ unsigned size = memop_size(op);
+ MemTxResult r;
+
+ if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
+ *pval = unassigned_mem_read(mr, addr, size);
+ return MEMTX_DECODE_ERROR;
+ }
+
+ r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
+ adjust_endianness(mr, pval, op);
+ return r;
+}
+
+/* Return true if an eventfd was signalled */
+static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
+ hwaddr addr,
+ uint64_t data,
+ unsigned size,
+ MemTxAttrs attrs)
+{
+ MemoryRegionIoeventfd ioeventfd = {
+ .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
+ .data = data,
+ };
+ unsigned i;
+
+ for (i = 0; i < mr->ioeventfd_nb; i++) {
+ ioeventfd.match_data = mr->ioeventfds[i].match_data;
+ ioeventfd.e = mr->ioeventfds[i].e;
+
+ if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
+ event_notifier_set(ioeventfd.e);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
+ hwaddr addr,
+ uint64_t data,
+ MemOp op,
+ MemTxAttrs attrs)
+{
+ unsigned size = memop_size(op);
+
+ if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
+ unassigned_mem_write(mr, addr, data, size);
+ return MEMTX_DECODE_ERROR;
+ }
+
+ adjust_endianness(mr, &data, op);
+
+ if ((!kvm_eventfds_enabled()) &&
+ memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
+ return MEMTX_OK;
+ }
+
+ if (mr->ops->write) {
+ return access_with_adjusted_size(addr, &data, size,
+ mr->ops->impl.min_access_size,
+ mr->ops->impl.max_access_size,
+ memory_region_write_accessor, mr,
+ attrs);
+ } else {
+ return
+ access_with_adjusted_size(addr, &data, size,
+ mr->ops->impl.min_access_size,
+ mr->ops->impl.max_access_size,
+ memory_region_write_with_attrs_accessor,
+ mr, attrs);
+ }
+}
+
+void memory_region_init_io(MemoryRegion *mr,
+ Object *owner,
+ const MemoryRegionOps *ops,
+ void *opaque,
+ const char *name,
+ uint64_t size)
+{
+ memory_region_init(mr, owner, name, size);
+ mr->ops = ops ? ops : &unassigned_mem_ops;
+ mr->opaque = opaque;
+ mr->terminates = true;
+}
+
+void memory_region_init_ram_nomigrate(MemoryRegion *mr,
+ Object *owner,
+ const char *name,
+ uint64_t size,
+ Error **errp)
+{
+ memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
+}
+
+void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
+ Object *owner,
+ const char *name,
+ uint64_t size,
+ bool share,
+ Error **errp)
+{
+ Error *err = NULL;
+ memory_region_init(mr, owner, name, size);
+ mr->ram = true;
+ mr->terminates = true;
+ mr->destructor = memory_region_destructor_ram;
+ mr->ram_block = qemu_ram_alloc(size, share, mr, &err);
+ mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
+ if (err) {
+ mr->size = int128_zero();
+ object_unparent(OBJECT(mr));
+ error_propagate(errp, err);
+ }
+}
+
+void memory_region_init_resizeable_ram(MemoryRegion *mr,
+ Object *owner,
+ const char *name,
+ uint64_t size,
+ uint64_t max_size,
+ void (*resized)(const char*,
+ uint64_t length,
+ void *host),
+ Error **errp)
+{
+ Error *err = NULL;
+ memory_region_init(mr, owner, name, size);
+ mr->ram = true;
+ mr->terminates = true;
+ mr->destructor = memory_region_destructor_ram;
+ mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
+ mr, &err);
+ mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
+ if (err) {
+ mr->size = int128_zero();
+ object_unparent(OBJECT(mr));
+ error_propagate(errp, err);
+ }
+}
+
+#ifdef CONFIG_POSIX
+void memory_region_init_ram_from_file(MemoryRegion *mr,
+ struct Object *owner,
+ const char *name,
+ uint64_t size,
+ uint64_t align,
+ uint32_t ram_flags,
+ const char *path,
+ Error **errp)
+{
+ Error *err = NULL;
+ memory_region_init(mr, owner, name, size);
+ mr->ram = true;
+ mr->terminates = true;
+ mr->destructor = memory_region_destructor_ram;
+ mr->align = align;
+ mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path, &err);
+ mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
+ if (err) {
+ mr->size = int128_zero();
+ object_unparent(OBJECT(mr));
+ error_propagate(errp, err);
+ }
+}
+
+void memory_region_init_ram_from_fd(MemoryRegion *mr,
+ struct Object *owner,
+ const char *name,
+ uint64_t size,
+ bool share,
+ int fd,
+ Error **errp)
+{
+ Error *err = NULL;
+ memory_region_init(mr, owner, name, size);
+ mr->ram = true;
+ mr->terminates = true;
+ mr->destructor = memory_region_destructor_ram;
+ mr->ram_block = qemu_ram_alloc_from_fd(size, mr,
+ share ? RAM_SHARED : 0,
+ fd, &err);
+ mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
+ if (err) {
+ mr->size = int128_zero();
+ object_unparent(OBJECT(mr));
+ error_propagate(errp, err);
+ }
+}
+#endif
+
+void memory_region_init_ram_ptr(MemoryRegion *mr,
+ Object *owner,
+ const char *name,
+ uint64_t size,
+ void *ptr)
+{
+ memory_region_init(mr, owner, name, size);
+ mr->ram = true;
+ mr->terminates = true;
+ mr->destructor = memory_region_destructor_ram;
+ mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
+
+ /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
+ assert(ptr != NULL);
+ mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
+}
+
+void memory_region_init_ram_device_ptr(MemoryRegion *mr,
+ Object *owner,
+ const char *name,
+ uint64_t size,
+ void *ptr)
+{
+ memory_region_init(mr, owner, name, size);
+ mr->ram = true;
+ mr->terminates = true;
+ mr->ram_device = true;
+ mr->ops = &ram_device_mem_ops;
+ mr->opaque = mr;
+ mr->destructor = memory_region_destructor_ram;
+ mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
+ /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
+ assert(ptr != NULL);
+ mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
+}
+
+void memory_region_init_alias(MemoryRegion *mr,
+ Object *owner,
+ const char *name,
+ MemoryRegion *orig,
+ hwaddr offset,
+ uint64_t size)
+{
+ memory_region_init(mr, owner, name, size);
+ mr->alias = orig;
+ mr->alias_offset = offset;
+}
+
+void memory_region_init_rom_nomigrate(MemoryRegion *mr,
+ struct Object *owner,
+ const char *name,
+ uint64_t size,
+ Error **errp)
+{
+ memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
+ mr->readonly = true;
+}
+
+void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
+ Object *owner,
+ const MemoryRegionOps *ops,
+ void *opaque,
+ const char *name,
+ uint64_t size,
+ Error **errp)
+{
+ Error *err = NULL;
+ assert(ops);
+ memory_region_init(mr, owner, name, size);
+ mr->ops = ops;
+ mr->opaque = opaque;
+ mr->terminates = true;
+ mr->rom_device = true;
+ mr->destructor = memory_region_destructor_ram;
+ mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
+ if (err) {
+ mr->size = int128_zero();
+ object_unparent(OBJECT(mr));
+ error_propagate(errp, err);
+ }
+}
+
+void memory_region_init_iommu(void *_iommu_mr,
+ size_t instance_size,
+ const char *mrtypename,
+ Object *owner,
+ const char *name,
+ uint64_t size)
+{
+ struct IOMMUMemoryRegion *iommu_mr;
+ struct MemoryRegion *mr;
+
+ object_initialize(_iommu_mr, instance_size, mrtypename);
+ mr = MEMORY_REGION(_iommu_mr);
+ memory_region_do_init(mr, owner, name, size);
+ iommu_mr = IOMMU_MEMORY_REGION(mr);
+ mr->terminates = true; /* then re-forwards */
+ QLIST_INIT(&iommu_mr->iommu_notify);
+ iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
+}
+
+static void memory_region_finalize(Object *obj)
+{
+ MemoryRegion *mr = MEMORY_REGION(obj);
+
+ assert(!mr->container);
+
+ /* We know the region is not visible in any address space (it
+ * does not have a container and cannot be a root either because
+ * it has no references, so we can blindly clear mr->enabled.
+ * memory_region_set_enabled instead could trigger a transaction
+ * and cause an infinite loop.
+ */
+ mr->enabled = false;
+ memory_region_transaction_begin();
+ while (!QTAILQ_EMPTY(&mr->subregions)) {
+ MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
+ memory_region_del_subregion(mr, subregion);
+ }
+ memory_region_transaction_commit();
+
+ mr->destructor(mr);
+ memory_region_clear_coalescing(mr);
+ g_free((char *)mr->name);
+ g_free(mr->ioeventfds);
+}
+
+Object *memory_region_owner(MemoryRegion *mr)
+{
+ Object *obj = OBJECT(mr);
+ return obj->parent;
+}
+
+void memory_region_ref(MemoryRegion *mr)
+{
+ /* MMIO callbacks most likely will access data that belongs
+ * to the owner, hence the need to ref/unref the owner whenever
+ * the memory region is in use.
+ *
+ * The memory region is a child of its owner. As long as the
+ * owner doesn't call unparent itself on the memory region,
+ * ref-ing the owner will also keep the memory region alive.
+ * Memory regions without an owner are supposed to never go away;
+ * we do not ref/unref them because it slows down DMA sensibly.
+ */
+ if (mr && mr->owner) {
+ object_ref(mr->owner);
+ }
+}
+
+void memory_region_unref(MemoryRegion *mr)
+{
+ if (mr && mr->owner) {
+ object_unref(mr->owner);
+ }
+}
+
+uint64_t memory_region_size(MemoryRegion *mr)
+{
+ if (int128_eq(mr->size, int128_2_64())) {
+ return UINT64_MAX;
+ }
+ return int128_get64(mr->size);
+}
+
+const char *memory_region_name(const MemoryRegion *mr)
+{
+ if (!mr->name) {
+ ((MemoryRegion *)mr)->name =
+ object_get_canonical_path_component(OBJECT(mr));
+ }
+ return mr->name;
+}
+
+bool memory_region_is_ram_device(MemoryRegion *mr)
+{
+ return mr->ram_device;
+}
+
+uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
+{
+ uint8_t mask = mr->dirty_log_mask;
+ if (global_dirty_log && mr->ram_block) {
+ mask |= (1 << DIRTY_MEMORY_MIGRATION);
+ }
+ return mask;
+}
+
+bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
+{
+ return memory_region_get_dirty_log_mask(mr) & (1 << client);
+}
+
+static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
+ Error **errp)
+{
+ IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
+ IOMMUNotifier *iommu_notifier;
+ IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
+ int ret = 0;
+
+ IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
+ flags |= iommu_notifier->notifier_flags;
+ }
+
+ if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
+ ret = imrc->notify_flag_changed(iommu_mr,
+ iommu_mr->iommu_notify_flags,
+ flags, errp);
+ }
+
+ if (!ret) {
+ iommu_mr->iommu_notify_flags = flags;
+ }
+ return ret;
+}
+
+int memory_region_register_iommu_notifier(MemoryRegion *mr,
+ IOMMUNotifier *n, Error **errp)
+{
+ IOMMUMemoryRegion *iommu_mr;
+ int ret;
+
+ if (mr->alias) {
+ return memory_region_register_iommu_notifier(mr->alias, n, errp);
+ }
+
+ /* We need to register for at least one bitfield */
+ iommu_mr = IOMMU_MEMORY_REGION(mr);
+ assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
+ assert(n->start <= n->end);
+ assert(n->iommu_idx >= 0 &&
+ n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
+
+ QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
+ ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
+ if (ret) {
+ QLIST_REMOVE(n, node);
+ }
+ return ret;
+}
+
+uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
+{
+ IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
+
+ if (imrc->get_min_page_size) {
+ return imrc->get_min_page_size(iommu_mr);
+ }
+ return TARGET_PAGE_SIZE;
+}
+
+void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
+{
+ MemoryRegion *mr = MEMORY_REGION(iommu_mr);
+ IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
+ hwaddr addr, granularity;
+ IOMMUTLBEntry iotlb;
+
+ /* If the IOMMU has its own replay callback, override */
+ if (imrc->replay) {
+ imrc->replay(iommu_mr, n);
+ return;
+ }
+
+ granularity = memory_region_iommu_get_min_page_size(iommu_mr);
+
+ for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
+ iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
+ if (iotlb.perm != IOMMU_NONE) {
+ n->notify(n, &iotlb);
+ }
+
+ /* if (2^64 - MR size) < granularity, it's possible to get an
+ * infinite loop here. This should catch such a wraparound */
+ if ((addr + granularity) < addr) {
+ break;
+ }
+ }
+}
+
+void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
+ IOMMUNotifier *n)
+{
+ IOMMUMemoryRegion *iommu_mr;
+
+ if (mr->alias) {
+ memory_region_unregister_iommu_notifier(mr->alias, n);
+ return;
+ }
+ QLIST_REMOVE(n, node);
+ iommu_mr = IOMMU_MEMORY_REGION(mr);
+ memory_region_update_iommu_notify_flags(iommu_mr, NULL);
+}
+
+void memory_region_notify_one(IOMMUNotifier *notifier,
+ IOMMUTLBEntry *entry)
+{
+ IOMMUNotifierFlag request_flags;
+ hwaddr entry_end = entry->iova + entry->addr_mask;
+
+ /*
+ * Skip the notification if the notification does not overlap
+ * with registered range.
+ */
+ if (notifier->start > entry_end || notifier->end < entry->iova) {
+ return;
+ }
+
+ assert(entry->iova >= notifier->start && entry_end <= notifier->end);
+
+ if (entry->perm & IOMMU_RW) {
+ request_flags = IOMMU_NOTIFIER_MAP;
+ } else {
+ request_flags = IOMMU_NOTIFIER_UNMAP;
+ }
+
+ if (notifier->notifier_flags & request_flags) {
+ notifier->notify(notifier, entry);
+ }
+}
+
+void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
+ int iommu_idx,
+ IOMMUTLBEntry entry)
+{
+ IOMMUNotifier *iommu_notifier;
+
+ assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
+
+ IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
+ if (iommu_notifier->iommu_idx == iommu_idx) {
+ memory_region_notify_one(iommu_notifier, &entry);
+ }
+ }
+}
+
+int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
+ enum IOMMUMemoryRegionAttr attr,
+ void *data)
+{
+ IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
+
+ if (!imrc->get_attr) {
+ return -EINVAL;
+ }
+
+ return imrc->get_attr(iommu_mr, attr, data);
+}
+
+int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
+ MemTxAttrs attrs)
+{
+ IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
+
+ if (!imrc->attrs_to_index) {
+ return 0;
+ }
+
+ return imrc->attrs_to_index(iommu_mr, attrs);
+}
+
+int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
+{
+ IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
+
+ if (!imrc->num_indexes) {
+ return 1;
+ }
+
+ return imrc->num_indexes(iommu_mr);
+}
+
+void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
+{
+ uint8_t mask = 1 << client;
+ uint8_t old_logging;
+
+ assert(client == DIRTY_MEMORY_VGA);
+ old_logging = mr->vga_logging_count;
+ mr->vga_logging_count += log ? 1 : -1;
+ if (!!old_logging == !!mr->vga_logging_count) {
+ return;
+ }
+
+ memory_region_transaction_begin();
+ mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
+ memory_region_update_pending |= mr->enabled;
+ memory_region_transaction_commit();
+}
+
+void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
+ hwaddr size)
+{
+ assert(mr->ram_block);
+ cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
+ size,
+ memory_region_get_dirty_log_mask(mr));
+}
+
+static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
+{
+ MemoryListener *listener;
+ AddressSpace *as;
+ FlatView *view;
+ FlatRange *fr;
+
+ /* If the same address space has multiple log_sync listeners, we
+ * visit that address space's FlatView multiple times. But because
+ * log_sync listeners are rare, it's still cheaper than walking each
+ * address space once.
+ */
+ QTAILQ_FOREACH(listener, &memory_listeners, link) {
+ if (!listener->log_sync) {
+ continue;
+ }
+ as = listener->address_space;
+ view = address_space_get_flatview(as);
+ FOR_EACH_FLAT_RANGE(fr, view) {
+ if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
+ MemoryRegionSection mrs = section_from_flat_range(fr, view);
+ listener->log_sync(listener, &mrs);
+ }
+ }
+ flatview_unref(view);
+ }
+}
+
+void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
+ hwaddr len)
+{
+ MemoryRegionSection mrs;
+ MemoryListener *listener;
+ AddressSpace *as;
+ FlatView *view;
+ FlatRange *fr;
+ hwaddr sec_start, sec_end, sec_size;
+
+ QTAILQ_FOREACH(listener, &memory_listeners, link) {
+ if (!listener->log_clear) {
+ continue;
+ }
+ as = listener->address_space;
+ view = address_space_get_flatview(as);
+ FOR_EACH_FLAT_RANGE(fr, view) {
+ if (!fr->dirty_log_mask || fr->mr != mr) {
+ /*
+ * Clear dirty bitmap operation only applies to those
+ * regions whose dirty logging is at least enabled
+ */
+ continue;
+ }
+
+ mrs = section_from_flat_range(fr, view);
+
+ sec_start = MAX(mrs.offset_within_region, start);
+ sec_end = mrs.offset_within_region + int128_get64(mrs.size);
+ sec_end = MIN(sec_end, start + len);
+
+ if (sec_start >= sec_end) {
+ /*
+ * If this memory region section has no intersection
+ * with the requested range, skip.
+ */
+ continue;
+ }
+
+ /* Valid case; shrink the section if needed */
+ mrs.offset_within_address_space +=
+ sec_start - mrs.offset_within_region;
+ mrs.offset_within_region = sec_start;
+ sec_size = sec_end - sec_start;
+ mrs.size = int128_make64(sec_size);
+ listener->log_clear(listener, &mrs);
+ }
+ flatview_unref(view);
+ }
+}
+
+DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
+ hwaddr addr,
+ hwaddr size,
+ unsigned client)
+{
+ DirtyBitmapSnapshot *snapshot;
+ assert(mr->ram_block);
+ memory_region_sync_dirty_bitmap(mr);
+ snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
+ memory_global_after_dirty_log_sync();
+ return snapshot;
+}
+
+bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
+ hwaddr addr, hwaddr size)
+{
+ assert(mr->ram_block);
+ return cpu_physical_memory_snapshot_get_dirty(snap,
+ memory_region_get_ram_addr(mr) + addr, size);
+}
+
+void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
+{
+ if (mr->readonly != readonly) {
+ memory_region_transaction_begin();
+ mr->readonly = readonly;
+ memory_region_update_pending |= mr->enabled;
+ memory_region_transaction_commit();
+ }
+}
+
+void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
+{
+ if (mr->nonvolatile != nonvolatile) {
+ memory_region_transaction_begin();
+ mr->nonvolatile = nonvolatile;
+ memory_region_update_pending |= mr->enabled;
+ memory_region_transaction_commit();
+ }
+}
+
+void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
+{
+ if (mr->romd_mode != romd_mode) {
+ memory_region_transaction_begin();
+ mr->romd_mode = romd_mode;
+ memory_region_update_pending |= mr->enabled;
+ memory_region_transaction_commit();
+ }
+}
+
+void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
+ hwaddr size, unsigned client)
+{
+ assert(mr->ram_block);
+ cpu_physical_memory_test_and_clear_dirty(
+ memory_region_get_ram_addr(mr) + addr, size, client);
+}
+
+int memory_region_get_fd(MemoryRegion *mr)
+{
+ int fd;
+
+ RCU_READ_LOCK_GUARD();
+ while (mr->alias) {
+ mr = mr->alias;
+ }
+ fd = mr->ram_block->fd;
+
+ return fd;
+}
+
+void *memory_region_get_ram_ptr(MemoryRegion *mr)
+{
+ void *ptr;
+ uint64_t offset = 0;
+
+ RCU_READ_LOCK_GUARD();
+ while (mr->alias) {
+ offset += mr->alias_offset;
+ mr = mr->alias;
+ }
+ assert(mr->ram_block);
+ ptr = qemu_map_ram_ptr(mr->ram_block, offset);
+
+ return ptr;
+}
+
+MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
+{
+ RAMBlock *block;
+
+ block = qemu_ram_block_from_host(ptr, false, offset);
+ if (!block) {
+ return NULL;
+ }
+
+ return block->mr;
+}
+
+ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
+{
+ return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
+}
+
+void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
+{
+ assert(mr->ram_block);
+
+ qemu_ram_resize(mr->ram_block, newsize, errp);
+}
+
+void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
+{
+ if (mr->ram_block) {
+ qemu_ram_msync(mr->ram_block, addr, size);
+ }
+}
+
+void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
+{
+ /*
+ * Might be extended case needed to cover
+ * different types of memory regions
+ */
+ if (mr->dirty_log_mask) {
+ memory_region_msync(mr, addr, size);
+ }
+}
+
+/*
+ * Call proper memory listeners about the change on the newly
+ * added/removed CoalescedMemoryRange.
+ */
+static void memory_region_update_coalesced_range(MemoryRegion *mr,
+ CoalescedMemoryRange *cmr,
+ bool add)
+{
+ AddressSpace *as;
+ FlatView *view;
+ FlatRange *fr;
+
+ QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
+ view = address_space_get_flatview(as);
+ FOR_EACH_FLAT_RANGE(fr, view) {
+ if (fr->mr == mr) {
+ flat_range_coalesced_io_notify(fr, as, cmr, add);
+ }
+ }
+ flatview_unref(view);
+ }
+}
+
+void memory_region_set_coalescing(MemoryRegion *mr)
+{
+ memory_region_clear_coalescing(mr);
+ memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
+}
+
+void memory_region_add_coalescing(MemoryRegion *mr,
+ hwaddr offset,
+ uint64_t size)
+{
+ CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
+
+ cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
+ QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
+ memory_region_update_coalesced_range(mr, cmr, true);
+ memory_region_set_flush_coalesced(mr);
+}
+
+void memory_region_clear_coalescing(MemoryRegion *mr)
+{
+ CoalescedMemoryRange *cmr;
+
+ if (QTAILQ_EMPTY(&mr->coalesced)) {
+ return;
+ }
+
+ qemu_flush_coalesced_mmio_buffer();
+ mr->flush_coalesced_mmio = false;
+
+ while (!QTAILQ_EMPTY(&mr->coalesced)) {
+ cmr = QTAILQ_FIRST(&mr->coalesced);
+ QTAILQ_REMOVE(&mr->coalesced, cmr, link);
+ memory_region_update_coalesced_range(mr, cmr, false);
+ g_free(cmr);
+ }
+}
+
+void memory_region_set_flush_coalesced(MemoryRegion *mr)
+{
+ mr->flush_coalesced_mmio = true;
+}
+
+void memory_region_clear_flush_coalesced(MemoryRegion *mr)
+{
+ qemu_flush_coalesced_mmio_buffer();
+ if (QTAILQ_EMPTY(&mr->coalesced)) {
+ mr->flush_coalesced_mmio = false;
+ }
+}
+
+void memory_region_clear_global_locking(MemoryRegion *mr)
+{
+ mr->global_locking = false;
+}
+
+static bool userspace_eventfd_warning;
+
+void memory_region_add_eventfd(MemoryRegion *mr,
+ hwaddr addr,
+ unsigned size,
+ bool match_data,
+ uint64_t data,
+ EventNotifier *e)
+{
+ MemoryRegionIoeventfd mrfd = {
+ .addr.start = int128_make64(addr),
+ .addr.size = int128_make64(size),
+ .match_data = match_data,
+ .data = data,
+ .e = e,
+ };
+ unsigned i;
+
+ if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
+ userspace_eventfd_warning))) {
+ userspace_eventfd_warning = true;
+ error_report("Using eventfd without MMIO binding in KVM. "
+ "Suboptimal performance expected");
+ }
+
+ if (size) {
+ adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
+ }
+ memory_region_transaction_begin();
+ for (i = 0; i < mr->ioeventfd_nb; ++i) {
+ if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
+ break;
+ }
+ }
+ ++mr->ioeventfd_nb;
+ mr->ioeventfds = g_realloc(mr->ioeventfds,
+ sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
+ memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
+ sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
+ mr->ioeventfds[i] = mrfd;
+ ioeventfd_update_pending |= mr->enabled;
+ memory_region_transaction_commit();
+}
+
+void memory_region_del_eventfd(MemoryRegion *mr,
+ hwaddr addr,
+ unsigned size,
+ bool match_data,
+ uint64_t data,
+ EventNotifier *e)
+{
+ MemoryRegionIoeventfd mrfd = {
+ .addr.start = int128_make64(addr),
+ .addr.size = int128_make64(size),
+ .match_data = match_data,
+ .data = data,
+ .e = e,
+ };
+ unsigned i;
+
+ if (size) {
+ adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
+ }
+ memory_region_transaction_begin();
+ for (i = 0; i < mr->ioeventfd_nb; ++i) {
+ if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
+ break;
+ }
+ }
+ assert(i != mr->ioeventfd_nb);
+ memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
+ sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
+ --mr->ioeventfd_nb;
+ mr->ioeventfds = g_realloc(mr->ioeventfds,
+ sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
+ ioeventfd_update_pending |= mr->enabled;
+ memory_region_transaction_commit();
+}
+
+static void memory_region_update_container_subregions(MemoryRegion *subregion)
+{
+ MemoryRegion *mr = subregion->container;
+ MemoryRegion *other;
+
+ memory_region_transaction_begin();
+
+ memory_region_ref(subregion);
+ QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
+ if (subregion->priority >= other->priority) {
+ QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
+ goto done;
+ }
+ }
+ QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
+done:
+ memory_region_update_pending |= mr->enabled && subregion->enabled;
+ memory_region_transaction_commit();
+}
+
+static void memory_region_add_subregion_common(MemoryRegion *mr,
+ hwaddr offset,
+ MemoryRegion *subregion)
+{
+ assert(!subregion->container);
+ subregion->container = mr;
+ subregion->addr = offset;
+ memory_region_update_container_subregions(subregion);
+}
+
+void memory_region_add_subregion(MemoryRegion *mr,
+ hwaddr offset,
+ MemoryRegion *subregion)
+{
+ subregion->priority = 0;
+ memory_region_add_subregion_common(mr, offset, subregion);
+}
+
+void memory_region_add_subregion_overlap(MemoryRegion *mr,
+ hwaddr offset,
+ MemoryRegion *subregion,
+ int priority)
+{
+ subregion->priority = priority;
+ memory_region_add_subregion_common(mr, offset, subregion);
+}
+
+void memory_region_del_subregion(MemoryRegion *mr,
+ MemoryRegion *subregion)
+{
+ memory_region_transaction_begin();
+ assert(subregion->container == mr);
+ subregion->container = NULL;
+ QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
+ memory_region_unref(subregion);
+ memory_region_update_pending |= mr->enabled && subregion->enabled;
+ memory_region_transaction_commit();
+}
+
+void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
+{
+ if (enabled == mr->enabled) {
+ return;
+ }
+ memory_region_transaction_begin();
+ mr->enabled = enabled;
+ memory_region_update_pending = true;
+ memory_region_transaction_commit();
+}
+
+void memory_region_set_size(MemoryRegion *mr, uint64_t size)
+{
+ Int128 s = int128_make64(size);
+
+ if (size == UINT64_MAX) {
+ s = int128_2_64();
+ }
+ if (int128_eq(s, mr->size)) {
+ return;
+ }
+ memory_region_transaction_begin();
+ mr->size = s;
+ memory_region_update_pending = true;
+ memory_region_transaction_commit();
+}
+
+static void memory_region_readd_subregion(MemoryRegion *mr)
+{
+ MemoryRegion *container = mr->container;
+
+ if (container) {
+ memory_region_transaction_begin();
+ memory_region_ref(mr);
+ memory_region_del_subregion(container, mr);
+ mr->container = container;
+ memory_region_update_container_subregions(mr);
+ memory_region_unref(mr);
+ memory_region_transaction_commit();
+ }
+}
+
+void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
+{
+ if (addr != mr->addr) {
+ mr->addr = addr;
+ memory_region_readd_subregion(mr);
+ }
+}
+
+void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
+{
+ assert(mr->alias);
+
+ if (offset == mr->alias_offset) {
+ return;
+ }
+
+ memory_region_transaction_begin();
+ mr->alias_offset = offset;
+ memory_region_update_pending |= mr->enabled;
+ memory_region_transaction_commit();
+}
+
+uint64_t memory_region_get_alignment(const MemoryRegion *mr)
+{
+ return mr->align;
+}
+
+static int cmp_flatrange_addr(const void *addr_, const void *fr_)
+{
+ const AddrRange *addr = addr_;
+ const FlatRange *fr = fr_;
+
+ if (int128_le(addrrange_end(*addr), fr->addr.start)) {
+ return -1;
+ } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
+ return 1;
+ }
+ return 0;
+}
+
+static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
+{
+ return bsearch(&addr, view->ranges, view->nr,
+ sizeof(FlatRange), cmp_flatrange_addr);
+}
+
+bool memory_region_is_mapped(MemoryRegion *mr)
+{
+ return mr->container ? true : false;
+}
+
+/* Same as memory_region_find, but it does not add a reference to the
+ * returned region. It must be called from an RCU critical section.
+ */
+static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
+ hwaddr addr, uint64_t size)
+{
+ MemoryRegionSection ret = { .mr = NULL };
+ MemoryRegion *root;
+ AddressSpace *as;
+ AddrRange range;
+ FlatView *view;
+ FlatRange *fr;
+
+ addr += mr->addr;
+ for (root = mr; root->container; ) {
+ root = root->container;
+ addr += root->addr;
+ }
+
+ as = memory_region_to_address_space(root);
+ if (!as) {
+ return ret;
+ }
+ range = addrrange_make(int128_make64(addr), int128_make64(size));
+
+ view = address_space_to_flatview(as);
+ fr = flatview_lookup(view, range);
+ if (!fr) {
+ return ret;
+ }
+
+ while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
+ --fr;
+ }
+
+ ret.mr = fr->mr;
+ ret.fv = view;
+ range = addrrange_intersection(range, fr->addr);
+ ret.offset_within_region = fr->offset_in_region;
+ ret.offset_within_region += int128_get64(int128_sub(range.start,
+ fr->addr.start));
+ ret.size = range.size;
+ ret.offset_within_address_space = int128_get64(range.start);
+ ret.readonly = fr->readonly;
+ ret.nonvolatile = fr->nonvolatile;
+ return ret;
+}
+
+MemoryRegionSection memory_region_find(MemoryRegion *mr,
+ hwaddr addr, uint64_t size)
+{
+ MemoryRegionSection ret;
+ RCU_READ_LOCK_GUARD();
+ ret = memory_region_find_rcu(mr, addr, size);
+ if (ret.mr) {
+ memory_region_ref(ret.mr);
+ }
+ return ret;
+}
+
+bool memory_region_present(MemoryRegion *container, hwaddr addr)
+{
+ MemoryRegion *mr;
+
+ RCU_READ_LOCK_GUARD();
+ mr = memory_region_find_rcu(container, addr, 1).mr;
+ return mr && mr != container;
+}
+
+void memory_global_dirty_log_sync(void)
+{
+ memory_region_sync_dirty_bitmap(NULL);
+}
+
+void memory_global_after_dirty_log_sync(void)
+{
+ MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
+}
+
+static VMChangeStateEntry *vmstate_change;
+
+void memory_global_dirty_log_start(void)
+{
+ if (vmstate_change) {
+ qemu_del_vm_change_state_handler(vmstate_change);
+ vmstate_change = NULL;
+ }
+
+ global_dirty_log = true;
+
+ MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
+
+ /* Refresh DIRTY_MEMORY_MIGRATION bit. */
+ memory_region_transaction_begin();
+ memory_region_update_pending = true;
+ memory_region_transaction_commit();
+}
+
+static void memory_global_dirty_log_do_stop(void)
+{
+ global_dirty_log = false;
+
+ /* Refresh DIRTY_MEMORY_MIGRATION bit. */
+ memory_region_transaction_begin();
+ memory_region_update_pending = true;
+ memory_region_transaction_commit();
+
+ MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
+}
+
+static void memory_vm_change_state_handler(void *opaque, int running,
+ RunState state)
+{
+ if (running) {
+ memory_global_dirty_log_do_stop();
+
+ if (vmstate_change) {
+ qemu_del_vm_change_state_handler(vmstate_change);
+ vmstate_change = NULL;
+ }
+ }
+}
+
+void memory_global_dirty_log_stop(void)
+{
+ if (!runstate_is_running()) {
+ if (vmstate_change) {
+ return;
+ }
+ vmstate_change = qemu_add_vm_change_state_handler(
+ memory_vm_change_state_handler, NULL);
+ return;
+ }
+
+ memory_global_dirty_log_do_stop();
+}
+
+static void listener_add_address_space(MemoryListener *listener,
+ AddressSpace *as)
+{
+ FlatView *view;
+ FlatRange *fr;
+
+ if (listener->begin) {
+ listener->begin(listener);
+ }
+ if (global_dirty_log) {
+ if (listener->log_global_start) {
+ listener->log_global_start(listener);
+ }
+ }
+
+ view = address_space_get_flatview(as);
+ FOR_EACH_FLAT_RANGE(fr, view) {
+ MemoryRegionSection section = section_from_flat_range(fr, view);
+
+ if (listener->region_add) {
+ listener->region_add(listener, &section);
+ }
+ if (fr->dirty_log_mask && listener->log_start) {
+ listener->log_start(listener, &section, 0, fr->dirty_log_mask);
+ }
+ }
+ if (listener->commit) {
+ listener->commit(listener);
+ }
+ flatview_unref(view);
+}
+
+static void listener_del_address_space(MemoryListener *listener,
+ AddressSpace *as)
+{
+ FlatView *view;
+ FlatRange *fr;
+
+ if (listener->begin) {
+ listener->begin(listener);
+ }
+ view = address_space_get_flatview(as);
+ FOR_EACH_FLAT_RANGE(fr, view) {
+ MemoryRegionSection section = section_from_flat_range(fr, view);
+
+ if (fr->dirty_log_mask && listener->log_stop) {
+ listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
+ }
+ if (listener->region_del) {
+ listener->region_del(listener, &section);
+ }
+ }
+ if (listener->commit) {
+ listener->commit(listener);
+ }
+ flatview_unref(view);
+}
+
+void memory_listener_register(MemoryListener *listener, AddressSpace *as)
+{
+ MemoryListener *other = NULL;
+
+ listener->address_space = as;
+ if (QTAILQ_EMPTY(&memory_listeners)
+ || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
+ QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
+ } else {
+ QTAILQ_FOREACH(other, &memory_listeners, link) {
+ if (listener->priority < other->priority) {
+ break;
+ }
+ }
+ QTAILQ_INSERT_BEFORE(other, listener, link);
+ }
+
+ if (QTAILQ_EMPTY(&as->listeners)
+ || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
+ QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
+ } else {
+ QTAILQ_FOREACH(other, &as->listeners, link_as) {
+ if (listener->priority < other->priority) {
+ break;
+ }
+ }
+ QTAILQ_INSERT_BEFORE(other, listener, link_as);
+ }
+
+ listener_add_address_space(listener, as);
+}
+
+void memory_listener_unregister(MemoryListener *listener)
+{
+ if (!listener->address_space) {
+ return;
+ }
+
+ listener_del_address_space(listener, listener->address_space);
+ QTAILQ_REMOVE(&memory_listeners, listener, link);
+ QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
+ listener->address_space = NULL;
+}
+
+void address_space_remove_listeners(AddressSpace *as)
+{
+ while (!QTAILQ_EMPTY(&as->listeners)) {
+ memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
+ }
+}
+
+void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
+{
+ memory_region_ref(root);
+ as->root = root;
+ as->current_map = NULL;
+ as->ioeventfd_nb = 0;
+ as->ioeventfds = NULL;
+ QTAILQ_INIT(&as->listeners);
+ QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
+ as->name = g_strdup(name ? name : "anonymous");
+ address_space_update_topology(as);
+ address_space_update_ioeventfds(as);
+}
+
+static void do_address_space_destroy(AddressSpace *as)
+{
+ assert(QTAILQ_EMPTY(&as->listeners));
+
+ flatview_unref(as->current_map);
+ g_free(as->name);
+ g_free(as->ioeventfds);
+ memory_region_unref(as->root);
+}
+
+void address_space_destroy(AddressSpace *as)
+{
+ MemoryRegion *root = as->root;
+
+ /* Flush out anything from MemoryListeners listening in on this */
+ memory_region_transaction_begin();
+ as->root = NULL;
+ memory_region_transaction_commit();
+ QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
+
+ /* At this point, as->dispatch and as->current_map are dummy
+ * entries that the guest should never use. Wait for the old
+ * values to expire before freeing the data.
+ */
+ as->root = root;
+ call_rcu(as, do_address_space_destroy, rcu);
+}
+
+static const char *memory_region_type(MemoryRegion *mr)
+{
+ if (mr->alias) {
+ return memory_region_type(mr->alias);
+ }
+ if (memory_region_is_ram_device(mr)) {
+ return "ramd";
+ } else if (memory_region_is_romd(mr)) {
+ return "romd";
+ } else if (memory_region_is_rom(mr)) {
+ return "rom";
+ } else if (memory_region_is_ram(mr)) {
+ return "ram";
+ } else {
+ return "i/o";
+ }
+}
+
+typedef struct MemoryRegionList MemoryRegionList;
+
+struct MemoryRegionList {
+ const MemoryRegion *mr;
+ QTAILQ_ENTRY(MemoryRegionList) mrqueue;
+};
+
+typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
+
+#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
+ int128_sub((size), int128_one())) : 0)
+#define MTREE_INDENT " "
+
+static void mtree_expand_owner(const char *label, Object *obj)
+{
+ DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
+
+ qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
+ if (dev && dev->id) {
+ qemu_printf(" id=%s", dev->id);
+ } else {
+ char *canonical_path = object_get_canonical_path(obj);
+ if (canonical_path) {
+ qemu_printf(" path=%s", canonical_path);
+ g_free(canonical_path);
+ } else {
+ qemu_printf(" type=%s", object_get_typename(obj));
+ }
+ }
+ qemu_printf("}");
+}
+
+static void mtree_print_mr_owner(const MemoryRegion *mr)
+{
+ Object *owner = mr->owner;
+ Object *parent = memory_region_owner((MemoryRegion *)mr);
+
+ if (!owner && !parent) {
+ qemu_printf(" orphan");
+ return;
+ }
+ if (owner) {
+ mtree_expand_owner("owner", owner);
+ }
+ if (parent && parent != owner) {
+ mtree_expand_owner("parent", parent);
+ }
+}
+
+static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
+ hwaddr base,
+ MemoryRegionListHead *alias_print_queue,
+ bool owner, bool display_disabled)
+{
+ MemoryRegionList *new_ml, *ml, *next_ml;
+ MemoryRegionListHead submr_print_queue;
+ const MemoryRegion *submr;
+ unsigned int i;
+ hwaddr cur_start, cur_end;
+
+ if (!mr) {
+ return;
+ }
+
+ cur_start = base + mr->addr;
+ cur_end = cur_start + MR_SIZE(mr->size);
+
+ /*
+ * Try to detect overflow of memory region. This should never
+ * happen normally. When it happens, we dump something to warn the
+ * user who is observing this.
+ */
+ if (cur_start < base || cur_end < cur_start) {
+ qemu_printf("[DETECTED OVERFLOW!] ");
+ }
+
+ if (mr->alias) {
+ MemoryRegionList *ml;
+ bool found = false;
+
+ /* check if the alias is already in the queue */
+ QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
+ if (ml->mr == mr->alias) {
+ found = true;
+ }
+ }
+
+ if (!found) {
+ ml = g_new(MemoryRegionList, 1);
+ ml->mr = mr->alias;
+ QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
+ }
+ if (mr->enabled || display_disabled) {
+ for (i = 0; i < level; i++) {
+ qemu_printf(MTREE_INDENT);
+ }
+ qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
+ " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
+ "-" TARGET_FMT_plx "%s",
+ cur_start, cur_end,
+ mr->priority,
+ mr->nonvolatile ? "nv-" : "",
+ memory_region_type((MemoryRegion *)mr),
+ memory_region_name(mr),
+ memory_region_name(mr->alias),
+ mr->alias_offset,
+ mr->alias_offset + MR_SIZE(mr->size),
+ mr->enabled ? "" : " [disabled]");
+ if (owner) {
+ mtree_print_mr_owner(mr);
+ }
+ qemu_printf("\n");
+ }
+ } else {
+ if (mr->enabled || display_disabled) {
+ for (i = 0; i < level; i++) {
+ qemu_printf(MTREE_INDENT);
+ }
+ qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
+ " (prio %d, %s%s): %s%s",
+ cur_start, cur_end,
+ mr->priority,
+ mr->nonvolatile ? "nv-" : "",
+ memory_region_type((MemoryRegion *)mr),
+ memory_region_name(mr),
+ mr->enabled ? "" : " [disabled]");
+ if (owner) {
+ mtree_print_mr_owner(mr);
+ }
+ qemu_printf("\n");
+ }
+ }
+
+ QTAILQ_INIT(&submr_print_queue);
+
+ QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
+ new_ml = g_new(MemoryRegionList, 1);
+ new_ml->mr = submr;
+ QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
+ if (new_ml->mr->addr < ml->mr->addr ||
+ (new_ml->mr->addr == ml->mr->addr &&
+ new_ml->mr->priority > ml->mr->priority)) {
+ QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
+ new_ml = NULL;
+ break;
+ }
+ }
+ if (new_ml) {
+ QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
+ }
+ }
+
+ QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
+ mtree_print_mr(ml->mr, level + 1, cur_start,
+ alias_print_queue, owner, display_disabled);
+ }
+
+ QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
+ g_free(ml);
+ }
+}
+
+struct FlatViewInfo {
+ int counter;
+ bool dispatch_tree;
+ bool owner;
+ AccelClass *ac;
+};
+
+static void mtree_print_flatview(gpointer key, gpointer value,
+ gpointer user_data)
+{
+ FlatView *view = key;
+ GArray *fv_address_spaces = value;
+ struct FlatViewInfo *fvi = user_data;
+ FlatRange *range = &view->ranges[0];
+ MemoryRegion *mr;
+ int n = view->nr;
+ int i;
+ AddressSpace *as;
+
+ qemu_printf("FlatView #%d\n", fvi->counter);
+ ++fvi->counter;
+
+ for (i = 0; i < fv_address_spaces->len; ++i) {
+ as = g_array_index(fv_address_spaces, AddressSpace*, i);
+ qemu_printf(" AS \"%s\", root: %s",
+ as->name, memory_region_name(as->root));
+ if (as->root->alias) {
+ qemu_printf(", alias %s", memory_region_name(as->root->alias));
+ }
+ qemu_printf("\n");
+ }
+
+ qemu_printf(" Root memory region: %s\n",
+ view->root ? memory_region_name(view->root) : "(none)");
+
+ if (n <= 0) {
+ qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
+ return;
+ }
+
+ while (n--) {
+ mr = range->mr;
+ if (range->offset_in_region) {
+ qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
+ " (prio %d, %s%s): %s @" TARGET_FMT_plx,
+ int128_get64(range->addr.start),
+ int128_get64(range->addr.start)
+ + MR_SIZE(range->addr.size),
+ mr->priority,
+ range->nonvolatile ? "nv-" : "",
+ range->readonly ? "rom" : memory_region_type(mr),
+ memory_region_name(mr),
+ range->offset_in_region);
+ } else {
+ qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
+ " (prio %d, %s%s): %s",
+ int128_get64(range->addr.start),
+ int128_get64(range->addr.start)
+ + MR_SIZE(range->addr.size),
+ mr->priority,
+ range->nonvolatile ? "nv-" : "",
+ range->readonly ? "rom" : memory_region_type(mr),
+ memory_region_name(mr));
+ }
+ if (fvi->owner) {
+ mtree_print_mr_owner(mr);
+ }
+
+ if (fvi->ac) {
+ for (i = 0; i < fv_address_spaces->len; ++i) {
+ as = g_array_index(fv_address_spaces, AddressSpace*, i);
+ if (fvi->ac->has_memory(current_machine, as,
+ int128_get64(range->addr.start),
+ MR_SIZE(range->addr.size) + 1)) {
+ qemu_printf(" %s", fvi->ac->name);
+ }
+ }
+ }
+ qemu_printf("\n");
+ range++;
+ }
+
+#if !defined(CONFIG_USER_ONLY)
+ if (fvi->dispatch_tree && view->root) {
+ mtree_print_dispatch(view->dispatch, view->root);
+ }
+#endif
+
+ qemu_printf("\n");
+}
+
+static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
+ gpointer user_data)
+{
+ FlatView *view = key;
+ GArray *fv_address_spaces = value;
+
+ g_array_unref(fv_address_spaces);
+ flatview_unref(view);
+
+ return true;
+}
+
+void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
+{
+ MemoryRegionListHead ml_head;
+ MemoryRegionList *ml, *ml2;
+ AddressSpace *as;
+
+ if (flatview) {
+ FlatView *view;
+ struct FlatViewInfo fvi = {
+ .counter = 0,
+ .dispatch_tree = dispatch_tree,
+ .owner = owner,
+ };
+ GArray *fv_address_spaces;
+ GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
+ AccelClass *ac = ACCEL_GET_CLASS(current_accel());
+
+ if (ac->has_memory) {
+ fvi.ac = ac;
+ }
+
+ /* Gather all FVs in one table */
+ QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
+ view = address_space_get_flatview(as);
+
+ fv_address_spaces = g_hash_table_lookup(views, view);
+ if (!fv_address_spaces) {
+ fv_address_spaces = g_array_new(false, false, sizeof(as));
+ g_hash_table_insert(views, view, fv_address_spaces);
+ }
+
+ g_array_append_val(fv_address_spaces, as);
+ }
+
+ /* Print */
+ g_hash_table_foreach(views, mtree_print_flatview, &fvi);
+
+ /* Free */
+ g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
+ g_hash_table_unref(views);
+
+ return;
+ }
+
+ QTAILQ_INIT(&ml_head);
+
+ QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
+ qemu_printf("address-space: %s\n", as->name);
+ mtree_print_mr(as->root, 1, 0, &ml_head, owner, disabled);
+ qemu_printf("\n");
+ }
+
+ /* print aliased regions */
+ QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
+ qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
+ mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
+ qemu_printf("\n");
+ }
+
+ QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
+ g_free(ml);
+ }
+}
+
+void memory_region_init_ram(MemoryRegion *mr,
+ struct Object *owner,
+ const char *name,
+ uint64_t size,
+ Error **errp)
+{
+ DeviceState *owner_dev;
+ Error *err = NULL;
+
+ memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ /* This will assert if owner is neither NULL nor a DeviceState.
+ * We only want the owner here for the purposes of defining a
+ * unique name for migration. TODO: Ideally we should implement
+ * a naming scheme for Objects which are not DeviceStates, in
+ * which case we can relax this restriction.
+ */
+ owner_dev = DEVICE(owner);
+ vmstate_register_ram(mr, owner_dev);
+}
+
+void memory_region_init_rom(MemoryRegion *mr,
+ struct Object *owner,
+ const char *name,
+ uint64_t size,
+ Error **errp)
+{
+ DeviceState *owner_dev;
+ Error *err = NULL;
+
+ memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ /* This will assert if owner is neither NULL nor a DeviceState.
+ * We only want the owner here for the purposes of defining a
+ * unique name for migration. TODO: Ideally we should implement
+ * a naming scheme for Objects which are not DeviceStates, in
+ * which case we can relax this restriction.
+ */
+ owner_dev = DEVICE(owner);
+ vmstate_register_ram(mr, owner_dev);
+}
+
+void memory_region_init_rom_device(MemoryRegion *mr,
+ struct Object *owner,
+ const MemoryRegionOps *ops,
+ void *opaque,
+ const char *name,
+ uint64_t size,
+ Error **errp)
+{
+ DeviceState *owner_dev;
+ Error *err = NULL;
+
+ memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
+ name, size, &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ /* This will assert if owner is neither NULL nor a DeviceState.
+ * We only want the owner here for the purposes of defining a
+ * unique name for migration. TODO: Ideally we should implement
+ * a naming scheme for Objects which are not DeviceStates, in
+ * which case we can relax this restriction.
+ */
+ owner_dev = DEVICE(owner);
+ vmstate_register_ram(mr, owner_dev);
+}
+
+static const TypeInfo memory_region_info = {
+ .parent = TYPE_OBJECT,
+ .name = TYPE_MEMORY_REGION,
+ .class_size = sizeof(MemoryRegionClass),
+ .instance_size = sizeof(MemoryRegion),
+ .instance_init = memory_region_initfn,
+ .instance_finalize = memory_region_finalize,
+};
+
+static const TypeInfo iommu_memory_region_info = {
+ .parent = TYPE_MEMORY_REGION,
+ .name = TYPE_IOMMU_MEMORY_REGION,
+ .class_size = sizeof(IOMMUMemoryRegionClass),
+ .instance_size = sizeof(IOMMUMemoryRegion),
+ .instance_init = iommu_memory_region_initfn,
+ .abstract = true,
+};
+
+static void memory_register_types(void)
+{
+ type_register_static(&memory_region_info);
+ type_register_static(&iommu_memory_region_info);
+}
+
+type_init(memory_register_types)
diff --git a/softmmu/memory_mapping.c b/softmmu/memory_mapping.c
new file mode 100644
index 0000000000..18d0b8067c
--- /dev/null
+++ b/softmmu/memory_mapping.c
@@ -0,0 +1,357 @@
+/*
+ * QEMU memory mapping
+ *
+ * Copyright Fujitsu, Corp. 2011, 2012
+ *
+ * Authors:
+ * Wen Congyang <wency@cn.fujitsu.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ *
+ */
+
+#include "qemu/osdep.h"
+#include "qapi/error.h"
+
+#include "cpu.h"
+#include "sysemu/memory_mapping.h"
+#include "exec/memory.h"
+#include "exec/address-spaces.h"
+
+//#define DEBUG_GUEST_PHYS_REGION_ADD
+
+static void memory_mapping_list_add_mapping_sorted(MemoryMappingList *list,
+ MemoryMapping *mapping)
+{
+ MemoryMapping *p;
+
+ QTAILQ_FOREACH(p, &list->head, next) {
+ if (p->phys_addr >= mapping->phys_addr) {
+ QTAILQ_INSERT_BEFORE(p, mapping, next);
+ return;
+ }
+ }
+ QTAILQ_INSERT_TAIL(&list->head, mapping, next);
+}
+
+static void create_new_memory_mapping(MemoryMappingList *list,
+ hwaddr phys_addr,
+ hwaddr virt_addr,
+ ram_addr_t length)
+{
+ MemoryMapping *memory_mapping;
+
+ memory_mapping = g_malloc(sizeof(MemoryMapping));
+ memory_mapping->phys_addr = phys_addr;
+ memory_mapping->virt_addr = virt_addr;
+ memory_mapping->length = length;
+ list->last_mapping = memory_mapping;
+ list->num++;
+ memory_mapping_list_add_mapping_sorted(list, memory_mapping);
+}
+
+static inline bool mapping_contiguous(MemoryMapping *map,
+ hwaddr phys_addr,
+ hwaddr virt_addr)
+{
+ return phys_addr == map->phys_addr + map->length &&
+ virt_addr == map->virt_addr + map->length;
+}
+
+/*
+ * [map->phys_addr, map->phys_addr + map->length) and
+ * [phys_addr, phys_addr + length) have intersection?
+ */
+static inline bool mapping_have_same_region(MemoryMapping *map,
+ hwaddr phys_addr,
+ ram_addr_t length)
+{
+ return !(phys_addr + length < map->phys_addr ||
+ phys_addr >= map->phys_addr + map->length);
+}
+
+/*
+ * [map->phys_addr, map->phys_addr + map->length) and
+ * [phys_addr, phys_addr + length) have intersection. The virtual address in the
+ * intersection are the same?
+ */
+static inline bool mapping_conflict(MemoryMapping *map,
+ hwaddr phys_addr,
+ hwaddr virt_addr)
+{
+ return virt_addr - map->virt_addr != phys_addr - map->phys_addr;
+}
+
+/*
+ * [map->virt_addr, map->virt_addr + map->length) and
+ * [virt_addr, virt_addr + length) have intersection. And the physical address
+ * in the intersection are the same.
+ */
+static inline void mapping_merge(MemoryMapping *map,
+ hwaddr virt_addr,
+ ram_addr_t length)
+{
+ if (virt_addr < map->virt_addr) {
+ map->length += map->virt_addr - virt_addr;
+ map->virt_addr = virt_addr;
+ }
+
+ if ((virt_addr + length) >
+ (map->virt_addr + map->length)) {
+ map->length = virt_addr + length - map->virt_addr;
+ }
+}
+
+void memory_mapping_list_add_merge_sorted(MemoryMappingList *list,
+ hwaddr phys_addr,
+ hwaddr virt_addr,
+ ram_addr_t length)
+{
+ MemoryMapping *memory_mapping, *last_mapping;
+
+ if (QTAILQ_EMPTY(&list->head)) {
+ create_new_memory_mapping(list, phys_addr, virt_addr, length);
+ return;
+ }
+
+ last_mapping = list->last_mapping;
+ if (last_mapping) {
+ if (mapping_contiguous(last_mapping, phys_addr, virt_addr)) {
+ last_mapping->length += length;
+ return;
+ }
+ }
+
+ QTAILQ_FOREACH(memory_mapping, &list->head, next) {
+ if (mapping_contiguous(memory_mapping, phys_addr, virt_addr)) {
+ memory_mapping->length += length;
+ list->last_mapping = memory_mapping;
+ return;
+ }
+
+ if (phys_addr + length < memory_mapping->phys_addr) {
+ /* create a new region before memory_mapping */
+ break;
+ }
+
+ if (mapping_have_same_region(memory_mapping, phys_addr, length)) {
+ if (mapping_conflict(memory_mapping, phys_addr, virt_addr)) {
+ continue;
+ }
+
+ /* merge this region into memory_mapping */
+ mapping_merge(memory_mapping, virt_addr, length);
+ list->last_mapping = memory_mapping;
+ return;
+ }
+ }
+
+ /* this region can not be merged into any existed memory mapping. */
+ create_new_memory_mapping(list, phys_addr, virt_addr, length);
+}
+
+void memory_mapping_list_free(MemoryMappingList *list)
+{
+ MemoryMapping *p, *q;
+
+ QTAILQ_FOREACH_SAFE(p, &list->head, next, q) {
+ QTAILQ_REMOVE(&list->head, p, next);
+ g_free(p);
+ }
+
+ list->num = 0;
+ list->last_mapping = NULL;
+}
+
+void memory_mapping_list_init(MemoryMappingList *list)
+{
+ list->num = 0;
+ list->last_mapping = NULL;
+ QTAILQ_INIT(&list->head);
+}
+
+void guest_phys_blocks_free(GuestPhysBlockList *list)
+{
+ GuestPhysBlock *p, *q;
+
+ QTAILQ_FOREACH_SAFE(p, &list->head, next, q) {
+ QTAILQ_REMOVE(&list->head, p, next);
+ memory_region_unref(p->mr);
+ g_free(p);
+ }
+ list->num = 0;
+}
+
+void guest_phys_blocks_init(GuestPhysBlockList *list)
+{
+ list->num = 0;
+ QTAILQ_INIT(&list->head);
+}
+
+typedef struct GuestPhysListener {
+ GuestPhysBlockList *list;
+ MemoryListener listener;
+} GuestPhysListener;
+
+static void guest_phys_blocks_region_add(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+ GuestPhysListener *g;
+ uint64_t section_size;
+ hwaddr target_start, target_end;
+ uint8_t *host_addr;
+ GuestPhysBlock *predecessor;
+
+ /* we only care about RAM */
+ if (!memory_region_is_ram(section->mr) ||
+ memory_region_is_ram_device(section->mr) ||
+ memory_region_is_nonvolatile(section->mr)) {
+ return;
+ }
+
+ g = container_of(listener, GuestPhysListener, listener);
+ section_size = int128_get64(section->size);
+ target_start = section->offset_within_address_space;
+ target_end = target_start + section_size;
+ host_addr = memory_region_get_ram_ptr(section->mr) +
+ section->offset_within_region;
+ predecessor = NULL;
+
+ /* find continuity in guest physical address space */
+ if (!QTAILQ_EMPTY(&g->list->head)) {
+ hwaddr predecessor_size;
+
+ predecessor = QTAILQ_LAST(&g->list->head);
+ predecessor_size = predecessor->target_end - predecessor->target_start;
+
+ /* the memory API guarantees monotonically increasing traversal */
+ g_assert(predecessor->target_end <= target_start);
+
+ /* we want continuity in both guest-physical and host-virtual memory */
+ if (predecessor->target_end < target_start ||
+ predecessor->host_addr + predecessor_size != host_addr) {
+ predecessor = NULL;
+ }
+ }
+
+ if (predecessor == NULL) {
+ /* isolated mapping, allocate it and add it to the list */
+ GuestPhysBlock *block = g_malloc0(sizeof *block);
+
+ block->target_start = target_start;
+ block->target_end = target_end;
+ block->host_addr = host_addr;
+ block->mr = section->mr;
+ memory_region_ref(section->mr);
+
+ QTAILQ_INSERT_TAIL(&g->list->head, block, next);
+ ++g->list->num;
+ } else {
+ /* expand predecessor until @target_end; predecessor's start doesn't
+ * change
+ */
+ predecessor->target_end = target_end;
+ }
+
+#ifdef DEBUG_GUEST_PHYS_REGION_ADD
+ fprintf(stderr, "%s: target_start=" TARGET_FMT_plx " target_end="
+ TARGET_FMT_plx ": %s (count: %u)\n", __func__, target_start,
+ target_end, predecessor ? "joined" : "added", g->list->num);
+#endif
+}
+
+void guest_phys_blocks_append(GuestPhysBlockList *list)
+{
+ GuestPhysListener g = { 0 };
+
+ g.list = list;
+ g.listener.region_add = &guest_phys_blocks_region_add;
+ memory_listener_register(&g.listener, &address_space_memory);
+ memory_listener_unregister(&g.listener);
+}
+
+static CPUState *find_paging_enabled_cpu(CPUState *start_cpu)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ if (cpu_paging_enabled(cpu)) {
+ return cpu;
+ }
+ }
+
+ return NULL;
+}
+
+void qemu_get_guest_memory_mapping(MemoryMappingList *list,
+ const GuestPhysBlockList *guest_phys_blocks,
+ Error **errp)
+{
+ CPUState *cpu, *first_paging_enabled_cpu;
+ GuestPhysBlock *block;
+ ram_addr_t offset, length;
+
+ first_paging_enabled_cpu = find_paging_enabled_cpu(first_cpu);
+ if (first_paging_enabled_cpu) {
+ for (cpu = first_paging_enabled_cpu; cpu != NULL;
+ cpu = CPU_NEXT(cpu)) {
+ Error *err = NULL;
+ cpu_get_memory_mapping(cpu, list, &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ }
+ return;
+ }
+
+ /*
+ * If the guest doesn't use paging, the virtual address is equal to physical
+ * address.
+ */
+ QTAILQ_FOREACH(block, &guest_phys_blocks->head, next) {
+ offset = block->target_start;
+ length = block->target_end - block->target_start;
+ create_new_memory_mapping(list, offset, offset, length);
+ }
+}
+
+void qemu_get_guest_simple_memory_mapping(MemoryMappingList *list,
+ const GuestPhysBlockList *guest_phys_blocks)
+{
+ GuestPhysBlock *block;
+
+ QTAILQ_FOREACH(block, &guest_phys_blocks->head, next) {
+ create_new_memory_mapping(list, block->target_start, 0,
+ block->target_end - block->target_start);
+ }
+}
+
+void memory_mapping_filter(MemoryMappingList *list, int64_t begin,
+ int64_t length)
+{
+ MemoryMapping *cur, *next;
+
+ QTAILQ_FOREACH_SAFE(cur, &list->head, next, next) {
+ if (cur->phys_addr >= begin + length ||
+ cur->phys_addr + cur->length <= begin) {
+ QTAILQ_REMOVE(&list->head, cur, next);
+ g_free(cur);
+ list->num--;
+ continue;
+ }
+
+ if (cur->phys_addr < begin) {
+ cur->length -= begin - cur->phys_addr;
+ if (cur->virt_addr) {
+ cur->virt_addr += begin - cur->phys_addr;
+ }
+ cur->phys_addr = begin;
+ }
+
+ if (cur->phys_addr + cur->length > begin + length) {
+ cur->length -= cur->phys_addr + cur->length - begin - length;
+ }
+ }
+}
diff --git a/softmmu/qtest.c b/softmmu/qtest.c
new file mode 100644
index 0000000000..5672b75c35
--- /dev/null
+++ b/softmmu/qtest.c
@@ -0,0 +1,820 @@
+/*
+ * Test Server
+ *
+ * Copyright IBM, Corp. 2011
+ *
+ * Authors:
+ * Anthony Liguori <aliguori@us.ibm.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ *
+ */
+
+#include "qemu/osdep.h"
+#include "qapi/error.h"
+#include "cpu.h"
+#include "sysemu/qtest.h"
+#include "sysemu/runstate.h"
+#include "chardev/char-fe.h"
+#include "exec/ioport.h"
+#include "exec/memory.h"
+#include "hw/irq.h"
+#include "sysemu/accel.h"
+#include "sysemu/cpus.h"
+#include "qemu/config-file.h"
+#include "qemu/option.h"
+#include "qemu/error-report.h"
+#include "qemu/module.h"
+#include "qemu/cutils.h"
+#include "config-devices.h"
+#ifdef CONFIG_PSERIES
+#include "hw/ppc/spapr_rtas.h"
+#endif
+
+#define MAX_IRQ 256
+
+bool qtest_allowed;
+
+static DeviceState *irq_intercept_dev;
+static FILE *qtest_log_fp;
+static CharBackend qtest_chr;
+static GString *inbuf;
+static int irq_levels[MAX_IRQ];
+static qemu_timeval start_time;
+static bool qtest_opened;
+static void (*qtest_server_send)(void*, const char*);
+static void *qtest_server_send_opaque;
+
+#define FMT_timeval "%ld.%06ld"
+
+/**
+ * QTest Protocol
+ *
+ * Line based protocol, request/response based. Server can send async messages
+ * so clients should always handle many async messages before the response
+ * comes in.
+ *
+ * Valid requests
+ *
+ * Clock management:
+ *
+ * The qtest client is completely in charge of the QEMU_CLOCK_VIRTUAL. qtest commands
+ * let you adjust the value of the clock (monotonically). All the commands
+ * return the current value of the clock in nanoseconds.
+ *
+ * > clock_step
+ * < OK VALUE
+ *
+ * Advance the clock to the next deadline. Useful when waiting for
+ * asynchronous events.
+ *
+ * > clock_step NS
+ * < OK VALUE
+ *
+ * Advance the clock by NS nanoseconds.
+ *
+ * > clock_set NS
+ * < OK VALUE
+ *
+ * Advance the clock to NS nanoseconds (do nothing if it's already past).
+ *
+ * PIO and memory access:
+ *
+ * > outb ADDR VALUE
+ * < OK
+ *
+ * > outw ADDR VALUE
+ * < OK
+ *
+ * > outl ADDR VALUE
+ * < OK
+ *
+ * > inb ADDR
+ * < OK VALUE
+ *
+ * > inw ADDR
+ * < OK VALUE
+ *
+ * > inl ADDR
+ * < OK VALUE
+ *
+ * > writeb ADDR VALUE
+ * < OK
+ *
+ * > writew ADDR VALUE
+ * < OK
+ *
+ * > writel ADDR VALUE
+ * < OK
+ *
+ * > writeq ADDR VALUE
+ * < OK
+ *
+ * > readb ADDR
+ * < OK VALUE
+ *
+ * > readw ADDR
+ * < OK VALUE
+ *
+ * > readl ADDR
+ * < OK VALUE
+ *
+ * > readq ADDR
+ * < OK VALUE
+ *
+ * > read ADDR SIZE
+ * < OK DATA
+ *
+ * > write ADDR SIZE DATA
+ * < OK
+ *
+ * > b64read ADDR SIZE
+ * < OK B64_DATA
+ *
+ * > b64write ADDR SIZE B64_DATA
+ * < OK
+ *
+ * > memset ADDR SIZE VALUE
+ * < OK
+ *
+ * ADDR, SIZE, VALUE are all integers parsed with strtoul() with a base of 0.
+ * For 'memset' a zero size is permitted and does nothing.
+ *
+ * DATA is an arbitrarily long hex number prefixed with '0x'. If it's smaller
+ * than the expected size, the value will be zero filled at the end of the data
+ * sequence.
+ *
+ * B64_DATA is an arbitrarily long base64 encoded string.
+ * If the sizes do not match, the data will be truncated.
+ *
+ * IRQ management:
+ *
+ * > irq_intercept_in QOM-PATH
+ * < OK
+ *
+ * > irq_intercept_out QOM-PATH
+ * < OK
+ *
+ * Attach to the gpio-in (resp. gpio-out) pins exported by the device at
+ * QOM-PATH. When the pin is triggered, one of the following async messages
+ * will be printed to the qtest stream:
+ *
+ * IRQ raise NUM
+ * IRQ lower NUM
+ *
+ * where NUM is an IRQ number. For the PC, interrupts can be intercepted
+ * simply with "irq_intercept_in ioapic" (note that IRQ0 comes out with
+ * NUM=0 even though it is remapped to GSI 2).
+ *
+ * Setting interrupt level:
+ *
+ * > set_irq_in QOM-PATH NAME NUM LEVEL
+ * < OK
+ *
+ * where NAME is the name of the irq/gpio list, NUM is an IRQ number and
+ * LEVEL is an signed integer IRQ level.
+ *
+ * Forcibly set the given interrupt pin to the given level.
+ *
+ */
+
+static int hex2nib(char ch)
+{
+ if (ch >= '0' && ch <= '9') {
+ return ch - '0';
+ } else if (ch >= 'a' && ch <= 'f') {
+ return 10 + (ch - 'a');
+ } else if (ch >= 'A' && ch <= 'F') {
+ return 10 + (ch - 'A');
+ } else {
+ return -1;
+ }
+}
+
+static void qtest_get_time(qemu_timeval *tv)
+{
+ qemu_gettimeofday(tv);
+ tv->tv_sec -= start_time.tv_sec;
+ tv->tv_usec -= start_time.tv_usec;
+ if (tv->tv_usec < 0) {
+ tv->tv_usec += 1000000;
+ tv->tv_sec -= 1;
+ }
+}
+
+static void qtest_send_prefix(CharBackend *chr)
+{
+ qemu_timeval tv;
+
+ if (!qtest_log_fp || !qtest_opened) {
+ return;
+ }
+
+ qtest_get_time(&tv);
+ fprintf(qtest_log_fp, "[S +" FMT_timeval "] ",
+ (long) tv.tv_sec, (long) tv.tv_usec);
+}
+
+static void GCC_FMT_ATTR(1, 2) qtest_log_send(const char *fmt, ...)
+{
+ va_list ap;
+
+ if (!qtest_log_fp || !qtest_opened) {
+ return;
+ }
+
+ qtest_send_prefix(NULL);
+
+ va_start(ap, fmt);
+ vfprintf(qtest_log_fp, fmt, ap);
+ va_end(ap);
+}
+
+static void qtest_server_char_be_send(void *opaque, const char *str)
+{
+ size_t len = strlen(str);
+ CharBackend* chr = (CharBackend *)opaque;
+ qemu_chr_fe_write_all(chr, (uint8_t *)str, len);
+ if (qtest_log_fp && qtest_opened) {
+ fprintf(qtest_log_fp, "%s", str);
+ }
+}
+
+static void qtest_send(CharBackend *chr, const char *str)
+{
+ qtest_server_send(qtest_server_send_opaque, str);
+}
+
+static void GCC_FMT_ATTR(2, 3) qtest_sendf(CharBackend *chr,
+ const char *fmt, ...)
+{
+ va_list ap;
+ gchar *buffer;
+
+ va_start(ap, fmt);
+ buffer = g_strdup_vprintf(fmt, ap);
+ qtest_send(chr, buffer);
+ g_free(buffer);
+ va_end(ap);
+}
+
+static void qtest_irq_handler(void *opaque, int n, int level)
+{
+ qemu_irq old_irq = *(qemu_irq *)opaque;
+ qemu_set_irq(old_irq, level);
+
+ if (irq_levels[n] != level) {
+ CharBackend *chr = &qtest_chr;
+ irq_levels[n] = level;
+ qtest_send_prefix(chr);
+ qtest_sendf(chr, "IRQ %s %d\n",
+ level ? "raise" : "lower", n);
+ }
+}
+
+static void qtest_process_command(CharBackend *chr, gchar **words)
+{
+ const gchar *command;
+
+ g_assert(words);
+
+ command = words[0];
+
+ if (qtest_log_fp) {
+ qemu_timeval tv;
+ int i;
+
+ qtest_get_time(&tv);
+ fprintf(qtest_log_fp, "[R +" FMT_timeval "]",
+ (long) tv.tv_sec, (long) tv.tv_usec);
+ for (i = 0; words[i]; i++) {
+ fprintf(qtest_log_fp, " %s", words[i]);
+ }
+ fprintf(qtest_log_fp, "\n");
+ }
+
+ g_assert(command);
+ if (strcmp(words[0], "irq_intercept_out") == 0
+ || strcmp(words[0], "irq_intercept_in") == 0) {
+ DeviceState *dev;
+ NamedGPIOList *ngl;
+
+ g_assert(words[1]);
+ dev = DEVICE(object_resolve_path(words[1], NULL));
+ if (!dev) {
+ qtest_send_prefix(chr);
+ qtest_send(chr, "FAIL Unknown device\n");
+ return;
+ }
+
+ if (irq_intercept_dev) {
+ qtest_send_prefix(chr);
+ if (irq_intercept_dev != dev) {
+ qtest_send(chr, "FAIL IRQ intercept already enabled\n");
+ } else {
+ qtest_send(chr, "OK\n");
+ }
+ return;
+ }
+
+ QLIST_FOREACH(ngl, &dev->gpios, node) {
+ /* We don't support intercept of named GPIOs yet */
+ if (ngl->name) {
+ continue;
+ }
+ if (words[0][14] == 'o') {
+ int i;
+ for (i = 0; i < ngl->num_out; ++i) {
+ qemu_irq *disconnected = g_new0(qemu_irq, 1);
+ qemu_irq icpt = qemu_allocate_irq(qtest_irq_handler,
+ disconnected, i);
+
+ *disconnected = qdev_intercept_gpio_out(dev, icpt,
+ ngl->name, i);
+ }
+ } else {
+ qemu_irq_intercept_in(ngl->in, qtest_irq_handler,
+ ngl->num_in);
+ }
+ }
+ irq_intercept_dev = dev;
+ qtest_send_prefix(chr);
+ qtest_send(chr, "OK\n");
+ } else if (strcmp(words[0], "set_irq_in") == 0) {
+ DeviceState *dev;
+ qemu_irq irq;
+ char *name;
+ int ret;
+ int num;
+ int level;
+
+ g_assert(words[1] && words[2] && words[3] && words[4]);
+
+ dev = DEVICE(object_resolve_path(words[1], NULL));
+ if (!dev) {
+ qtest_send_prefix(chr);
+ qtest_send(chr, "FAIL Unknown device\n");
+ return;
+ }
+
+ if (strcmp(words[2], "unnamed-gpio-in") == 0) {
+ name = NULL;
+ } else {
+ name = words[2];
+ }
+
+ ret = qemu_strtoi(words[3], NULL, 0, &num);
+ g_assert(!ret);
+ ret = qemu_strtoi(words[4], NULL, 0, &level);
+ g_assert(!ret);
+
+ irq = qdev_get_gpio_in_named(dev, name, num);
+
+ qemu_set_irq(irq, level);
+ qtest_send_prefix(chr);
+ qtest_send(chr, "OK\n");
+ } else if (strcmp(words[0], "outb") == 0 ||
+ strcmp(words[0], "outw") == 0 ||
+ strcmp(words[0], "outl") == 0) {
+ unsigned long addr;
+ unsigned long value;
+ int ret;
+
+ g_assert(words[1] && words[2]);
+ ret = qemu_strtoul(words[1], NULL, 0, &addr);
+ g_assert(ret == 0);
+ ret = qemu_strtoul(words[2], NULL, 0, &value);
+ g_assert(ret == 0);
+ g_assert(addr <= 0xffff);
+
+ if (words[0][3] == 'b') {
+ cpu_outb(addr, value);
+ } else if (words[0][3] == 'w') {
+ cpu_outw(addr, value);
+ } else if (words[0][3] == 'l') {
+ cpu_outl(addr, value);
+ }
+ qtest_send_prefix(chr);
+ qtest_send(chr, "OK\n");
+ } else if (strcmp(words[0], "inb") == 0 ||
+ strcmp(words[0], "inw") == 0 ||
+ strcmp(words[0], "inl") == 0) {
+ unsigned long addr;
+ uint32_t value = -1U;
+ int ret;
+
+ g_assert(words[1]);
+ ret = qemu_strtoul(words[1], NULL, 0, &addr);
+ g_assert(ret == 0);
+ g_assert(addr <= 0xffff);
+
+ if (words[0][2] == 'b') {
+ value = cpu_inb(addr);
+ } else if (words[0][2] == 'w') {
+ value = cpu_inw(addr);
+ } else if (words[0][2] == 'l') {
+ value = cpu_inl(addr);
+ }
+ qtest_send_prefix(chr);
+ qtest_sendf(chr, "OK 0x%04x\n", value);
+ } else if (strcmp(words[0], "writeb") == 0 ||
+ strcmp(words[0], "writew") == 0 ||
+ strcmp(words[0], "writel") == 0 ||
+ strcmp(words[0], "writeq") == 0) {
+ uint64_t addr;
+ uint64_t value;
+ int ret;
+
+ g_assert(words[1] && words[2]);
+ ret = qemu_strtou64(words[1], NULL, 0, &addr);
+ g_assert(ret == 0);
+ ret = qemu_strtou64(words[2], NULL, 0, &value);
+ g_assert(ret == 0);
+
+ if (words[0][5] == 'b') {
+ uint8_t data = value;
+ address_space_write(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
+ &data, 1);
+ } else if (words[0][5] == 'w') {
+ uint16_t data = value;
+ tswap16s(&data);
+ address_space_write(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
+ &data, 2);
+ } else if (words[0][5] == 'l') {
+ uint32_t data = value;
+ tswap32s(&data);
+ address_space_write(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
+ &data, 4);
+ } else if (words[0][5] == 'q') {
+ uint64_t data = value;
+ tswap64s(&data);
+ address_space_write(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
+ &data, 8);
+ }
+ qtest_send_prefix(chr);
+ qtest_send(chr, "OK\n");
+ } else if (strcmp(words[0], "readb") == 0 ||
+ strcmp(words[0], "readw") == 0 ||
+ strcmp(words[0], "readl") == 0 ||
+ strcmp(words[0], "readq") == 0) {
+ uint64_t addr;
+ uint64_t value = UINT64_C(-1);
+ int ret;
+
+ g_assert(words[1]);
+ ret = qemu_strtou64(words[1], NULL, 0, &addr);
+ g_assert(ret == 0);
+
+ if (words[0][4] == 'b') {
+ uint8_t data;
+ address_space_read(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
+ &data, 1);
+ value = data;
+ } else if (words[0][4] == 'w') {
+ uint16_t data;
+ address_space_read(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
+ &data, 2);
+ value = tswap16(data);
+ } else if (words[0][4] == 'l') {
+ uint32_t data;
+ address_space_read(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
+ &data, 4);
+ value = tswap32(data);
+ } else if (words[0][4] == 'q') {
+ address_space_read(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
+ &value, 8);
+ tswap64s(&value);
+ }
+ qtest_send_prefix(chr);
+ qtest_sendf(chr, "OK 0x%016" PRIx64 "\n", value);
+ } else if (strcmp(words[0], "read") == 0) {
+ uint64_t addr, len, i;
+ uint8_t *data;
+ char *enc;
+ int ret;
+
+ g_assert(words[1] && words[2]);
+ ret = qemu_strtou64(words[1], NULL, 0, &addr);
+ g_assert(ret == 0);
+ ret = qemu_strtou64(words[2], NULL, 0, &len);
+ g_assert(ret == 0);
+ /* We'd send garbage to libqtest if len is 0 */
+ g_assert(len);
+
+ data = g_malloc(len);
+ address_space_read(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, data,
+ len);
+
+ enc = g_malloc(2 * len + 1);
+ for (i = 0; i < len; i++) {
+ sprintf(&enc[i * 2], "%02x", data[i]);
+ }
+
+ qtest_send_prefix(chr);
+ qtest_sendf(chr, "OK 0x%s\n", enc);
+
+ g_free(data);
+ g_free(enc);
+ } else if (strcmp(words[0], "b64read") == 0) {
+ uint64_t addr, len;
+ uint8_t *data;
+ gchar *b64_data;
+ int ret;
+
+ g_assert(words[1] && words[2]);
+ ret = qemu_strtou64(words[1], NULL, 0, &addr);
+ g_assert(ret == 0);
+ ret = qemu_strtou64(words[2], NULL, 0, &len);
+ g_assert(ret == 0);
+
+ data = g_malloc(len);
+ address_space_read(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, data,
+ len);
+ b64_data = g_base64_encode(data, len);
+ qtest_send_prefix(chr);
+ qtest_sendf(chr, "OK %s\n", b64_data);
+
+ g_free(data);
+ g_free(b64_data);
+ } else if (strcmp(words[0], "write") == 0) {
+ uint64_t addr, len, i;
+ uint8_t *data;
+ size_t data_len;
+ int ret;
+
+ g_assert(words[1] && words[2] && words[3]);
+ ret = qemu_strtou64(words[1], NULL, 0, &addr);
+ g_assert(ret == 0);
+ ret = qemu_strtou64(words[2], NULL, 0, &len);
+ g_assert(ret == 0);
+
+ data_len = strlen(words[3]);
+ if (data_len < 3) {
+ qtest_send(chr, "ERR invalid argument size\n");
+ return;
+ }
+
+ data = g_malloc(len);
+ for (i = 0; i < len; i++) {
+ if ((i * 2 + 4) <= data_len) {
+ data[i] = hex2nib(words[3][i * 2 + 2]) << 4;
+ data[i] |= hex2nib(words[3][i * 2 + 3]);
+ } else {
+ data[i] = 0;
+ }
+ }
+ address_space_write(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, data,
+ len);
+ g_free(data);
+
+ qtest_send_prefix(chr);
+ qtest_send(chr, "OK\n");
+ } else if (strcmp(words[0], "memset") == 0) {
+ uint64_t addr, len;
+ uint8_t *data;
+ unsigned long pattern;
+ int ret;
+
+ g_assert(words[1] && words[2] && words[3]);
+ ret = qemu_strtou64(words[1], NULL, 0, &addr);
+ g_assert(ret == 0);
+ ret = qemu_strtou64(words[2], NULL, 0, &len);
+ g_assert(ret == 0);
+ ret = qemu_strtoul(words[3], NULL, 0, &pattern);
+ g_assert(ret == 0);
+
+ if (len) {
+ data = g_malloc(len);
+ memset(data, pattern, len);
+ address_space_write(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED,
+ data, len);
+ g_free(data);
+ }
+
+ qtest_send_prefix(chr);
+ qtest_send(chr, "OK\n");
+ } else if (strcmp(words[0], "b64write") == 0) {
+ uint64_t addr, len;
+ uint8_t *data;
+ size_t data_len;
+ gsize out_len;
+ int ret;
+
+ g_assert(words[1] && words[2] && words[3]);
+ ret = qemu_strtou64(words[1], NULL, 0, &addr);
+ g_assert(ret == 0);
+ ret = qemu_strtou64(words[2], NULL, 0, &len);
+ g_assert(ret == 0);
+
+ data_len = strlen(words[3]);
+ if (data_len < 3) {
+ qtest_send(chr, "ERR invalid argument size\n");
+ return;
+ }
+
+ data = g_base64_decode_inplace(words[3], &out_len);
+ if (out_len != len) {
+ qtest_log_send("b64write: data length mismatch (told %"PRIu64", "
+ "found %zu)\n",
+ len, out_len);
+ out_len = MIN(out_len, len);
+ }
+
+ address_space_write(first_cpu->as, addr, MEMTXATTRS_UNSPECIFIED, data,
+ len);
+
+ qtest_send_prefix(chr);
+ qtest_send(chr, "OK\n");
+ } else if (strcmp(words[0], "endianness") == 0) {
+ qtest_send_prefix(chr);
+#if defined(TARGET_WORDS_BIGENDIAN)
+ qtest_sendf(chr, "OK big\n");
+#else
+ qtest_sendf(chr, "OK little\n");
+#endif
+#ifdef CONFIG_PSERIES
+ } else if (strcmp(words[0], "rtas") == 0) {
+ uint64_t res, args, ret;
+ unsigned long nargs, nret;
+ int rc;
+
+ rc = qemu_strtoul(words[2], NULL, 0, &nargs);
+ g_assert(rc == 0);
+ rc = qemu_strtou64(words[3], NULL, 0, &args);
+ g_assert(rc == 0);
+ rc = qemu_strtoul(words[4], NULL, 0, &nret);
+ g_assert(rc == 0);
+ rc = qemu_strtou64(words[5], NULL, 0, &ret);
+ g_assert(rc == 0);
+ res = qtest_rtas_call(words[1], nargs, args, nret, ret);
+
+ qtest_send_prefix(chr);
+ qtest_sendf(chr, "OK %"PRIu64"\n", res);
+#endif
+ } else if (qtest_enabled() && strcmp(words[0], "clock_step") == 0) {
+ int64_t ns;
+
+ if (words[1]) {
+ int ret = qemu_strtoi64(words[1], NULL, 0, &ns);
+ g_assert(ret == 0);
+ } else {
+ ns = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
+ QEMU_TIMER_ATTR_ALL);
+ }
+ qtest_clock_warp(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns);
+ qtest_send_prefix(chr);
+ qtest_sendf(chr, "OK %"PRIi64"\n",
+ (int64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
+ } else if (strcmp(words[0], "module_load") == 0) {
+ g_assert(words[1] && words[2]);
+
+ qtest_send_prefix(chr);
+ if (module_load_one(words[1], words[2])) {
+ qtest_sendf(chr, "OK\n");
+ } else {
+ qtest_sendf(chr, "FAIL\n");
+ }
+ } else if (qtest_enabled() && strcmp(words[0], "clock_set") == 0) {
+ int64_t ns;
+ int ret;
+
+ g_assert(words[1]);
+ ret = qemu_strtoi64(words[1], NULL, 0, &ns);
+ g_assert(ret == 0);
+ qtest_clock_warp(ns);
+ qtest_send_prefix(chr);
+ qtest_sendf(chr, "OK %"PRIi64"\n",
+ (int64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
+ } else {
+ qtest_send_prefix(chr);
+ qtest_sendf(chr, "FAIL Unknown command '%s'\n", words[0]);
+ }
+}
+
+static void qtest_process_inbuf(CharBackend *chr, GString *inbuf)
+{
+ char *end;
+
+ while ((end = strchr(inbuf->str, '\n')) != NULL) {
+ size_t offset;
+ GString *cmd;
+ gchar **words;
+
+ offset = end - inbuf->str;
+
+ cmd = g_string_new_len(inbuf->str, offset);
+ g_string_erase(inbuf, 0, offset + 1);
+
+ words = g_strsplit(cmd->str, " ", 0);
+ qtest_process_command(chr, words);
+ g_strfreev(words);
+
+ g_string_free(cmd, TRUE);
+ }
+}
+
+static void qtest_read(void *opaque, const uint8_t *buf, int size)
+{
+ CharBackend *chr = opaque;
+
+ g_string_append_len(inbuf, (const gchar *)buf, size);
+ qtest_process_inbuf(chr, inbuf);
+}
+
+static int qtest_can_read(void *opaque)
+{
+ return 1024;
+}
+
+static void qtest_event(void *opaque, QEMUChrEvent event)
+{
+ int i;
+
+ switch (event) {
+ case CHR_EVENT_OPENED:
+ /*
+ * We used to call qemu_system_reset() here, hoping we could
+ * use the same process for multiple tests that way. Never
+ * used. Injects an extra reset even when it's not used, and
+ * that can mess up tests, e.g. -boot once.
+ */
+ for (i = 0; i < ARRAY_SIZE(irq_levels); i++) {
+ irq_levels[i] = 0;
+ }
+ qemu_gettimeofday(&start_time);
+ qtest_opened = true;
+ if (qtest_log_fp) {
+ fprintf(qtest_log_fp, "[I " FMT_timeval "] OPENED\n",
+ (long) start_time.tv_sec, (long) start_time.tv_usec);
+ }
+ break;
+ case CHR_EVENT_CLOSED:
+ qtest_opened = false;
+ if (qtest_log_fp) {
+ qemu_timeval tv;
+ qtest_get_time(&tv);
+ fprintf(qtest_log_fp, "[I +" FMT_timeval "] CLOSED\n",
+ (long) tv.tv_sec, (long) tv.tv_usec);
+ }
+ break;
+ default:
+ break;
+ }
+}
+void qtest_server_init(const char *qtest_chrdev, const char *qtest_log, Error **errp)
+{
+ Chardev *chr;
+
+ chr = qemu_chr_new("qtest", qtest_chrdev, NULL);
+
+ if (chr == NULL) {
+ error_setg(errp, "Failed to initialize device for qtest: \"%s\"",
+ qtest_chrdev);
+ return;
+ }
+
+ if (qtest_log) {
+ if (strcmp(qtest_log, "none") != 0) {
+ qtest_log_fp = fopen(qtest_log, "w+");
+ }
+ } else {
+ qtest_log_fp = stderr;
+ }
+
+ qemu_chr_fe_init(&qtest_chr, chr, errp);
+ qemu_chr_fe_set_handlers(&qtest_chr, qtest_can_read, qtest_read,
+ qtest_event, NULL, &qtest_chr, NULL, true);
+ qemu_chr_fe_set_echo(&qtest_chr, true);
+
+ inbuf = g_string_new("");
+
+ if (!qtest_server_send) {
+ qtest_server_set_send_handler(qtest_server_char_be_send, &qtest_chr);
+ }
+}
+
+void qtest_server_set_send_handler(void (*send)(void*, const char*),
+ void *opaque)
+{
+ qtest_server_send = send;
+ qtest_server_send_opaque = opaque;
+}
+
+bool qtest_driver(void)
+{
+ return qtest_chr.chr != NULL;
+}
+
+void qtest_server_inproc_recv(void *dummy, const char *buf)
+{
+ static GString *gstr;
+ if (!gstr) {
+ gstr = g_string_new(NULL);
+ }
+ g_string_append(gstr, buf);
+ if (gstr->str[gstr->len - 1] == '\n') {
+ qtest_process_inbuf(NULL, gstr);
+ g_string_truncate(gstr, 0);
+ }
+}