aboutsummaryrefslogtreecommitdiff
path: root/softmmu/physmem.c
diff options
context:
space:
mode:
authorPaolo Bonzini <pbonzini@redhat.com>2020-10-06 09:05:29 +0200
committerPaolo Bonzini <pbonzini@redhat.com>2020-10-12 11:50:22 -0400
commitd9f24bf57241453e078dba28d16fe3a430f06da1 (patch)
tree7fde45ae523f07d26f76c8c1711628fd6ac3dae2 /softmmu/physmem.c
parent800d4deda04be016a95fbbf397c830a2d14ff9f6 (diff)
exec: split out non-softmmu-specific parts
Over the years, most parts of exec.c that were not specific to softmmu have been moved to accel/tcg; what's left is mostly the low-level part of the memory API, which includes RAMBlock and AddressSpaceDispatch. However exec.c also hosts 4-500 lines of code for the target specific parts of the CPU QOM object, plus a few functions for user-mode emulation that do not have a better place (they are not TCG-specific so accel/tcg/user-exec.c is not a good place either). Move these parts to a new file, so that exec.c can be moved to softmmu/physmem.c. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'softmmu/physmem.c')
-rw-r--r--softmmu/physmem.c3711
1 files changed, 3711 insertions, 0 deletions
diff --git a/softmmu/physmem.c b/softmmu/physmem.c
new file mode 100644
index 0000000000..e319fb2a1e
--- /dev/null
+++ b/softmmu/physmem.c
@@ -0,0 +1,3711 @@
+/*
+ * RAM allocation and memory access
+ *
+ * Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu-common.h"
+#include "qapi/error.h"
+
+#include "qemu/cutils.h"
+#include "cpu.h"
+#include "exec/exec-all.h"
+#include "exec/target_page.h"
+#include "tcg/tcg.h"
+#include "hw/qdev-core.h"
+#include "hw/qdev-properties.h"
+#include "hw/boards.h"
+#include "hw/xen/xen.h"
+#include "sysemu/kvm.h"
+#include "sysemu/sysemu.h"
+#include "sysemu/tcg.h"
+#include "sysemu/qtest.h"
+#include "qemu/timer.h"
+#include "qemu/config-file.h"
+#include "qemu/error-report.h"
+#include "qemu/qemu-print.h"
+#include "exec/memory.h"
+#include "exec/ioport.h"
+#include "sysemu/dma.h"
+#include "sysemu/hostmem.h"
+#include "sysemu/hw_accel.h"
+#include "exec/address-spaces.h"
+#include "sysemu/xen-mapcache.h"
+#include "trace/trace-root.h"
+
+#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
+#include <linux/falloc.h>
+#endif
+
+#include "qemu/rcu_queue.h"
+#include "qemu/main-loop.h"
+#include "translate-all.h"
+#include "sysemu/replay.h"
+
+#include "exec/memory-internal.h"
+#include "exec/ram_addr.h"
+#include "exec/log.h"
+
+#include "qemu/pmem.h"
+
+#include "migration/vmstate.h"
+
+#include "qemu/range.h"
+#ifndef _WIN32
+#include "qemu/mmap-alloc.h"
+#endif
+
+#include "monitor/monitor.h"
+
+#ifdef CONFIG_LIBDAXCTL
+#include <daxctl/libdaxctl.h>
+#endif
+
+//#define DEBUG_SUBPAGE
+
+/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
+ * are protected by the ramlist lock.
+ */
+RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
+
+static MemoryRegion *system_memory;
+static MemoryRegion *system_io;
+
+AddressSpace address_space_io;
+AddressSpace address_space_memory;
+
+static MemoryRegion io_mem_unassigned;
+
+typedef struct PhysPageEntry PhysPageEntry;
+
+struct PhysPageEntry {
+ /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
+ uint32_t skip : 6;
+ /* index into phys_sections (!skip) or phys_map_nodes (skip) */
+ uint32_t ptr : 26;
+};
+
+#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
+
+/* Size of the L2 (and L3, etc) page tables. */
+#define ADDR_SPACE_BITS 64
+
+#define P_L2_BITS 9
+#define P_L2_SIZE (1 << P_L2_BITS)
+
+#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
+
+typedef PhysPageEntry Node[P_L2_SIZE];
+
+typedef struct PhysPageMap {
+ struct rcu_head rcu;
+
+ unsigned sections_nb;
+ unsigned sections_nb_alloc;
+ unsigned nodes_nb;
+ unsigned nodes_nb_alloc;
+ Node *nodes;
+ MemoryRegionSection *sections;
+} PhysPageMap;
+
+struct AddressSpaceDispatch {
+ MemoryRegionSection *mru_section;
+ /* This is a multi-level map on the physical address space.
+ * The bottom level has pointers to MemoryRegionSections.
+ */
+ PhysPageEntry phys_map;
+ PhysPageMap map;
+};
+
+#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
+typedef struct subpage_t {
+ MemoryRegion iomem;
+ FlatView *fv;
+ hwaddr base;
+ uint16_t sub_section[];
+} subpage_t;
+
+#define PHYS_SECTION_UNASSIGNED 0
+
+static void io_mem_init(void);
+static void memory_map_init(void);
+static void tcg_log_global_after_sync(MemoryListener *listener);
+static void tcg_commit(MemoryListener *listener);
+
+/**
+ * CPUAddressSpace: all the information a CPU needs about an AddressSpace
+ * @cpu: the CPU whose AddressSpace this is
+ * @as: the AddressSpace itself
+ * @memory_dispatch: its dispatch pointer (cached, RCU protected)
+ * @tcg_as_listener: listener for tracking changes to the AddressSpace
+ */
+struct CPUAddressSpace {
+ CPUState *cpu;
+ AddressSpace *as;
+ struct AddressSpaceDispatch *memory_dispatch;
+ MemoryListener tcg_as_listener;
+};
+
+struct DirtyBitmapSnapshot {
+ ram_addr_t start;
+ ram_addr_t end;
+ unsigned long dirty[];
+};
+
+static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
+{
+ static unsigned alloc_hint = 16;
+ if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
+ map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
+ map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
+ alloc_hint = map->nodes_nb_alloc;
+ }
+}
+
+static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
+{
+ unsigned i;
+ uint32_t ret;
+ PhysPageEntry e;
+ PhysPageEntry *p;
+
+ ret = map->nodes_nb++;
+ p = map->nodes[ret];
+ assert(ret != PHYS_MAP_NODE_NIL);
+ assert(ret != map->nodes_nb_alloc);
+
+ e.skip = leaf ? 0 : 1;
+ e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
+ for (i = 0; i < P_L2_SIZE; ++i) {
+ memcpy(&p[i], &e, sizeof(e));
+ }
+ return ret;
+}
+
+static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
+ hwaddr *index, uint64_t *nb, uint16_t leaf,
+ int level)
+{
+ PhysPageEntry *p;
+ hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
+
+ if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
+ lp->ptr = phys_map_node_alloc(map, level == 0);
+ }
+ p = map->nodes[lp->ptr];
+ lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
+
+ while (*nb && lp < &p[P_L2_SIZE]) {
+ if ((*index & (step - 1)) == 0 && *nb >= step) {
+ lp->skip = 0;
+ lp->ptr = leaf;
+ *index += step;
+ *nb -= step;
+ } else {
+ phys_page_set_level(map, lp, index, nb, leaf, level - 1);
+ }
+ ++lp;
+ }
+}
+
+static void phys_page_set(AddressSpaceDispatch *d,
+ hwaddr index, uint64_t nb,
+ uint16_t leaf)
+{
+ /* Wildly overreserve - it doesn't matter much. */
+ phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
+
+ phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
+}
+
+/* Compact a non leaf page entry. Simply detect that the entry has a single child,
+ * and update our entry so we can skip it and go directly to the destination.
+ */
+static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
+{
+ unsigned valid_ptr = P_L2_SIZE;
+ int valid = 0;
+ PhysPageEntry *p;
+ int i;
+
+ if (lp->ptr == PHYS_MAP_NODE_NIL) {
+ return;
+ }
+
+ p = nodes[lp->ptr];
+ for (i = 0; i < P_L2_SIZE; i++) {
+ if (p[i].ptr == PHYS_MAP_NODE_NIL) {
+ continue;
+ }
+
+ valid_ptr = i;
+ valid++;
+ if (p[i].skip) {
+ phys_page_compact(&p[i], nodes);
+ }
+ }
+
+ /* We can only compress if there's only one child. */
+ if (valid != 1) {
+ return;
+ }
+
+ assert(valid_ptr < P_L2_SIZE);
+
+ /* Don't compress if it won't fit in the # of bits we have. */
+ if (P_L2_LEVELS >= (1 << 6) &&
+ lp->skip + p[valid_ptr].skip >= (1 << 6)) {
+ return;
+ }
+
+ lp->ptr = p[valid_ptr].ptr;
+ if (!p[valid_ptr].skip) {
+ /* If our only child is a leaf, make this a leaf. */
+ /* By design, we should have made this node a leaf to begin with so we
+ * should never reach here.
+ * But since it's so simple to handle this, let's do it just in case we
+ * change this rule.
+ */
+ lp->skip = 0;
+ } else {
+ lp->skip += p[valid_ptr].skip;
+ }
+}
+
+void address_space_dispatch_compact(AddressSpaceDispatch *d)
+{
+ if (d->phys_map.skip) {
+ phys_page_compact(&d->phys_map, d->map.nodes);
+ }
+}
+
+static inline bool section_covers_addr(const MemoryRegionSection *section,
+ hwaddr addr)
+{
+ /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
+ * the section must cover the entire address space.
+ */
+ return int128_gethi(section->size) ||
+ range_covers_byte(section->offset_within_address_space,
+ int128_getlo(section->size), addr);
+}
+
+static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
+{
+ PhysPageEntry lp = d->phys_map, *p;
+ Node *nodes = d->map.nodes;
+ MemoryRegionSection *sections = d->map.sections;
+ hwaddr index = addr >> TARGET_PAGE_BITS;
+ int i;
+
+ for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
+ if (lp.ptr == PHYS_MAP_NODE_NIL) {
+ return &sections[PHYS_SECTION_UNASSIGNED];
+ }
+ p = nodes[lp.ptr];
+ lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
+ }
+
+ if (section_covers_addr(&sections[lp.ptr], addr)) {
+ return &sections[lp.ptr];
+ } else {
+ return &sections[PHYS_SECTION_UNASSIGNED];
+ }
+}
+
+/* Called from RCU critical section */
+static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
+ hwaddr addr,
+ bool resolve_subpage)
+{
+ MemoryRegionSection *section = qatomic_read(&d->mru_section);
+ subpage_t *subpage;
+
+ if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
+ !section_covers_addr(section, addr)) {
+ section = phys_page_find(d, addr);
+ qatomic_set(&d->mru_section, section);
+ }
+ if (resolve_subpage && section->mr->subpage) {
+ subpage = container_of(section->mr, subpage_t, iomem);
+ section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
+ }
+ return section;
+}
+
+/* Called from RCU critical section */
+static MemoryRegionSection *
+address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
+ hwaddr *plen, bool resolve_subpage)
+{
+ MemoryRegionSection *section;
+ MemoryRegion *mr;
+ Int128 diff;
+
+ section = address_space_lookup_region(d, addr, resolve_subpage);
+ /* Compute offset within MemoryRegionSection */
+ addr -= section->offset_within_address_space;
+
+ /* Compute offset within MemoryRegion */
+ *xlat = addr + section->offset_within_region;
+
+ mr = section->mr;
+
+ /* MMIO registers can be expected to perform full-width accesses based only
+ * on their address, without considering adjacent registers that could
+ * decode to completely different MemoryRegions. When such registers
+ * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
+ * regions overlap wildly. For this reason we cannot clamp the accesses
+ * here.
+ *
+ * If the length is small (as is the case for address_space_ldl/stl),
+ * everything works fine. If the incoming length is large, however,
+ * the caller really has to do the clamping through memory_access_size.
+ */
+ if (memory_region_is_ram(mr)) {
+ diff = int128_sub(section->size, int128_make64(addr));
+ *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
+ }
+ return section;
+}
+
+/**
+ * address_space_translate_iommu - translate an address through an IOMMU
+ * memory region and then through the target address space.
+ *
+ * @iommu_mr: the IOMMU memory region that we start the translation from
+ * @addr: the address to be translated through the MMU
+ * @xlat: the translated address offset within the destination memory region.
+ * It cannot be %NULL.
+ * @plen_out: valid read/write length of the translated address. It
+ * cannot be %NULL.
+ * @page_mask_out: page mask for the translated address. This
+ * should only be meaningful for IOMMU translated
+ * addresses, since there may be huge pages that this bit
+ * would tell. It can be %NULL if we don't care about it.
+ * @is_write: whether the translation operation is for write
+ * @is_mmio: whether this can be MMIO, set true if it can
+ * @target_as: the address space targeted by the IOMMU
+ * @attrs: transaction attributes
+ *
+ * This function is called from RCU critical section. It is the common
+ * part of flatview_do_translate and address_space_translate_cached.
+ */
+static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
+ hwaddr *xlat,
+ hwaddr *plen_out,
+ hwaddr *page_mask_out,
+ bool is_write,
+ bool is_mmio,
+ AddressSpace **target_as,
+ MemTxAttrs attrs)
+{
+ MemoryRegionSection *section;
+ hwaddr page_mask = (hwaddr)-1;
+
+ do {
+ hwaddr addr = *xlat;
+ IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
+ int iommu_idx = 0;
+ IOMMUTLBEntry iotlb;
+
+ if (imrc->attrs_to_index) {
+ iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
+ }
+
+ iotlb = imrc->translate(iommu_mr, addr, is_write ?
+ IOMMU_WO : IOMMU_RO, iommu_idx);
+
+ if (!(iotlb.perm & (1 << is_write))) {
+ goto unassigned;
+ }
+
+ addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
+ | (addr & iotlb.addr_mask));
+ page_mask &= iotlb.addr_mask;
+ *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
+ *target_as = iotlb.target_as;
+
+ section = address_space_translate_internal(
+ address_space_to_dispatch(iotlb.target_as), addr, xlat,
+ plen_out, is_mmio);
+
+ iommu_mr = memory_region_get_iommu(section->mr);
+ } while (unlikely(iommu_mr));
+
+ if (page_mask_out) {
+ *page_mask_out = page_mask;
+ }
+ return *section;
+
+unassigned:
+ return (MemoryRegionSection) { .mr = &io_mem_unassigned };
+}
+
+/**
+ * flatview_do_translate - translate an address in FlatView
+ *
+ * @fv: the flat view that we want to translate on
+ * @addr: the address to be translated in above address space
+ * @xlat: the translated address offset within memory region. It
+ * cannot be @NULL.
+ * @plen_out: valid read/write length of the translated address. It
+ * can be @NULL when we don't care about it.
+ * @page_mask_out: page mask for the translated address. This
+ * should only be meaningful for IOMMU translated
+ * addresses, since there may be huge pages that this bit
+ * would tell. It can be @NULL if we don't care about it.
+ * @is_write: whether the translation operation is for write
+ * @is_mmio: whether this can be MMIO, set true if it can
+ * @target_as: the address space targeted by the IOMMU
+ * @attrs: memory transaction attributes
+ *
+ * This function is called from RCU critical section
+ */
+static MemoryRegionSection flatview_do_translate(FlatView *fv,
+ hwaddr addr,
+ hwaddr *xlat,
+ hwaddr *plen_out,
+ hwaddr *page_mask_out,
+ bool is_write,
+ bool is_mmio,
+ AddressSpace **target_as,
+ MemTxAttrs attrs)
+{
+ MemoryRegionSection *section;
+ IOMMUMemoryRegion *iommu_mr;
+ hwaddr plen = (hwaddr)(-1);
+
+ if (!plen_out) {
+ plen_out = &plen;
+ }
+
+ section = address_space_translate_internal(
+ flatview_to_dispatch(fv), addr, xlat,
+ plen_out, is_mmio);
+
+ iommu_mr = memory_region_get_iommu(section->mr);
+ if (unlikely(iommu_mr)) {
+ return address_space_translate_iommu(iommu_mr, xlat,
+ plen_out, page_mask_out,
+ is_write, is_mmio,
+ target_as, attrs);
+ }
+ if (page_mask_out) {
+ /* Not behind an IOMMU, use default page size. */
+ *page_mask_out = ~TARGET_PAGE_MASK;
+ }
+
+ return *section;
+}
+
+/* Called from RCU critical section */
+IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
+ bool is_write, MemTxAttrs attrs)
+{
+ MemoryRegionSection section;
+ hwaddr xlat, page_mask;
+
+ /*
+ * This can never be MMIO, and we don't really care about plen,
+ * but page mask.
+ */
+ section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
+ NULL, &page_mask, is_write, false, &as,
+ attrs);
+
+ /* Illegal translation */
+ if (section.mr == &io_mem_unassigned) {
+ goto iotlb_fail;
+ }
+
+ /* Convert memory region offset into address space offset */
+ xlat += section.offset_within_address_space -
+ section.offset_within_region;
+
+ return (IOMMUTLBEntry) {
+ .target_as = as,
+ .iova = addr & ~page_mask,
+ .translated_addr = xlat & ~page_mask,
+ .addr_mask = page_mask,
+ /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
+ .perm = IOMMU_RW,
+ };
+
+iotlb_fail:
+ return (IOMMUTLBEntry) {0};
+}
+
+/* Called from RCU critical section */
+MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
+ hwaddr *plen, bool is_write,
+ MemTxAttrs attrs)
+{
+ MemoryRegion *mr;
+ MemoryRegionSection section;
+ AddressSpace *as = NULL;
+
+ /* This can be MMIO, so setup MMIO bit. */
+ section = flatview_do_translate(fv, addr, xlat, plen, NULL,
+ is_write, true, &as, attrs);
+ mr = section.mr;
+
+ if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
+ hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
+ *plen = MIN(page, *plen);
+ }
+
+ return mr;
+}
+
+typedef struct TCGIOMMUNotifier {
+ IOMMUNotifier n;
+ MemoryRegion *mr;
+ CPUState *cpu;
+ int iommu_idx;
+ bool active;
+} TCGIOMMUNotifier;
+
+static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
+{
+ TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
+
+ if (!notifier->active) {
+ return;
+ }
+ tlb_flush(notifier->cpu);
+ notifier->active = false;
+ /* We leave the notifier struct on the list to avoid reallocating it later.
+ * Generally the number of IOMMUs a CPU deals with will be small.
+ * In any case we can't unregister the iommu notifier from a notify
+ * callback.
+ */
+}
+
+static void tcg_register_iommu_notifier(CPUState *cpu,
+ IOMMUMemoryRegion *iommu_mr,
+ int iommu_idx)
+{
+ /* Make sure this CPU has an IOMMU notifier registered for this
+ * IOMMU/IOMMU index combination, so that we can flush its TLB
+ * when the IOMMU tells us the mappings we've cached have changed.
+ */
+ MemoryRegion *mr = MEMORY_REGION(iommu_mr);
+ TCGIOMMUNotifier *notifier;
+ int i;
+
+ for (i = 0; i < cpu->iommu_notifiers->len; i++) {
+ notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
+ if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
+ break;
+ }
+ }
+ if (i == cpu->iommu_notifiers->len) {
+ /* Not found, add a new entry at the end of the array */
+ cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
+ notifier = g_new0(TCGIOMMUNotifier, 1);
+ g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
+
+ notifier->mr = mr;
+ notifier->iommu_idx = iommu_idx;
+ notifier->cpu = cpu;
+ /* Rather than trying to register interest in the specific part
+ * of the iommu's address space that we've accessed and then
+ * expand it later as subsequent accesses touch more of it, we
+ * just register interest in the whole thing, on the assumption
+ * that iommu reconfiguration will be rare.
+ */
+ iommu_notifier_init(&notifier->n,
+ tcg_iommu_unmap_notify,
+ IOMMU_NOTIFIER_UNMAP,
+ 0,
+ HWADDR_MAX,
+ iommu_idx);
+ memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
+ &error_fatal);
+ }
+
+ if (!notifier->active) {
+ notifier->active = true;
+ }
+}
+
+void tcg_iommu_free_notifier_list(CPUState *cpu)
+{
+ /* Destroy the CPU's notifier list */
+ int i;
+ TCGIOMMUNotifier *notifier;
+
+ for (i = 0; i < cpu->iommu_notifiers->len; i++) {
+ notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
+ memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
+ g_free(notifier);
+ }
+ g_array_free(cpu->iommu_notifiers, true);
+}
+
+void tcg_iommu_init_notifier_list(CPUState *cpu)
+{
+ cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
+}
+
+/* Called from RCU critical section */
+MemoryRegionSection *
+address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
+ hwaddr *xlat, hwaddr *plen,
+ MemTxAttrs attrs, int *prot)
+{
+ MemoryRegionSection *section;
+ IOMMUMemoryRegion *iommu_mr;
+ IOMMUMemoryRegionClass *imrc;
+ IOMMUTLBEntry iotlb;
+ int iommu_idx;
+ AddressSpaceDispatch *d =
+ qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
+
+ for (;;) {
+ section = address_space_translate_internal(d, addr, &addr, plen, false);
+
+ iommu_mr = memory_region_get_iommu(section->mr);
+ if (!iommu_mr) {
+ break;
+ }
+
+ imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
+
+ iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
+ tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
+ /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
+ * doesn't short-cut its translation table walk.
+ */
+ iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
+ addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
+ | (addr & iotlb.addr_mask));
+ /* Update the caller's prot bits to remove permissions the IOMMU
+ * is giving us a failure response for. If we get down to no
+ * permissions left at all we can give up now.
+ */
+ if (!(iotlb.perm & IOMMU_RO)) {
+ *prot &= ~(PAGE_READ | PAGE_EXEC);
+ }
+ if (!(iotlb.perm & IOMMU_WO)) {
+ *prot &= ~PAGE_WRITE;
+ }
+
+ if (!*prot) {
+ goto translate_fail;
+ }
+
+ d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
+ }
+
+ assert(!memory_region_is_iommu(section->mr));
+ *xlat = addr;
+ return section;
+
+translate_fail:
+ return &d->map.sections[PHYS_SECTION_UNASSIGNED];
+}
+
+void cpu_address_space_init(CPUState *cpu, int asidx,
+ const char *prefix, MemoryRegion *mr)
+{
+ CPUAddressSpace *newas;
+ AddressSpace *as = g_new0(AddressSpace, 1);
+ char *as_name;
+
+ assert(mr);
+ as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
+ address_space_init(as, mr, as_name);
+ g_free(as_name);
+
+ /* Target code should have set num_ases before calling us */
+ assert(asidx < cpu->num_ases);
+
+ if (asidx == 0) {
+ /* address space 0 gets the convenience alias */
+ cpu->as = as;
+ }
+
+ /* KVM cannot currently support multiple address spaces. */
+ assert(asidx == 0 || !kvm_enabled());
+
+ if (!cpu->cpu_ases) {
+ cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
+ }
+
+ newas = &cpu->cpu_ases[asidx];
+ newas->cpu = cpu;
+ newas->as = as;
+ if (tcg_enabled()) {
+ newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
+ newas->tcg_as_listener.commit = tcg_commit;
+ memory_listener_register(&newas->tcg_as_listener, as);
+ }
+}
+
+AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
+{
+ /* Return the AddressSpace corresponding to the specified index */
+ return cpu->cpu_ases[asidx].as;
+}
+
+/* Add a watchpoint. */
+int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
+ int flags, CPUWatchpoint **watchpoint)
+{
+ CPUWatchpoint *wp;
+ vaddr in_page;
+
+ /* forbid ranges which are empty or run off the end of the address space */
+ if (len == 0 || (addr + len - 1) < addr) {
+ error_report("tried to set invalid watchpoint at %"
+ VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
+ return -EINVAL;
+ }
+ wp = g_malloc(sizeof(*wp));
+
+ wp->vaddr = addr;
+ wp->len = len;
+ wp->flags = flags;
+
+ /* keep all GDB-injected watchpoints in front */
+ if (flags & BP_GDB) {
+ QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
+ } else {
+ QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
+ }
+
+ in_page = -(addr | TARGET_PAGE_MASK);
+ if (len <= in_page) {
+ tlb_flush_page(cpu, addr);
+ } else {
+ tlb_flush(cpu);
+ }
+
+ if (watchpoint)
+ *watchpoint = wp;
+ return 0;
+}
+
+/* Remove a specific watchpoint. */
+int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
+ int flags)
+{
+ CPUWatchpoint *wp;
+
+ QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
+ if (addr == wp->vaddr && len == wp->len
+ && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
+ cpu_watchpoint_remove_by_ref(cpu, wp);
+ return 0;
+ }
+ }
+ return -ENOENT;
+}
+
+/* Remove a specific watchpoint by reference. */
+void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
+{
+ QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
+
+ tlb_flush_page(cpu, watchpoint->vaddr);
+
+ g_free(watchpoint);
+}
+
+/* Remove all matching watchpoints. */
+void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
+{
+ CPUWatchpoint *wp, *next;
+
+ QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
+ if (wp->flags & mask) {
+ cpu_watchpoint_remove_by_ref(cpu, wp);
+ }
+ }
+}
+
+/* Return true if this watchpoint address matches the specified
+ * access (ie the address range covered by the watchpoint overlaps
+ * partially or completely with the address range covered by the
+ * access).
+ */
+static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
+ vaddr addr, vaddr len)
+{
+ /* We know the lengths are non-zero, but a little caution is
+ * required to avoid errors in the case where the range ends
+ * exactly at the top of the address space and so addr + len
+ * wraps round to zero.
+ */
+ vaddr wpend = wp->vaddr + wp->len - 1;
+ vaddr addrend = addr + len - 1;
+
+ return !(addr > wpend || wp->vaddr > addrend);
+}
+
+/* Return flags for watchpoints that match addr + prot. */
+int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
+{
+ CPUWatchpoint *wp;
+ int ret = 0;
+
+ QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
+ if (watchpoint_address_matches(wp, addr, len)) {
+ ret |= wp->flags;
+ }
+ }
+ return ret;
+}
+
+/* Called from RCU critical section */
+static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
+{
+ RAMBlock *block;
+
+ block = qatomic_rcu_read(&ram_list.mru_block);
+ if (block && addr - block->offset < block->max_length) {
+ return block;
+ }
+ RAMBLOCK_FOREACH(block) {
+ if (addr - block->offset < block->max_length) {
+ goto found;
+ }
+ }
+
+ fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
+ abort();
+
+found:
+ /* It is safe to write mru_block outside the iothread lock. This
+ * is what happens:
+ *
+ * mru_block = xxx
+ * rcu_read_unlock()
+ * xxx removed from list
+ * rcu_read_lock()
+ * read mru_block
+ * mru_block = NULL;
+ * call_rcu(reclaim_ramblock, xxx);
+ * rcu_read_unlock()
+ *
+ * qatomic_rcu_set is not needed here. The block was already published
+ * when it was placed into the list. Here we're just making an extra
+ * copy of the pointer.
+ */
+ ram_list.mru_block = block;
+ return block;
+}
+
+static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
+{
+ CPUState *cpu;
+ ram_addr_t start1;
+ RAMBlock *block;
+ ram_addr_t end;
+
+ assert(tcg_enabled());
+ end = TARGET_PAGE_ALIGN(start + length);
+ start &= TARGET_PAGE_MASK;
+
+ RCU_READ_LOCK_GUARD();
+ block = qemu_get_ram_block(start);
+ assert(block == qemu_get_ram_block(end - 1));
+ start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
+ CPU_FOREACH(cpu) {
+ tlb_reset_dirty(cpu, start1, length);
+ }
+}
+
+/* Note: start and end must be within the same ram block. */
+bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
+ ram_addr_t length,
+ unsigned client)
+{
+ DirtyMemoryBlocks *blocks;
+ unsigned long end, page, start_page;
+ bool dirty = false;
+ RAMBlock *ramblock;
+ uint64_t mr_offset, mr_size;
+
+ if (length == 0) {
+ return false;
+ }
+
+ end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
+ start_page = start >> TARGET_PAGE_BITS;
+ page = start_page;
+
+ WITH_RCU_READ_LOCK_GUARD() {
+ blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
+ ramblock = qemu_get_ram_block(start);
+ /* Range sanity check on the ramblock */
+ assert(start >= ramblock->offset &&
+ start + length <= ramblock->offset + ramblock->used_length);
+
+ while (page < end) {
+ unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
+ unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
+ unsigned long num = MIN(end - page,
+ DIRTY_MEMORY_BLOCK_SIZE - offset);
+
+ dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
+ offset, num);
+ page += num;
+ }
+
+ mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
+ mr_size = (end - start_page) << TARGET_PAGE_BITS;
+ memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
+ }
+
+ if (dirty && tcg_enabled()) {
+ tlb_reset_dirty_range_all(start, length);
+ }
+
+ return dirty;
+}
+
+DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
+ (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
+{
+ DirtyMemoryBlocks *blocks;
+ ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
+ unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
+ ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
+ ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
+ DirtyBitmapSnapshot *snap;
+ unsigned long page, end, dest;
+
+ snap = g_malloc0(sizeof(*snap) +
+ ((last - first) >> (TARGET_PAGE_BITS + 3)));
+ snap->start = first;
+ snap->end = last;
+
+ page = first >> TARGET_PAGE_BITS;
+ end = last >> TARGET_PAGE_BITS;
+ dest = 0;
+
+ WITH_RCU_READ_LOCK_GUARD() {
+ blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
+
+ while (page < end) {
+ unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
+ unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
+ unsigned long num = MIN(end - page,
+ DIRTY_MEMORY_BLOCK_SIZE - offset);
+
+ assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
+ assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
+ offset >>= BITS_PER_LEVEL;
+
+ bitmap_copy_and_clear_atomic(snap->dirty + dest,
+ blocks->blocks[idx] + offset,
+ num);
+ page += num;
+ dest += num >> BITS_PER_LEVEL;
+ }
+ }
+
+ if (tcg_enabled()) {
+ tlb_reset_dirty_range_all(start, length);
+ }
+
+ memory_region_clear_dirty_bitmap(mr, offset, length);
+
+ return snap;
+}
+
+bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
+ ram_addr_t start,
+ ram_addr_t length)
+{
+ unsigned long page, end;
+
+ assert(start >= snap->start);
+ assert(start + length <= snap->end);
+
+ end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
+ page = (start - snap->start) >> TARGET_PAGE_BITS;
+
+ while (page < end) {
+ if (test_bit(page, snap->dirty)) {
+ return true;
+ }
+ page++;
+ }
+ return false;
+}
+
+/* Called from RCU critical section */
+hwaddr memory_region_section_get_iotlb(CPUState *cpu,
+ MemoryRegionSection *section)
+{
+ AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
+ return section - d->map.sections;
+}
+
+static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
+ uint16_t section);
+static subpage_t *subpage_init(FlatView *fv, hwaddr base);
+
+static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
+ qemu_anon_ram_alloc;
+
+/*
+ * Set a custom physical guest memory alloator.
+ * Accelerators with unusual needs may need this. Hopefully, we can
+ * get rid of it eventually.
+ */
+void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
+{
+ phys_mem_alloc = alloc;
+}
+
+static uint16_t phys_section_add(PhysPageMap *map,
+ MemoryRegionSection *section)
+{
+ /* The physical section number is ORed with a page-aligned
+ * pointer to produce the iotlb entries. Thus it should
+ * never overflow into the page-aligned value.
+ */
+ assert(map->sections_nb < TARGET_PAGE_SIZE);
+
+ if (map->sections_nb == map->sections_nb_alloc) {
+ map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
+ map->sections = g_renew(MemoryRegionSection, map->sections,
+ map->sections_nb_alloc);
+ }
+ map->sections[map->sections_nb] = *section;
+ memory_region_ref(section->mr);
+ return map->sections_nb++;
+}
+
+static void phys_section_destroy(MemoryRegion *mr)
+{
+ bool have_sub_page = mr->subpage;
+
+ memory_region_unref(mr);
+
+ if (have_sub_page) {
+ subpage_t *subpage = container_of(mr, subpage_t, iomem);
+ object_unref(OBJECT(&subpage->iomem));
+ g_free(subpage);
+ }
+}
+
+static void phys_sections_free(PhysPageMap *map)
+{
+ while (map->sections_nb > 0) {
+ MemoryRegionSection *section = &map->sections[--map->sections_nb];
+ phys_section_destroy(section->mr);
+ }
+ g_free(map->sections);
+ g_free(map->nodes);
+}
+
+static void register_subpage(FlatView *fv, MemoryRegionSection *section)
+{
+ AddressSpaceDispatch *d = flatview_to_dispatch(fv);
+ subpage_t *subpage;
+ hwaddr base = section->offset_within_address_space
+ & TARGET_PAGE_MASK;
+ MemoryRegionSection *existing = phys_page_find(d, base);
+ MemoryRegionSection subsection = {
+ .offset_within_address_space = base,
+ .size = int128_make64(TARGET_PAGE_SIZE),
+ };
+ hwaddr start, end;
+
+ assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
+
+ if (!(existing->mr->subpage)) {
+ subpage = subpage_init(fv, base);
+ subsection.fv = fv;
+ subsection.mr = &subpage->iomem;
+ phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
+ phys_section_add(&d->map, &subsection));
+ } else {
+ subpage = container_of(existing->mr, subpage_t, iomem);
+ }
+ start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
+ end = start + int128_get64(section->size) - 1;
+ subpage_register(subpage, start, end,
+ phys_section_add(&d->map, section));
+}
+
+
+static void register_multipage(FlatView *fv,
+ MemoryRegionSection *section)
+{
+ AddressSpaceDispatch *d = flatview_to_dispatch(fv);
+ hwaddr start_addr = section->offset_within_address_space;
+ uint16_t section_index = phys_section_add(&d->map, section);
+ uint64_t num_pages = int128_get64(int128_rshift(section->size,
+ TARGET_PAGE_BITS));
+
+ assert(num_pages);
+ phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
+}
+
+/*
+ * The range in *section* may look like this:
+ *
+ * |s|PPPPPPP|s|
+ *
+ * where s stands for subpage and P for page.
+ */
+void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
+{
+ MemoryRegionSection remain = *section;
+ Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
+
+ /* register first subpage */
+ if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
+ uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
+ - remain.offset_within_address_space;
+
+ MemoryRegionSection now = remain;
+ now.size = int128_min(int128_make64(left), now.size);
+ register_subpage(fv, &now);
+ if (int128_eq(remain.size, now.size)) {
+ return;
+ }
+ remain.size = int128_sub(remain.size, now.size);
+ remain.offset_within_address_space += int128_get64(now.size);
+ remain.offset_within_region += int128_get64(now.size);
+ }
+
+ /* register whole pages */
+ if (int128_ge(remain.size, page_size)) {
+ MemoryRegionSection now = remain;
+ now.size = int128_and(now.size, int128_neg(page_size));
+ register_multipage(fv, &now);
+ if (int128_eq(remain.size, now.size)) {
+ return;
+ }
+ remain.size = int128_sub(remain.size, now.size);
+ remain.offset_within_address_space += int128_get64(now.size);
+ remain.offset_within_region += int128_get64(now.size);
+ }
+
+ /* register last subpage */
+ register_subpage(fv, &remain);
+}
+
+void qemu_flush_coalesced_mmio_buffer(void)
+{
+ if (kvm_enabled())
+ kvm_flush_coalesced_mmio_buffer();
+}
+
+void qemu_mutex_lock_ramlist(void)
+{
+ qemu_mutex_lock(&ram_list.mutex);
+}
+
+void qemu_mutex_unlock_ramlist(void)
+{
+ qemu_mutex_unlock(&ram_list.mutex);
+}
+
+void ram_block_dump(Monitor *mon)
+{
+ RAMBlock *block;
+ char *psize;
+
+ RCU_READ_LOCK_GUARD();
+ monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
+ "Block Name", "PSize", "Offset", "Used", "Total");
+ RAMBLOCK_FOREACH(block) {
+ psize = size_to_str(block->page_size);
+ monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
+ " 0x%016" PRIx64 "\n", block->idstr, psize,
+ (uint64_t)block->offset,
+ (uint64_t)block->used_length,
+ (uint64_t)block->max_length);
+ g_free(psize);
+ }
+}
+
+#ifdef __linux__
+/*
+ * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
+ * may or may not name the same files / on the same filesystem now as
+ * when we actually open and map them. Iterate over the file
+ * descriptors instead, and use qemu_fd_getpagesize().
+ */
+static int find_min_backend_pagesize(Object *obj, void *opaque)
+{
+ long *hpsize_min = opaque;
+
+ if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
+ HostMemoryBackend *backend = MEMORY_BACKEND(obj);
+ long hpsize = host_memory_backend_pagesize(backend);
+
+ if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
+ *hpsize_min = hpsize;
+ }
+ }
+
+ return 0;
+}
+
+static int find_max_backend_pagesize(Object *obj, void *opaque)
+{
+ long *hpsize_max = opaque;
+
+ if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
+ HostMemoryBackend *backend = MEMORY_BACKEND(obj);
+ long hpsize = host_memory_backend_pagesize(backend);
+
+ if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
+ *hpsize_max = hpsize;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * TODO: We assume right now that all mapped host memory backends are
+ * used as RAM, however some might be used for different purposes.
+ */
+long qemu_minrampagesize(void)
+{
+ long hpsize = LONG_MAX;
+ Object *memdev_root = object_resolve_path("/objects", NULL);
+
+ object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
+ return hpsize;
+}
+
+long qemu_maxrampagesize(void)
+{
+ long pagesize = 0;
+ Object *memdev_root = object_resolve_path("/objects", NULL);
+
+ object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
+ return pagesize;
+}
+#else
+long qemu_minrampagesize(void)
+{
+ return qemu_real_host_page_size;
+}
+long qemu_maxrampagesize(void)
+{
+ return qemu_real_host_page_size;
+}
+#endif
+
+#ifdef CONFIG_POSIX
+static int64_t get_file_size(int fd)
+{
+ int64_t size;
+#if defined(__linux__)
+ struct stat st;
+
+ if (fstat(fd, &st) < 0) {
+ return -errno;
+ }
+
+ /* Special handling for devdax character devices */
+ if (S_ISCHR(st.st_mode)) {
+ g_autofree char *subsystem_path = NULL;
+ g_autofree char *subsystem = NULL;
+
+ subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
+ major(st.st_rdev), minor(st.st_rdev));
+ subsystem = g_file_read_link(subsystem_path, NULL);
+
+ if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
+ g_autofree char *size_path = NULL;
+ g_autofree char *size_str = NULL;
+
+ size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
+ major(st.st_rdev), minor(st.st_rdev));
+
+ if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
+ return g_ascii_strtoll(size_str, NULL, 0);
+ }
+ }
+ }
+#endif /* defined(__linux__) */
+
+ /* st.st_size may be zero for special files yet lseek(2) works */
+ size = lseek(fd, 0, SEEK_END);
+ if (size < 0) {
+ return -errno;
+ }
+ return size;
+}
+
+static int64_t get_file_align(int fd)
+{
+ int64_t align = -1;
+#if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
+ struct stat st;
+
+ if (fstat(fd, &st) < 0) {
+ return -errno;
+ }
+
+ /* Special handling for devdax character devices */
+ if (S_ISCHR(st.st_mode)) {
+ g_autofree char *path = NULL;
+ g_autofree char *rpath = NULL;
+ struct daxctl_ctx *ctx;
+ struct daxctl_region *region;
+ int rc = 0;
+
+ path = g_strdup_printf("/sys/dev/char/%d:%d",
+ major(st.st_rdev), minor(st.st_rdev));
+ rpath = realpath(path, NULL);
+
+ rc = daxctl_new(&ctx);
+ if (rc) {
+ return -1;
+ }
+
+ daxctl_region_foreach(ctx, region) {
+ if (strstr(rpath, daxctl_region_get_path(region))) {
+ align = daxctl_region_get_align(region);
+ break;
+ }
+ }
+ daxctl_unref(ctx);
+ }
+#endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
+
+ return align;
+}
+
+static int file_ram_open(const char *path,
+ const char *region_name,
+ bool *created,
+ Error **errp)
+{
+ char *filename;
+ char *sanitized_name;
+ char *c;
+ int fd = -1;
+
+ *created = false;
+ for (;;) {
+ fd = open(path, O_RDWR);
+ if (fd >= 0) {
+ /* @path names an existing file, use it */
+ break;
+ }
+ if (errno == ENOENT) {
+ /* @path names a file that doesn't exist, create it */
+ fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
+ if (fd >= 0) {
+ *created = true;
+ break;
+ }
+ } else if (errno == EISDIR) {
+ /* @path names a directory, create a file there */
+ /* Make name safe to use with mkstemp by replacing '/' with '_'. */
+ sanitized_name = g_strdup(region_name);
+ for (c = sanitized_name; *c != '\0'; c++) {
+ if (*c == '/') {
+ *c = '_';
+ }
+ }
+
+ filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
+ sanitized_name);
+ g_free(sanitized_name);
+
+ fd = mkstemp(filename);
+ if (fd >= 0) {
+ unlink(filename);
+ g_free(filename);
+ break;
+ }
+ g_free(filename);
+ }
+ if (errno != EEXIST && errno != EINTR) {
+ error_setg_errno(errp, errno,
+ "can't open backing store %s for guest RAM",
+ path);
+ return -1;
+ }
+ /*
+ * Try again on EINTR and EEXIST. The latter happens when
+ * something else creates the file between our two open().
+ */
+ }
+
+ return fd;
+}
+
+static void *file_ram_alloc(RAMBlock *block,
+ ram_addr_t memory,
+ int fd,
+ bool truncate,
+ Error **errp)
+{
+ void *area;
+
+ block->page_size = qemu_fd_getpagesize(fd);
+ if (block->mr->align % block->page_size) {
+ error_setg(errp, "alignment 0x%" PRIx64
+ " must be multiples of page size 0x%zx",
+ block->mr->align, block->page_size);
+ return NULL;
+ } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
+ error_setg(errp, "alignment 0x%" PRIx64
+ " must be a power of two", block->mr->align);
+ return NULL;
+ }
+ block->mr->align = MAX(block->page_size, block->mr->align);
+#if defined(__s390x__)
+ if (kvm_enabled()) {
+ block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
+ }
+#endif
+
+ if (memory < block->page_size) {
+ error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
+ "or larger than page size 0x%zx",
+ memory, block->page_size);
+ return NULL;
+ }
+
+ memory = ROUND_UP(memory, block->page_size);
+
+ /*
+ * ftruncate is not supported by hugetlbfs in older
+ * hosts, so don't bother bailing out on errors.
+ * If anything goes wrong with it under other filesystems,
+ * mmap will fail.
+ *
+ * Do not truncate the non-empty backend file to avoid corrupting
+ * the existing data in the file. Disabling shrinking is not
+ * enough. For example, the current vNVDIMM implementation stores
+ * the guest NVDIMM labels at the end of the backend file. If the
+ * backend file is later extended, QEMU will not be able to find
+ * those labels. Therefore, extending the non-empty backend file
+ * is disabled as well.
+ */
+ if (truncate && ftruncate(fd, memory)) {
+ perror("ftruncate");
+ }
+
+ area = qemu_ram_mmap(fd, memory, block->mr->align,
+ block->flags & RAM_SHARED, block->flags & RAM_PMEM);
+ if (area == MAP_FAILED) {
+ error_setg_errno(errp, errno,
+ "unable to map backing store for guest RAM");
+ return NULL;
+ }
+
+ block->fd = fd;
+ return area;
+}
+#endif
+
+/* Allocate space within the ram_addr_t space that governs the
+ * dirty bitmaps.
+ * Called with the ramlist lock held.
+ */
+static ram_addr_t find_ram_offset(ram_addr_t size)
+{
+ RAMBlock *block, *next_block;
+ ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
+
+ assert(size != 0); /* it would hand out same offset multiple times */
+
+ if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
+ return 0;
+ }
+
+ RAMBLOCK_FOREACH(block) {
+ ram_addr_t candidate, next = RAM_ADDR_MAX;
+
+ /* Align blocks to start on a 'long' in the bitmap
+ * which makes the bitmap sync'ing take the fast path.
+ */
+ candidate = block->offset + block->max_length;
+ candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
+
+ /* Search for the closest following block
+ * and find the gap.
+ */
+ RAMBLOCK_FOREACH(next_block) {
+ if (next_block->offset >= candidate) {
+ next = MIN(next, next_block->offset);
+ }
+ }
+
+ /* If it fits remember our place and remember the size
+ * of gap, but keep going so that we might find a smaller
+ * gap to fill so avoiding fragmentation.
+ */
+ if (next - candidate >= size && next - candidate < mingap) {
+ offset = candidate;
+ mingap = next - candidate;
+ }
+
+ trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
+ }
+
+ if (offset == RAM_ADDR_MAX) {
+ fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
+ (uint64_t)size);
+ abort();
+ }
+
+ trace_find_ram_offset(size, offset);
+
+ return offset;
+}
+
+static unsigned long last_ram_page(void)
+{
+ RAMBlock *block;
+ ram_addr_t last = 0;
+
+ RCU_READ_LOCK_GUARD();
+ RAMBLOCK_FOREACH(block) {
+ last = MAX(last, block->offset + block->max_length);
+ }
+ return last >> TARGET_PAGE_BITS;
+}
+
+static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
+{
+ int ret;
+
+ /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
+ if (!machine_dump_guest_core(current_machine)) {
+ ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
+ if (ret) {
+ perror("qemu_madvise");
+ fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
+ "but dump_guest_core=off specified\n");
+ }
+ }
+}
+
+const char *qemu_ram_get_idstr(RAMBlock *rb)
+{
+ return rb->idstr;
+}
+
+void *qemu_ram_get_host_addr(RAMBlock *rb)
+{
+ return rb->host;
+}
+
+ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
+{
+ return rb->offset;
+}
+
+ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
+{
+ return rb->used_length;
+}
+
+bool qemu_ram_is_shared(RAMBlock *rb)
+{
+ return rb->flags & RAM_SHARED;
+}
+
+/* Note: Only set at the start of postcopy */
+bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
+{
+ return rb->flags & RAM_UF_ZEROPAGE;
+}
+
+void qemu_ram_set_uf_zeroable(RAMBlock *rb)
+{
+ rb->flags |= RAM_UF_ZEROPAGE;
+}
+
+bool qemu_ram_is_migratable(RAMBlock *rb)
+{
+ return rb->flags & RAM_MIGRATABLE;
+}
+
+void qemu_ram_set_migratable(RAMBlock *rb)
+{
+ rb->flags |= RAM_MIGRATABLE;
+}
+
+void qemu_ram_unset_migratable(RAMBlock *rb)
+{
+ rb->flags &= ~RAM_MIGRATABLE;
+}
+
+/* Called with iothread lock held. */
+void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
+{
+ RAMBlock *block;
+
+ assert(new_block);
+ assert(!new_block->idstr[0]);
+
+ if (dev) {
+ char *id = qdev_get_dev_path(dev);
+ if (id) {
+ snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
+ g_free(id);
+ }
+ }
+ pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
+
+ RCU_READ_LOCK_GUARD();
+ RAMBLOCK_FOREACH(block) {
+ if (block != new_block &&
+ !strcmp(block->idstr, new_block->idstr)) {
+ fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
+ new_block->idstr);
+ abort();
+ }
+ }
+}
+
+/* Called with iothread lock held. */
+void qemu_ram_unset_idstr(RAMBlock *block)
+{
+ /* FIXME: arch_init.c assumes that this is not called throughout
+ * migration. Ignore the problem since hot-unplug during migration
+ * does not work anyway.
+ */
+ if (block) {
+ memset(block->idstr, 0, sizeof(block->idstr));
+ }
+}
+
+size_t qemu_ram_pagesize(RAMBlock *rb)
+{
+ return rb->page_size;
+}
+
+/* Returns the largest size of page in use */
+size_t qemu_ram_pagesize_largest(void)
+{
+ RAMBlock *block;
+ size_t largest = 0;
+
+ RAMBLOCK_FOREACH(block) {
+ largest = MAX(largest, qemu_ram_pagesize(block));
+ }
+
+ return largest;
+}
+
+static int memory_try_enable_merging(void *addr, size_t len)
+{
+ if (!machine_mem_merge(current_machine)) {
+ /* disabled by the user */
+ return 0;
+ }
+
+ return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
+}
+
+/* Only legal before guest might have detected the memory size: e.g. on
+ * incoming migration, or right after reset.
+ *
+ * As memory core doesn't know how is memory accessed, it is up to
+ * resize callback to update device state and/or add assertions to detect
+ * misuse, if necessary.
+ */
+int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
+{
+ const ram_addr_t unaligned_size = newsize;
+
+ assert(block);
+
+ newsize = HOST_PAGE_ALIGN(newsize);
+
+ if (block->used_length == newsize) {
+ /*
+ * We don't have to resize the ram block (which only knows aligned
+ * sizes), however, we have to notify if the unaligned size changed.
+ */
+ if (unaligned_size != memory_region_size(block->mr)) {
+ memory_region_set_size(block->mr, unaligned_size);
+ if (block->resized) {
+ block->resized(block->idstr, unaligned_size, block->host);
+ }
+ }
+ return 0;
+ }
+
+ if (!(block->flags & RAM_RESIZEABLE)) {
+ error_setg_errno(errp, EINVAL,
+ "Length mismatch: %s: 0x" RAM_ADDR_FMT
+ " in != 0x" RAM_ADDR_FMT, block->idstr,
+ newsize, block->used_length);
+ return -EINVAL;
+ }
+
+ if (block->max_length < newsize) {
+ error_setg_errno(errp, EINVAL,
+ "Length too large: %s: 0x" RAM_ADDR_FMT
+ " > 0x" RAM_ADDR_FMT, block->idstr,
+ newsize, block->max_length);
+ return -EINVAL;
+ }
+
+ cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
+ block->used_length = newsize;
+ cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
+ DIRTY_CLIENTS_ALL);
+ memory_region_set_size(block->mr, unaligned_size);
+ if (block->resized) {
+ block->resized(block->idstr, unaligned_size, block->host);
+ }
+ return 0;
+}
+
+/*
+ * Trigger sync on the given ram block for range [start, start + length]
+ * with the backing store if one is available.
+ * Otherwise no-op.
+ * @Note: this is supposed to be a synchronous op.
+ */
+void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
+{
+ /* The requested range should fit in within the block range */
+ g_assert((start + length) <= block->used_length);
+
+#ifdef CONFIG_LIBPMEM
+ /* The lack of support for pmem should not block the sync */
+ if (ramblock_is_pmem(block)) {
+ void *addr = ramblock_ptr(block, start);
+ pmem_persist(addr, length);
+ return;
+ }
+#endif
+ if (block->fd >= 0) {
+ /**
+ * Case there is no support for PMEM or the memory has not been
+ * specified as persistent (or is not one) - use the msync.
+ * Less optimal but still achieves the same goal
+ */
+ void *addr = ramblock_ptr(block, start);
+ if (qemu_msync(addr, length, block->fd)) {
+ warn_report("%s: failed to sync memory range: start: "
+ RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
+ __func__, start, length);
+ }
+ }
+}
+
+/* Called with ram_list.mutex held */
+static void dirty_memory_extend(ram_addr_t old_ram_size,
+ ram_addr_t new_ram_size)
+{
+ ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
+ DIRTY_MEMORY_BLOCK_SIZE);
+ ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
+ DIRTY_MEMORY_BLOCK_SIZE);
+ int i;
+
+ /* Only need to extend if block count increased */
+ if (new_num_blocks <= old_num_blocks) {
+ return;
+ }
+
+ for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
+ DirtyMemoryBlocks *old_blocks;
+ DirtyMemoryBlocks *new_blocks;
+ int j;
+
+ old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
+ new_blocks = g_malloc(sizeof(*new_blocks) +
+ sizeof(new_blocks->blocks[0]) * new_num_blocks);
+
+ if (old_num_blocks) {
+ memcpy(new_blocks->blocks, old_blocks->blocks,
+ old_num_blocks * sizeof(old_blocks->blocks[0]));
+ }
+
+ for (j = old_num_blocks; j < new_num_blocks; j++) {
+ new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
+ }
+
+ qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
+
+ if (old_blocks) {
+ g_free_rcu(old_blocks, rcu);
+ }
+ }
+}
+
+static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
+{
+ RAMBlock *block;
+ RAMBlock *last_block = NULL;
+ ram_addr_t old_ram_size, new_ram_size;
+ Error *err = NULL;
+
+ old_ram_size = last_ram_page();
+
+ qemu_mutex_lock_ramlist();
+ new_block->offset = find_ram_offset(new_block->max_length);
+
+ if (!new_block->host) {
+ if (xen_enabled()) {
+ xen_ram_alloc(new_block->offset, new_block->max_length,
+ new_block->mr, &err);
+ if (err) {
+ error_propagate(errp, err);
+ qemu_mutex_unlock_ramlist();
+ return;
+ }
+ } else {
+ new_block->host = phys_mem_alloc(new_block->max_length,
+ &new_block->mr->align, shared);
+ if (!new_block->host) {
+ error_setg_errno(errp, errno,
+ "cannot set up guest memory '%s'",
+ memory_region_name(new_block->mr));
+ qemu_mutex_unlock_ramlist();
+ return;
+ }
+ memory_try_enable_merging(new_block->host, new_block->max_length);
+ }
+ }
+
+ new_ram_size = MAX(old_ram_size,
+ (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
+ if (new_ram_size > old_ram_size) {
+ dirty_memory_extend(old_ram_size, new_ram_size);
+ }
+ /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
+ * QLIST (which has an RCU-friendly variant) does not have insertion at
+ * tail, so save the last element in last_block.
+ */
+ RAMBLOCK_FOREACH(block) {
+ last_block = block;
+ if (block->max_length < new_block->max_length) {
+ break;
+ }
+ }
+ if (block) {
+ QLIST_INSERT_BEFORE_RCU(block, new_block, next);
+ } else if (last_block) {
+ QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
+ } else { /* list is empty */
+ QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
+ }
+ ram_list.mru_block = NULL;
+
+ /* Write list before version */
+ smp_wmb();
+ ram_list.version++;
+ qemu_mutex_unlock_ramlist();
+
+ cpu_physical_memory_set_dirty_range(new_block->offset,
+ new_block->used_length,
+ DIRTY_CLIENTS_ALL);
+
+ if (new_block->host) {
+ qemu_ram_setup_dump(new_block->host, new_block->max_length);
+ qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
+ /*
+ * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
+ * Configure it unless the machine is a qtest server, in which case
+ * KVM is not used and it may be forked (eg for fuzzing purposes).
+ */
+ if (!qtest_enabled()) {
+ qemu_madvise(new_block->host, new_block->max_length,
+ QEMU_MADV_DONTFORK);
+ }
+ ram_block_notify_add(new_block->host, new_block->max_length);
+ }
+}
+
+#ifdef CONFIG_POSIX
+RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
+ uint32_t ram_flags, int fd,
+ Error **errp)
+{
+ RAMBlock *new_block;
+ Error *local_err = NULL;
+ int64_t file_size, file_align;
+
+ /* Just support these ram flags by now. */
+ assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
+
+ if (xen_enabled()) {
+ error_setg(errp, "-mem-path not supported with Xen");
+ return NULL;
+ }
+
+ if (kvm_enabled() && !kvm_has_sync_mmu()) {
+ error_setg(errp,
+ "host lacks kvm mmu notifiers, -mem-path unsupported");
+ return NULL;
+ }
+
+ if (phys_mem_alloc != qemu_anon_ram_alloc) {
+ /*
+ * file_ram_alloc() needs to allocate just like
+ * phys_mem_alloc, but we haven't bothered to provide
+ * a hook there.
+ */
+ error_setg(errp,
+ "-mem-path not supported with this accelerator");
+ return NULL;
+ }
+
+ size = HOST_PAGE_ALIGN(size);
+ file_size = get_file_size(fd);
+ if (file_size > 0 && file_size < size) {
+ error_setg(errp, "backing store size 0x%" PRIx64
+ " does not match 'size' option 0x" RAM_ADDR_FMT,
+ file_size, size);
+ return NULL;
+ }
+
+ file_align = get_file_align(fd);
+ if (file_align > 0 && mr && file_align > mr->align) {
+ error_setg(errp, "backing store align 0x%" PRIx64
+ " is larger than 'align' option 0x%" PRIx64,
+ file_align, mr->align);
+ return NULL;
+ }
+
+ new_block = g_malloc0(sizeof(*new_block));
+ new_block->mr = mr;
+ new_block->used_length = size;
+ new_block->max_length = size;
+ new_block->flags = ram_flags;
+ new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
+ if (!new_block->host) {
+ g_free(new_block);
+ return NULL;
+ }
+
+ ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
+ if (local_err) {
+ g_free(new_block);
+ error_propagate(errp, local_err);
+ return NULL;
+ }
+ return new_block;
+
+}
+
+
+RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
+ uint32_t ram_flags, const char *mem_path,
+ Error **errp)
+{
+ int fd;
+ bool created;
+ RAMBlock *block;
+
+ fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
+ if (fd < 0) {
+ return NULL;
+ }
+
+ block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
+ if (!block) {
+ if (created) {
+ unlink(mem_path);
+ }
+ close(fd);
+ return NULL;
+ }
+
+ return block;
+}
+#endif
+
+static
+RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
+ void (*resized)(const char*,
+ uint64_t length,
+ void *host),
+ void *host, bool resizeable, bool share,
+ MemoryRegion *mr, Error **errp)
+{
+ RAMBlock *new_block;
+ Error *local_err = NULL;
+
+ size = HOST_PAGE_ALIGN(size);
+ max_size = HOST_PAGE_ALIGN(max_size);
+ new_block = g_malloc0(sizeof(*new_block));
+ new_block->mr = mr;
+ new_block->resized = resized;
+ new_block->used_length = size;
+ new_block->max_length = max_size;
+ assert(max_size >= size);
+ new_block->fd = -1;
+ new_block->page_size = qemu_real_host_page_size;
+ new_block->host = host;
+ if (host) {
+ new_block->flags |= RAM_PREALLOC;
+ }
+ if (resizeable) {
+ new_block->flags |= RAM_RESIZEABLE;
+ }
+ ram_block_add(new_block, &local_err, share);
+ if (local_err) {
+ g_free(new_block);
+ error_propagate(errp, local_err);
+ return NULL;
+ }
+ return new_block;
+}
+
+RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
+ MemoryRegion *mr, Error **errp)
+{
+ return qemu_ram_alloc_internal(size, size, NULL, host, false,
+ false, mr, errp);
+}
+
+RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
+ MemoryRegion *mr, Error **errp)
+{
+ return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
+ share, mr, errp);
+}
+
+RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
+ void (*resized)(const char*,
+ uint64_t length,
+ void *host),
+ MemoryRegion *mr, Error **errp)
+{
+ return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
+ false, mr, errp);
+}
+
+static void reclaim_ramblock(RAMBlock *block)
+{
+ if (block->flags & RAM_PREALLOC) {
+ ;
+ } else if (xen_enabled()) {
+ xen_invalidate_map_cache_entry(block->host);
+#ifndef _WIN32
+ } else if (block->fd >= 0) {
+ qemu_ram_munmap(block->fd, block->host, block->max_length);
+ close(block->fd);
+#endif
+ } else {
+ qemu_anon_ram_free(block->host, block->max_length);
+ }
+ g_free(block);
+}
+
+void qemu_ram_free(RAMBlock *block)
+{
+ if (!block) {
+ return;
+ }
+
+ if (block->host) {
+ ram_block_notify_remove(block->host, block->max_length);
+ }
+
+ qemu_mutex_lock_ramlist();
+ QLIST_REMOVE_RCU(block, next);
+ ram_list.mru_block = NULL;
+ /* Write list before version */
+ smp_wmb();
+ ram_list.version++;
+ call_rcu(block, reclaim_ramblock, rcu);
+ qemu_mutex_unlock_ramlist();
+}
+
+#ifndef _WIN32
+void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
+{
+ RAMBlock *block;
+ ram_addr_t offset;
+ int flags;
+ void *area, *vaddr;
+
+ RAMBLOCK_FOREACH(block) {
+ offset = addr - block->offset;
+ if (offset < block->max_length) {
+ vaddr = ramblock_ptr(block, offset);
+ if (block->flags & RAM_PREALLOC) {
+ ;
+ } else if (xen_enabled()) {
+ abort();
+ } else {
+ flags = MAP_FIXED;
+ if (block->fd >= 0) {
+ flags |= (block->flags & RAM_SHARED ?
+ MAP_SHARED : MAP_PRIVATE);
+ area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
+ flags, block->fd, offset);
+ } else {
+ /*
+ * Remap needs to match alloc. Accelerators that
+ * set phys_mem_alloc never remap. If they did,
+ * we'd need a remap hook here.
+ */
+ assert(phys_mem_alloc == qemu_anon_ram_alloc);
+
+ flags |= MAP_PRIVATE | MAP_ANONYMOUS;
+ area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
+ flags, -1, 0);
+ }
+ if (area != vaddr) {
+ error_report("Could not remap addr: "
+ RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
+ length, addr);
+ exit(1);
+ }
+ memory_try_enable_merging(vaddr, length);
+ qemu_ram_setup_dump(vaddr, length);
+ }
+ }
+ }
+}
+#endif /* !_WIN32 */
+
+/* Return a host pointer to ram allocated with qemu_ram_alloc.
+ * This should not be used for general purpose DMA. Use address_space_map
+ * or address_space_rw instead. For local memory (e.g. video ram) that the
+ * device owns, use memory_region_get_ram_ptr.
+ *
+ * Called within RCU critical section.
+ */
+void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
+{
+ RAMBlock *block = ram_block;
+
+ if (block == NULL) {
+ block = qemu_get_ram_block(addr);
+ addr -= block->offset;
+ }
+
+ if (xen_enabled() && block->host == NULL) {
+ /* We need to check if the requested address is in the RAM
+ * because we don't want to map the entire memory in QEMU.
+ * In that case just map until the end of the page.
+ */
+ if (block->offset == 0) {
+ return xen_map_cache(addr, 0, 0, false);
+ }
+
+ block->host = xen_map_cache(block->offset, block->max_length, 1, false);
+ }
+ return ramblock_ptr(block, addr);
+}
+
+/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
+ * but takes a size argument.
+ *
+ * Called within RCU critical section.
+ */
+static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
+ hwaddr *size, bool lock)
+{
+ RAMBlock *block = ram_block;
+ if (*size == 0) {
+ return NULL;
+ }
+
+ if (block == NULL) {
+ block = qemu_get_ram_block(addr);
+ addr -= block->offset;
+ }
+ *size = MIN(*size, block->max_length - addr);
+
+ if (xen_enabled() && block->host == NULL) {
+ /* We need to check if the requested address is in the RAM
+ * because we don't want to map the entire memory in QEMU.
+ * In that case just map the requested area.
+ */
+ if (block->offset == 0) {
+ return xen_map_cache(addr, *size, lock, lock);
+ }
+
+ block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
+ }
+
+ return ramblock_ptr(block, addr);
+}
+
+/* Return the offset of a hostpointer within a ramblock */
+ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
+{
+ ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
+ assert((uintptr_t)host >= (uintptr_t)rb->host);
+ assert(res < rb->max_length);
+
+ return res;
+}
+
+/*
+ * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
+ * in that RAMBlock.
+ *
+ * ptr: Host pointer to look up
+ * round_offset: If true round the result offset down to a page boundary
+ * *ram_addr: set to result ram_addr
+ * *offset: set to result offset within the RAMBlock
+ *
+ * Returns: RAMBlock (or NULL if not found)
+ *
+ * By the time this function returns, the returned pointer is not protected
+ * by RCU anymore. If the caller is not within an RCU critical section and
+ * does not hold the iothread lock, it must have other means of protecting the
+ * pointer, such as a reference to the region that includes the incoming
+ * ram_addr_t.
+ */
+RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
+ ram_addr_t *offset)
+{
+ RAMBlock *block;
+ uint8_t *host = ptr;
+
+ if (xen_enabled()) {
+ ram_addr_t ram_addr;
+ RCU_READ_LOCK_GUARD();
+ ram_addr = xen_ram_addr_from_mapcache(ptr);
+ block = qemu_get_ram_block(ram_addr);
+ if (block) {
+ *offset = ram_addr - block->offset;
+ }
+ return block;
+ }
+
+ RCU_READ_LOCK_GUARD();
+ block = qatomic_rcu_read(&ram_list.mru_block);
+ if (block && block->host && host - block->host < block->max_length) {
+ goto found;
+ }
+
+ RAMBLOCK_FOREACH(block) {
+ /* This case append when the block is not mapped. */
+ if (block->host == NULL) {
+ continue;
+ }
+ if (host - block->host < block->max_length) {
+ goto found;
+ }
+ }
+
+ return NULL;
+
+found:
+ *offset = (host - block->host);
+ if (round_offset) {
+ *offset &= TARGET_PAGE_MASK;
+ }
+ return block;
+}
+
+/*
+ * Finds the named RAMBlock
+ *
+ * name: The name of RAMBlock to find
+ *
+ * Returns: RAMBlock (or NULL if not found)
+ */
+RAMBlock *qemu_ram_block_by_name(const char *name)
+{
+ RAMBlock *block;
+
+ RAMBLOCK_FOREACH(block) {
+ if (!strcmp(name, block->idstr)) {
+ return block;
+ }
+ }
+
+ return NULL;
+}
+
+/* Some of the softmmu routines need to translate from a host pointer
+ (typically a TLB entry) back to a ram offset. */
+ram_addr_t qemu_ram_addr_from_host(void *ptr)
+{
+ RAMBlock *block;
+ ram_addr_t offset;
+
+ block = qemu_ram_block_from_host(ptr, false, &offset);
+ if (!block) {
+ return RAM_ADDR_INVALID;
+ }
+
+ return block->offset + offset;
+}
+
+/* Generate a debug exception if a watchpoint has been hit. */
+void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
+ MemTxAttrs attrs, int flags, uintptr_t ra)
+{
+ CPUClass *cc = CPU_GET_CLASS(cpu);
+ CPUWatchpoint *wp;
+
+ assert(tcg_enabled());
+ if (cpu->watchpoint_hit) {
+ /*
+ * We re-entered the check after replacing the TB.
+ * Now raise the debug interrupt so that it will
+ * trigger after the current instruction.
+ */
+ qemu_mutex_lock_iothread();
+ cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
+ qemu_mutex_unlock_iothread();
+ return;
+ }
+
+ addr = cc->adjust_watchpoint_address(cpu, addr, len);
+ QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
+ if (watchpoint_address_matches(wp, addr, len)
+ && (wp->flags & flags)) {
+ if (replay_running_debug()) {
+ /*
+ * Don't process the watchpoints when we are
+ * in a reverse debugging operation.
+ */
+ replay_breakpoint();
+ return;
+ }
+ if (flags == BP_MEM_READ) {
+ wp->flags |= BP_WATCHPOINT_HIT_READ;
+ } else {
+ wp->flags |= BP_WATCHPOINT_HIT_WRITE;
+ }
+ wp->hitaddr = MAX(addr, wp->vaddr);
+ wp->hitattrs = attrs;
+ if (!cpu->watchpoint_hit) {
+ if (wp->flags & BP_CPU &&
+ !cc->debug_check_watchpoint(cpu, wp)) {
+ wp->flags &= ~BP_WATCHPOINT_HIT;
+ continue;
+ }
+ cpu->watchpoint_hit = wp;
+
+ mmap_lock();
+ tb_check_watchpoint(cpu, ra);
+ if (wp->flags & BP_STOP_BEFORE_ACCESS) {
+ cpu->exception_index = EXCP_DEBUG;
+ mmap_unlock();
+ cpu_loop_exit_restore(cpu, ra);
+ } else {
+ /* Force execution of one insn next time. */
+ cpu->cflags_next_tb = 1 | curr_cflags();
+ mmap_unlock();
+ if (ra) {
+ cpu_restore_state(cpu, ra, true);
+ }
+ cpu_loop_exit_noexc(cpu);
+ }
+ }
+ } else {
+ wp->flags &= ~BP_WATCHPOINT_HIT;
+ }
+ }
+}
+
+static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
+ MemTxAttrs attrs, void *buf, hwaddr len);
+static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
+ const void *buf, hwaddr len);
+static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
+ bool is_write, MemTxAttrs attrs);
+
+static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
+ unsigned len, MemTxAttrs attrs)
+{
+ subpage_t *subpage = opaque;
+ uint8_t buf[8];
+ MemTxResult res;
+
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
+ subpage, len, addr);
+#endif
+ res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
+ if (res) {
+ return res;
+ }
+ *data = ldn_p(buf, len);
+ return MEMTX_OK;
+}
+
+static MemTxResult subpage_write(void *opaque, hwaddr addr,
+ uint64_t value, unsigned len, MemTxAttrs attrs)
+{
+ subpage_t *subpage = opaque;
+ uint8_t buf[8];
+
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: subpage %p len %u addr " TARGET_FMT_plx
+ " value %"PRIx64"\n",
+ __func__, subpage, len, addr, value);
+#endif
+ stn_p(buf, len, value);
+ return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
+}
+
+static bool subpage_accepts(void *opaque, hwaddr addr,
+ unsigned len, bool is_write,
+ MemTxAttrs attrs)
+{
+ subpage_t *subpage = opaque;
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
+ __func__, subpage, is_write ? 'w' : 'r', len, addr);
+#endif
+
+ return flatview_access_valid(subpage->fv, addr + subpage->base,
+ len, is_write, attrs);
+}
+
+static const MemoryRegionOps subpage_ops = {
+ .read_with_attrs = subpage_read,
+ .write_with_attrs = subpage_write,
+ .impl.min_access_size = 1,
+ .impl.max_access_size = 8,
+ .valid.min_access_size = 1,
+ .valid.max_access_size = 8,
+ .valid.accepts = subpage_accepts,
+ .endianness = DEVICE_NATIVE_ENDIAN,
+};
+
+static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
+ uint16_t section)
+{
+ int idx, eidx;
+
+ if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
+ return -1;
+ idx = SUBPAGE_IDX(start);
+ eidx = SUBPAGE_IDX(end);
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
+ __func__, mmio, start, end, idx, eidx, section);
+#endif
+ for (; idx <= eidx; idx++) {
+ mmio->sub_section[idx] = section;
+ }
+
+ return 0;
+}
+
+static subpage_t *subpage_init(FlatView *fv, hwaddr base)
+{
+ subpage_t *mmio;
+
+ /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
+ mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
+ mmio->fv = fv;
+ mmio->base = base;
+ memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
+ NULL, TARGET_PAGE_SIZE);
+ mmio->iomem.subpage = true;
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
+ mmio, base, TARGET_PAGE_SIZE);
+#endif
+
+ return mmio;
+}
+
+static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
+{
+ assert(fv);
+ MemoryRegionSection section = {
+ .fv = fv,
+ .mr = mr,
+ .offset_within_address_space = 0,
+ .offset_within_region = 0,
+ .size = int128_2_64(),
+ };
+
+ return phys_section_add(map, &section);
+}
+
+MemoryRegionSection *iotlb_to_section(CPUState *cpu,
+ hwaddr index, MemTxAttrs attrs)
+{
+ int asidx = cpu_asidx_from_attrs(cpu, attrs);
+ CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
+ AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
+ MemoryRegionSection *sections = d->map.sections;
+
+ return &sections[index & ~TARGET_PAGE_MASK];
+}
+
+static void io_mem_init(void)
+{
+ memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
+ NULL, UINT64_MAX);
+}
+
+AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
+{
+ AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
+ uint16_t n;
+
+ n = dummy_section(&d->map, fv, &io_mem_unassigned);
+ assert(n == PHYS_SECTION_UNASSIGNED);
+
+ d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
+
+ return d;
+}
+
+void address_space_dispatch_free(AddressSpaceDispatch *d)
+{
+ phys_sections_free(&d->map);
+ g_free(d);
+}
+
+static void do_nothing(CPUState *cpu, run_on_cpu_data d)
+{
+}
+
+static void tcg_log_global_after_sync(MemoryListener *listener)
+{
+ CPUAddressSpace *cpuas;
+
+ /* Wait for the CPU to end the current TB. This avoids the following
+ * incorrect race:
+ *
+ * vCPU migration
+ * ---------------------- -------------------------
+ * TLB check -> slow path
+ * notdirty_mem_write
+ * write to RAM
+ * mark dirty
+ * clear dirty flag
+ * TLB check -> fast path
+ * read memory
+ * write to RAM
+ *
+ * by pushing the migration thread's memory read after the vCPU thread has
+ * written the memory.
+ */
+ if (replay_mode == REPLAY_MODE_NONE) {
+ /*
+ * VGA can make calls to this function while updating the screen.
+ * In record/replay mode this causes a deadlock, because
+ * run_on_cpu waits for rr mutex. Therefore no races are possible
+ * in this case and no need for making run_on_cpu when
+ * record/replay is not enabled.
+ */
+ cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
+ run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
+ }
+}
+
+static void tcg_commit(MemoryListener *listener)
+{
+ CPUAddressSpace *cpuas;
+ AddressSpaceDispatch *d;
+
+ assert(tcg_enabled());
+ /* since each CPU stores ram addresses in its TLB cache, we must
+ reset the modified entries */
+ cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
+ cpu_reloading_memory_map();
+ /* The CPU and TLB are protected by the iothread lock.
+ * We reload the dispatch pointer now because cpu_reloading_memory_map()
+ * may have split the RCU critical section.
+ */
+ d = address_space_to_dispatch(cpuas->as);
+ qatomic_rcu_set(&cpuas->memory_dispatch, d);
+ tlb_flush(cpuas->cpu);
+}
+
+static void memory_map_init(void)
+{
+ system_memory = g_malloc(sizeof(*system_memory));
+
+ memory_region_init(system_memory, NULL, "system", UINT64_MAX);
+ address_space_init(&address_space_memory, system_memory, "memory");
+
+ system_io = g_malloc(sizeof(*system_io));
+ memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
+ 65536);
+ address_space_init(&address_space_io, system_io, "I/O");
+}
+
+MemoryRegion *get_system_memory(void)
+{
+ return system_memory;
+}
+
+MemoryRegion *get_system_io(void)
+{
+ return system_io;
+}
+
+static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
+ hwaddr length)
+{
+ uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
+ addr += memory_region_get_ram_addr(mr);
+
+ /* No early return if dirty_log_mask is or becomes 0, because
+ * cpu_physical_memory_set_dirty_range will still call
+ * xen_modified_memory.
+ */
+ if (dirty_log_mask) {
+ dirty_log_mask =
+ cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
+ }
+ if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
+ assert(tcg_enabled());
+ tb_invalidate_phys_range(addr, addr + length);
+ dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
+ }
+ cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
+}
+
+void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
+{
+ /*
+ * In principle this function would work on other memory region types too,
+ * but the ROM device use case is the only one where this operation is
+ * necessary. Other memory regions should use the
+ * address_space_read/write() APIs.
+ */
+ assert(memory_region_is_romd(mr));
+
+ invalidate_and_set_dirty(mr, addr, size);
+}
+
+static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
+{
+ unsigned access_size_max = mr->ops->valid.max_access_size;
+
+ /* Regions are assumed to support 1-4 byte accesses unless
+ otherwise specified. */
+ if (access_size_max == 0) {
+ access_size_max = 4;
+ }
+
+ /* Bound the maximum access by the alignment of the address. */
+ if (!mr->ops->impl.unaligned) {
+ unsigned align_size_max = addr & -addr;
+ if (align_size_max != 0 && align_size_max < access_size_max) {
+ access_size_max = align_size_max;
+ }
+ }
+
+ /* Don't attempt accesses larger than the maximum. */
+ if (l > access_size_max) {
+ l = access_size_max;
+ }
+ l = pow2floor(l);
+
+ return l;
+}
+
+static bool prepare_mmio_access(MemoryRegion *mr)
+{
+ bool unlocked = !qemu_mutex_iothread_locked();
+ bool release_lock = false;
+
+ if (unlocked) {
+ qemu_mutex_lock_iothread();
+ unlocked = false;
+ release_lock = true;
+ }
+ if (mr->flush_coalesced_mmio) {
+ if (unlocked) {
+ qemu_mutex_lock_iothread();
+ }
+ qemu_flush_coalesced_mmio_buffer();
+ if (unlocked) {
+ qemu_mutex_unlock_iothread();
+ }
+ }
+
+ return release_lock;
+}
+
+/* Called within RCU critical section. */
+static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
+ MemTxAttrs attrs,
+ const void *ptr,
+ hwaddr len, hwaddr addr1,
+ hwaddr l, MemoryRegion *mr)
+{
+ uint8_t *ram_ptr;
+ uint64_t val;
+ MemTxResult result = MEMTX_OK;
+ bool release_lock = false;
+ const uint8_t *buf = ptr;
+
+ for (;;) {
+ if (!memory_access_is_direct(mr, true)) {
+ release_lock |= prepare_mmio_access(mr);
+ l = memory_access_size(mr, l, addr1);
+ /* XXX: could force current_cpu to NULL to avoid
+ potential bugs */
+ val = ldn_he_p(buf, l);
+ result |= memory_region_dispatch_write(mr, addr1, val,
+ size_memop(l), attrs);
+ } else {
+ /* RAM case */
+ ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
+ memcpy(ram_ptr, buf, l);
+ invalidate_and_set_dirty(mr, addr1, l);
+ }
+
+ if (release_lock) {
+ qemu_mutex_unlock_iothread();
+ release_lock = false;
+ }
+
+ len -= l;
+ buf += l;
+ addr += l;
+
+ if (!len) {
+ break;
+ }
+
+ l = len;
+ mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
+ }
+
+ return result;
+}
+
+/* Called from RCU critical section. */
+static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
+ const void *buf, hwaddr len)
+{
+ hwaddr l;
+ hwaddr addr1;
+ MemoryRegion *mr;
+ MemTxResult result = MEMTX_OK;
+
+ l = len;
+ mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
+ result = flatview_write_continue(fv, addr, attrs, buf, len,
+ addr1, l, mr);
+
+ return result;
+}
+
+/* Called within RCU critical section. */
+MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
+ MemTxAttrs attrs, void *ptr,
+ hwaddr len, hwaddr addr1, hwaddr l,
+ MemoryRegion *mr)
+{
+ uint8_t *ram_ptr;
+ uint64_t val;
+ MemTxResult result = MEMTX_OK;
+ bool release_lock = false;
+ uint8_t *buf = ptr;
+
+ for (;;) {
+ if (!memory_access_is_direct(mr, false)) {
+ /* I/O case */
+ release_lock |= prepare_mmio_access(mr);
+ l = memory_access_size(mr, l, addr1);
+ result |= memory_region_dispatch_read(mr, addr1, &val,
+ size_memop(l), attrs);
+ stn_he_p(buf, l, val);
+ } else {
+ /* RAM case */
+ ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
+ memcpy(buf, ram_ptr, l);
+ }
+
+ if (release_lock) {
+ qemu_mutex_unlock_iothread();
+ release_lock = false;
+ }
+
+ len -= l;
+ buf += l;
+ addr += l;
+
+ if (!len) {
+ break;
+ }
+
+ l = len;
+ mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
+ }
+
+ return result;
+}
+
+/* Called from RCU critical section. */
+static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
+ MemTxAttrs attrs, void *buf, hwaddr len)
+{
+ hwaddr l;
+ hwaddr addr1;
+ MemoryRegion *mr;
+
+ l = len;
+ mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
+ return flatview_read_continue(fv, addr, attrs, buf, len,
+ addr1, l, mr);
+}
+
+MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
+ MemTxAttrs attrs, void *buf, hwaddr len)
+{
+ MemTxResult result = MEMTX_OK;
+ FlatView *fv;
+
+ if (len > 0) {
+ RCU_READ_LOCK_GUARD();
+ fv = address_space_to_flatview(as);
+ result = flatview_read(fv, addr, attrs, buf, len);
+ }
+
+ return result;
+}
+
+MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
+ MemTxAttrs attrs,
+ const void *buf, hwaddr len)
+{
+ MemTxResult result = MEMTX_OK;
+ FlatView *fv;
+
+ if (len > 0) {
+ RCU_READ_LOCK_GUARD();
+ fv = address_space_to_flatview(as);
+ result = flatview_write(fv, addr, attrs, buf, len);
+ }
+
+ return result;
+}
+
+MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
+ void *buf, hwaddr len, bool is_write)
+{
+ if (is_write) {
+ return address_space_write(as, addr, attrs, buf, len);
+ } else {
+ return address_space_read_full(as, addr, attrs, buf, len);
+ }
+}
+
+void cpu_physical_memory_rw(hwaddr addr, void *buf,
+ hwaddr len, bool is_write)
+{
+ address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
+ buf, len, is_write);
+}
+
+enum write_rom_type {
+ WRITE_DATA,
+ FLUSH_CACHE,
+};
+
+static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
+ hwaddr addr,
+ MemTxAttrs attrs,
+ const void *ptr,
+ hwaddr len,
+ enum write_rom_type type)
+{
+ hwaddr l;
+ uint8_t *ram_ptr;
+ hwaddr addr1;
+ MemoryRegion *mr;
+ const uint8_t *buf = ptr;
+
+ RCU_READ_LOCK_GUARD();
+ while (len > 0) {
+ l = len;
+ mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
+
+ if (!(memory_region_is_ram(mr) ||
+ memory_region_is_romd(mr))) {
+ l = memory_access_size(mr, l, addr1);
+ } else {
+ /* ROM/RAM case */
+ ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
+ switch (type) {
+ case WRITE_DATA:
+ memcpy(ram_ptr, buf, l);
+ invalidate_and_set_dirty(mr, addr1, l);
+ break;
+ case FLUSH_CACHE:
+ flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l);
+ break;
+ }
+ }
+ len -= l;
+ buf += l;
+ addr += l;
+ }
+ return MEMTX_OK;
+}
+
+/* used for ROM loading : can write in RAM and ROM */
+MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
+ MemTxAttrs attrs,
+ const void *buf, hwaddr len)
+{
+ return address_space_write_rom_internal(as, addr, attrs,
+ buf, len, WRITE_DATA);
+}
+
+void cpu_flush_icache_range(hwaddr start, hwaddr len)
+{
+ /*
+ * This function should do the same thing as an icache flush that was
+ * triggered from within the guest. For TCG we are always cache coherent,
+ * so there is no need to flush anything. For KVM / Xen we need to flush
+ * the host's instruction cache at least.
+ */
+ if (tcg_enabled()) {
+ return;
+ }
+
+ address_space_write_rom_internal(&address_space_memory,
+ start, MEMTXATTRS_UNSPECIFIED,
+ NULL, len, FLUSH_CACHE);
+}
+
+typedef struct {
+ MemoryRegion *mr;
+ void *buffer;
+ hwaddr addr;
+ hwaddr len;
+ bool in_use;
+} BounceBuffer;
+
+static BounceBuffer bounce;
+
+typedef struct MapClient {
+ QEMUBH *bh;
+ QLIST_ENTRY(MapClient) link;
+} MapClient;
+
+QemuMutex map_client_list_lock;
+static QLIST_HEAD(, MapClient) map_client_list
+ = QLIST_HEAD_INITIALIZER(map_client_list);
+
+static void cpu_unregister_map_client_do(MapClient *client)
+{
+ QLIST_REMOVE(client, link);
+ g_free(client);
+}
+
+static void cpu_notify_map_clients_locked(void)
+{
+ MapClient *client;
+
+ while (!QLIST_EMPTY(&map_client_list)) {
+ client = QLIST_FIRST(&map_client_list);
+ qemu_bh_schedule(client->bh);
+ cpu_unregister_map_client_do(client);
+ }
+}
+
+void cpu_register_map_client(QEMUBH *bh)
+{
+ MapClient *client = g_malloc(sizeof(*client));
+
+ qemu_mutex_lock(&map_client_list_lock);
+ client->bh = bh;
+ QLIST_INSERT_HEAD(&map_client_list, client, link);
+ if (!qatomic_read(&bounce.in_use)) {
+ cpu_notify_map_clients_locked();
+ }
+ qemu_mutex_unlock(&map_client_list_lock);
+}
+
+void cpu_exec_init_all(void)
+{
+ qemu_mutex_init(&ram_list.mutex);
+ /* The data structures we set up here depend on knowing the page size,
+ * so no more changes can be made after this point.
+ * In an ideal world, nothing we did before we had finished the
+ * machine setup would care about the target page size, and we could
+ * do this much later, rather than requiring board models to state
+ * up front what their requirements are.
+ */
+ finalize_target_page_bits();
+ io_mem_init();
+ memory_map_init();
+ qemu_mutex_init(&map_client_list_lock);
+}
+
+void cpu_unregister_map_client(QEMUBH *bh)
+{
+ MapClient *client;
+
+ qemu_mutex_lock(&map_client_list_lock);
+ QLIST_FOREACH(client, &map_client_list, link) {
+ if (client->bh == bh) {
+ cpu_unregister_map_client_do(client);
+ break;
+ }
+ }
+ qemu_mutex_unlock(&map_client_list_lock);
+}
+
+static void cpu_notify_map_clients(void)
+{
+ qemu_mutex_lock(&map_client_list_lock);
+ cpu_notify_map_clients_locked();
+ qemu_mutex_unlock(&map_client_list_lock);
+}
+
+static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
+ bool is_write, MemTxAttrs attrs)
+{
+ MemoryRegion *mr;
+ hwaddr l, xlat;
+
+ while (len > 0) {
+ l = len;
+ mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
+ if (!memory_access_is_direct(mr, is_write)) {
+ l = memory_access_size(mr, l, addr);
+ if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
+ return false;
+ }
+ }
+
+ len -= l;
+ addr += l;
+ }
+ return true;
+}
+
+bool address_space_access_valid(AddressSpace *as, hwaddr addr,
+ hwaddr len, bool is_write,
+ MemTxAttrs attrs)
+{
+ FlatView *fv;
+ bool result;
+
+ RCU_READ_LOCK_GUARD();
+ fv = address_space_to_flatview(as);
+ result = flatview_access_valid(fv, addr, len, is_write, attrs);
+ return result;
+}
+
+static hwaddr
+flatview_extend_translation(FlatView *fv, hwaddr addr,
+ hwaddr target_len,
+ MemoryRegion *mr, hwaddr base, hwaddr len,
+ bool is_write, MemTxAttrs attrs)
+{
+ hwaddr done = 0;
+ hwaddr xlat;
+ MemoryRegion *this_mr;
+
+ for (;;) {
+ target_len -= len;
+ addr += len;
+ done += len;
+ if (target_len == 0) {
+ return done;
+ }
+
+ len = target_len;
+ this_mr = flatview_translate(fv, addr, &xlat,
+ &len, is_write, attrs);
+ if (this_mr != mr || xlat != base + done) {
+ return done;
+ }
+ }
+}
+
+/* Map a physical memory region into a host virtual address.
+ * May map a subset of the requested range, given by and returned in *plen.
+ * May return NULL if resources needed to perform the mapping are exhausted.
+ * Use only for reads OR writes - not for read-modify-write operations.
+ * Use cpu_register_map_client() to know when retrying the map operation is
+ * likely to succeed.
+ */
+void *address_space_map(AddressSpace *as,
+ hwaddr addr,
+ hwaddr *plen,
+ bool is_write,
+ MemTxAttrs attrs)
+{
+ hwaddr len = *plen;
+ hwaddr l, xlat;
+ MemoryRegion *mr;
+ void *ptr;
+ FlatView *fv;
+
+ if (len == 0) {
+ return NULL;
+ }
+
+ l = len;
+ RCU_READ_LOCK_GUARD();
+ fv = address_space_to_flatview(as);
+ mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
+
+ if (!memory_access_is_direct(mr, is_write)) {
+ if (qatomic_xchg(&bounce.in_use, true)) {
+ *plen = 0;
+ return NULL;
+ }
+ /* Avoid unbounded allocations */
+ l = MIN(l, TARGET_PAGE_SIZE);
+ bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
+ bounce.addr = addr;
+ bounce.len = l;
+
+ memory_region_ref(mr);
+ bounce.mr = mr;
+ if (!is_write) {
+ flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
+ bounce.buffer, l);
+ }
+
+ *plen = l;
+ return bounce.buffer;
+ }
+
+
+ memory_region_ref(mr);
+ *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
+ l, is_write, attrs);
+ ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
+
+ return ptr;
+}
+
+/* Unmaps a memory region previously mapped by address_space_map().
+ * Will also mark the memory as dirty if is_write is true. access_len gives
+ * the amount of memory that was actually read or written by the caller.
+ */
+void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
+ bool is_write, hwaddr access_len)
+{
+ if (buffer != bounce.buffer) {
+ MemoryRegion *mr;
+ ram_addr_t addr1;
+
+ mr = memory_region_from_host(buffer, &addr1);
+ assert(mr != NULL);
+ if (is_write) {
+ invalidate_and_set_dirty(mr, addr1, access_len);
+ }
+ if (xen_enabled()) {
+ xen_invalidate_map_cache_entry(buffer);
+ }
+ memory_region_unref(mr);
+ return;
+ }
+ if (is_write) {
+ address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
+ bounce.buffer, access_len);
+ }
+ qemu_vfree(bounce.buffer);
+ bounce.buffer = NULL;
+ memory_region_unref(bounce.mr);
+ qatomic_mb_set(&bounce.in_use, false);
+ cpu_notify_map_clients();
+}
+
+void *cpu_physical_memory_map(hwaddr addr,
+ hwaddr *plen,
+ bool is_write)
+{
+ return address_space_map(&address_space_memory, addr, plen, is_write,
+ MEMTXATTRS_UNSPECIFIED);
+}
+
+void cpu_physical_memory_unmap(void *buffer, hwaddr len,
+ bool is_write, hwaddr access_len)
+{
+ return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
+}
+
+#define ARG1_DECL AddressSpace *as
+#define ARG1 as
+#define SUFFIX
+#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
+#define RCU_READ_LOCK(...) rcu_read_lock()
+#define RCU_READ_UNLOCK(...) rcu_read_unlock()
+#include "memory_ldst.c.inc"
+
+int64_t address_space_cache_init(MemoryRegionCache *cache,
+ AddressSpace *as,
+ hwaddr addr,
+ hwaddr len,
+ bool is_write)
+{
+ AddressSpaceDispatch *d;
+ hwaddr l;
+ MemoryRegion *mr;
+
+ assert(len > 0);
+
+ l = len;
+ cache->fv = address_space_get_flatview(as);
+ d = flatview_to_dispatch(cache->fv);
+ cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
+
+ mr = cache->mrs.mr;
+ memory_region_ref(mr);
+ if (memory_access_is_direct(mr, is_write)) {
+ /* We don't care about the memory attributes here as we're only
+ * doing this if we found actual RAM, which behaves the same
+ * regardless of attributes; so UNSPECIFIED is fine.
+ */
+ l = flatview_extend_translation(cache->fv, addr, len, mr,
+ cache->xlat, l, is_write,
+ MEMTXATTRS_UNSPECIFIED);
+ cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
+ } else {
+ cache->ptr = NULL;
+ }
+
+ cache->len = l;
+ cache->is_write = is_write;
+ return l;
+}
+
+void address_space_cache_invalidate(MemoryRegionCache *cache,
+ hwaddr addr,
+ hwaddr access_len)
+{
+ assert(cache->is_write);
+ if (likely(cache->ptr)) {
+ invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
+ }
+}
+
+void address_space_cache_destroy(MemoryRegionCache *cache)
+{
+ if (!cache->mrs.mr) {
+ return;
+ }
+
+ if (xen_enabled()) {
+ xen_invalidate_map_cache_entry(cache->ptr);
+ }
+ memory_region_unref(cache->mrs.mr);
+ flatview_unref(cache->fv);
+ cache->mrs.mr = NULL;
+ cache->fv = NULL;
+}
+
+/* Called from RCU critical section. This function has the same
+ * semantics as address_space_translate, but it only works on a
+ * predefined range of a MemoryRegion that was mapped with
+ * address_space_cache_init.
+ */
+static inline MemoryRegion *address_space_translate_cached(
+ MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
+ hwaddr *plen, bool is_write, MemTxAttrs attrs)
+{
+ MemoryRegionSection section;
+ MemoryRegion *mr;
+ IOMMUMemoryRegion *iommu_mr;
+ AddressSpace *target_as;
+
+ assert(!cache->ptr);
+ *xlat = addr + cache->xlat;
+
+ mr = cache->mrs.mr;
+ iommu_mr = memory_region_get_iommu(mr);
+ if (!iommu_mr) {
+ /* MMIO region. */
+ return mr;
+ }
+
+ section = address_space_translate_iommu(iommu_mr, xlat, plen,
+ NULL, is_write, true,
+ &target_as, attrs);
+ return section.mr;
+}
+
+/* Called from RCU critical section. address_space_read_cached uses this
+ * out of line function when the target is an MMIO or IOMMU region.
+ */
+MemTxResult
+address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
+ void *buf, hwaddr len)
+{
+ hwaddr addr1, l;
+ MemoryRegion *mr;
+
+ l = len;
+ mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
+ MEMTXATTRS_UNSPECIFIED);
+ return flatview_read_continue(cache->fv,
+ addr, MEMTXATTRS_UNSPECIFIED, buf, len,
+ addr1, l, mr);
+}
+
+/* Called from RCU critical section. address_space_write_cached uses this
+ * out of line function when the target is an MMIO or IOMMU region.
+ */
+MemTxResult
+address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
+ const void *buf, hwaddr len)
+{
+ hwaddr addr1, l;
+ MemoryRegion *mr;
+
+ l = len;
+ mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
+ MEMTXATTRS_UNSPECIFIED);
+ return flatview_write_continue(cache->fv,
+ addr, MEMTXATTRS_UNSPECIFIED, buf, len,
+ addr1, l, mr);
+}
+
+#define ARG1_DECL MemoryRegionCache *cache
+#define ARG1 cache
+#define SUFFIX _cached_slow
+#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
+#define RCU_READ_LOCK() ((void)0)
+#define RCU_READ_UNLOCK() ((void)0)
+#include "memory_ldst.c.inc"
+
+/* virtual memory access for debug (includes writing to ROM) */
+int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
+ void *ptr, target_ulong len, bool is_write)
+{
+ hwaddr phys_addr;
+ target_ulong l, page;
+ uint8_t *buf = ptr;
+
+ cpu_synchronize_state(cpu);
+ while (len > 0) {
+ int asidx;
+ MemTxAttrs attrs;
+ MemTxResult res;
+
+ page = addr & TARGET_PAGE_MASK;
+ phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
+ asidx = cpu_asidx_from_attrs(cpu, attrs);
+ /* if no physical page mapped, return an error */
+ if (phys_addr == -1)
+ return -1;
+ l = (page + TARGET_PAGE_SIZE) - addr;
+ if (l > len)
+ l = len;
+ phys_addr += (addr & ~TARGET_PAGE_MASK);
+ if (is_write) {
+ res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
+ attrs, buf, l);
+ } else {
+ res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
+ attrs, buf, l);
+ }
+ if (res != MEMTX_OK) {
+ return -1;
+ }
+ len -= l;
+ buf += l;
+ addr += l;
+ }
+ return 0;
+}
+
+/*
+ * Allows code that needs to deal with migration bitmaps etc to still be built
+ * target independent.
+ */
+size_t qemu_target_page_size(void)
+{
+ return TARGET_PAGE_SIZE;
+}
+
+int qemu_target_page_bits(void)
+{
+ return TARGET_PAGE_BITS;
+}
+
+int qemu_target_page_bits_min(void)
+{
+ return TARGET_PAGE_BITS_MIN;
+}
+
+bool cpu_physical_memory_is_io(hwaddr phys_addr)
+{
+ MemoryRegion*mr;
+ hwaddr l = 1;
+ bool res;
+
+ RCU_READ_LOCK_GUARD();
+ mr = address_space_translate(&address_space_memory,
+ phys_addr, &phys_addr, &l, false,
+ MEMTXATTRS_UNSPECIFIED);
+
+ res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
+ return res;
+}
+
+int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
+{
+ RAMBlock *block;
+ int ret = 0;
+
+ RCU_READ_LOCK_GUARD();
+ RAMBLOCK_FOREACH(block) {
+ ret = func(block, opaque);
+ if (ret) {
+ break;
+ }
+ }
+ return ret;
+}
+
+/*
+ * Unmap pages of memory from start to start+length such that
+ * they a) read as 0, b) Trigger whatever fault mechanism
+ * the OS provides for postcopy.
+ * The pages must be unmapped by the end of the function.
+ * Returns: 0 on success, none-0 on failure
+ *
+ */
+int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
+{
+ int ret = -1;
+
+ uint8_t *host_startaddr = rb->host + start;
+
+ if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
+ error_report("ram_block_discard_range: Unaligned start address: %p",
+ host_startaddr);
+ goto err;
+ }
+
+ if ((start + length) <= rb->used_length) {
+ bool need_madvise, need_fallocate;
+ if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
+ error_report("ram_block_discard_range: Unaligned length: %zx",
+ length);
+ goto err;
+ }
+
+ errno = ENOTSUP; /* If we are missing MADVISE etc */
+
+ /* The logic here is messy;
+ * madvise DONTNEED fails for hugepages
+ * fallocate works on hugepages and shmem
+ */
+ need_madvise = (rb->page_size == qemu_host_page_size);
+ need_fallocate = rb->fd != -1;
+ if (need_fallocate) {
+ /* For a file, this causes the area of the file to be zero'd
+ * if read, and for hugetlbfs also causes it to be unmapped
+ * so a userfault will trigger.
+ */
+#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
+ ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
+ start, length);
+ if (ret) {
+ ret = -errno;
+ error_report("ram_block_discard_range: Failed to fallocate "
+ "%s:%" PRIx64 " +%zx (%d)",
+ rb->idstr, start, length, ret);
+ goto err;
+ }
+#else
+ ret = -ENOSYS;
+ error_report("ram_block_discard_range: fallocate not available/file"
+ "%s:%" PRIx64 " +%zx (%d)",
+ rb->idstr, start, length, ret);
+ goto err;
+#endif
+ }
+ if (need_madvise) {
+ /* For normal RAM this causes it to be unmapped,
+ * for shared memory it causes the local mapping to disappear
+ * and to fall back on the file contents (which we just
+ * fallocate'd away).
+ */
+#if defined(CONFIG_MADVISE)
+ ret = madvise(host_startaddr, length, MADV_DONTNEED);
+ if (ret) {
+ ret = -errno;
+ error_report("ram_block_discard_range: Failed to discard range "
+ "%s:%" PRIx64 " +%zx (%d)",
+ rb->idstr, start, length, ret);
+ goto err;
+ }
+#else
+ ret = -ENOSYS;
+ error_report("ram_block_discard_range: MADVISE not available"
+ "%s:%" PRIx64 " +%zx (%d)",
+ rb->idstr, start, length, ret);
+ goto err;
+#endif
+ }
+ trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
+ need_madvise, need_fallocate, ret);
+ } else {
+ error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
+ "/%zx/" RAM_ADDR_FMT")",
+ rb->idstr, start, length, rb->used_length);
+ }
+
+err:
+ return ret;
+}
+
+bool ramblock_is_pmem(RAMBlock *rb)
+{
+ return rb->flags & RAM_PMEM;
+}
+
+static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
+{
+ if (start == end - 1) {
+ qemu_printf("\t%3d ", start);
+ } else {
+ qemu_printf("\t%3d..%-3d ", start, end - 1);
+ }
+ qemu_printf(" skip=%d ", skip);
+ if (ptr == PHYS_MAP_NODE_NIL) {
+ qemu_printf(" ptr=NIL");
+ } else if (!skip) {
+ qemu_printf(" ptr=#%d", ptr);
+ } else {
+ qemu_printf(" ptr=[%d]", ptr);
+ }
+ qemu_printf("\n");
+}
+
+#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
+ int128_sub((size), int128_one())) : 0)
+
+void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
+{
+ int i;
+
+ qemu_printf(" Dispatch\n");
+ qemu_printf(" Physical sections\n");
+
+ for (i = 0; i < d->map.sections_nb; ++i) {
+ MemoryRegionSection *s = d->map.sections + i;
+ const char *names[] = { " [unassigned]", " [not dirty]",
+ " [ROM]", " [watch]" };
+
+ qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
+ " %s%s%s%s%s",
+ i,
+ s->offset_within_address_space,
+ s->offset_within_address_space + MR_SIZE(s->mr->size),
+ s->mr->name ? s->mr->name : "(noname)",
+ i < ARRAY_SIZE(names) ? names[i] : "",
+ s->mr == root ? " [ROOT]" : "",
+ s == d->mru_section ? " [MRU]" : "",
+ s->mr->is_iommu ? " [iommu]" : "");
+
+ if (s->mr->alias) {
+ qemu_printf(" alias=%s", s->mr->alias->name ?
+ s->mr->alias->name : "noname");
+ }
+ qemu_printf("\n");
+ }
+
+ qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
+ P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
+ for (i = 0; i < d->map.nodes_nb; ++i) {
+ int j, jprev;
+ PhysPageEntry prev;
+ Node *n = d->map.nodes + i;
+
+ qemu_printf(" [%d]\n", i);
+
+ for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
+ PhysPageEntry *pe = *n + j;
+
+ if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
+ continue;
+ }
+
+ mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
+
+ jprev = j;
+ prev = *pe;
+ }
+
+ if (jprev != ARRAY_SIZE(*n)) {
+ mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
+ }
+ }
+}
+
+/*
+ * If positive, discarding RAM is disabled. If negative, discarding RAM is
+ * required to work and cannot be disabled.
+ */
+static int ram_block_discard_disabled;
+
+int ram_block_discard_disable(bool state)
+{
+ int old;
+
+ if (!state) {
+ qatomic_dec(&ram_block_discard_disabled);
+ return 0;
+ }
+
+ do {
+ old = qatomic_read(&ram_block_discard_disabled);
+ if (old < 0) {
+ return -EBUSY;
+ }
+ } while (qatomic_cmpxchg(&ram_block_discard_disabled,
+ old, old + 1) != old);
+ return 0;
+}
+
+int ram_block_discard_require(bool state)
+{
+ int old;
+
+ if (!state) {
+ qatomic_inc(&ram_block_discard_disabled);
+ return 0;
+ }
+
+ do {
+ old = qatomic_read(&ram_block_discard_disabled);
+ if (old > 0) {
+ return -EBUSY;
+ }
+ } while (qatomic_cmpxchg(&ram_block_discard_disabled,
+ old, old - 1) != old);
+ return 0;
+}
+
+bool ram_block_discard_is_disabled(void)
+{
+ return qatomic_read(&ram_block_discard_disabled) > 0;
+}
+
+bool ram_block_discard_is_required(void)
+{
+ return qatomic_read(&ram_block_discard_disabled) < 0;
+}