diff options
author | Daniel P. Berrange <berrange@redhat.com> | 2015-10-14 09:58:38 +0100 |
---|---|---|
committer | Daniel P. Berrange <berrange@redhat.com> | 2015-12-18 16:25:08 +0000 |
commit | ac1d88784907c9603b3849b2c3043259f75ed2a5 (patch) | |
tree | 913660c70807418ddbd6ac883e8dbb46c9cd0edf /qemu-options.hx | |
parent | 920639cab0fe28d003c90b53bd8b66e8fb333bdd (diff) |
crypto: add QCryptoSecret object class for password/key handling
Introduce a new QCryptoSecret object class which will be used
for providing passwords and keys to other objects which need
sensitive credentials.
The new object can provide secret values directly as properties,
or indirectly via a file. The latter includes support for file
descriptor passing syntax on UNIX platforms. Ordinarily passing
secret values directly as properties is insecure, since they
are visible in process listings, or in log files showing the
CLI args / QMP commands. It is possible to use AES-256-CBC to
encrypt the secret values though, in which case all that is
visible is the ciphertext. For ad hoc developer testing though,
it is fine to provide the secrets directly without encryption
so this is not explicitly forbidden.
The anticipated scenario is that libvirtd will create a random
master key per QEMU instance (eg /var/run/libvirt/qemu/$VMNAME.key)
and will use that key to encrypt all passwords it provides to
QEMU via '-object secret,....'. This avoids the need for libvirt
(or other mgmt apps) to worry about file descriptor passing.
It also makes life easier for people who are scripting the
management of QEMU, for whom FD passing is significantly more
complex.
Providing data inline (insecure, only for ad hoc dev testing)
$QEMU -object secret,id=sec0,data=letmein
Providing data indirectly in raw format
printf "letmein" > mypasswd.txt
$QEMU -object secret,id=sec0,file=mypasswd.txt
Providing data indirectly in base64 format
$QEMU -object secret,id=sec0,file=mykey.b64,format=base64
Providing data with encryption
$QEMU -object secret,id=master0,file=mykey.b64,format=base64 \
-object secret,id=sec0,data=[base64 ciphertext],\
keyid=master0,iv=[base64 IV],format=base64
Note that 'format' here refers to the format of the ciphertext
data. The decrypted data must always be in raw byte format.
More examples are shown in the updated docs.
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Daniel P. Berrange <berrange@redhat.com>
Diffstat (limited to 'qemu-options.hx')
-rw-r--r-- | qemu-options.hx | 77 |
1 files changed, 77 insertions, 0 deletions
diff --git a/qemu-options.hx b/qemu-options.hx index 5affc82e4c..f37a2eba02 100644 --- a/qemu-options.hx +++ b/qemu-options.hx @@ -3678,6 +3678,83 @@ Dump the network traffic on netdev @var{dev} to the file specified by The file format is libpcap, so it can be analyzed with tools such as tcpdump or Wireshark. +@item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}] +@item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}] + +Defines a secret to store a password, encryption key, or some other sensitive +data. The sensitive data can either be passed directly via the @var{data} +parameter, or indirectly via the @var{file} parameter. Using the @var{data} +parameter is insecure unless the sensitive data is encrypted. + +The sensitive data can be provided in raw format (the default), or base64. +When encoded as JSON, the raw format only supports valid UTF-8 characters, +so base64 is recommended for sending binary data. QEMU will convert from +which ever format is provided to the format it needs internally. eg, an +RBD password can be provided in raw format, even though it will be base64 +encoded when passed onto the RBD sever. + +For added protection, it is possible to encrypt the data associated with +a secret using the AES-256-CBC cipher. Use of encryption is indicated +by providing the @var{keyid} and @var{iv} parameters. The @var{keyid} +parameter provides the ID of a previously defined secret that contains +the AES-256 decryption key. This key should be 32-bytes long and be +base64 encoded. The @var{iv} parameter provides the random initialization +vector used for encryption of this particular secret and should be a +base64 encrypted string of the 32-byte IV. + +The simplest (insecure) usage is to provide the secret inline + +@example + + # $QEMU -object secret,id=sec0,data=letmein,format=raw + +@end example + +The simplest secure usage is to provide the secret via a file + + # echo -n "letmein" > mypasswd.txt + # $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw + +For greater security, AES-256-CBC should be used. To illustrate usage, +consider the openssl command line tool which can encrypt the data. Note +that when encrypting, the plaintext must be padded to the cipher block +size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm. + +First a master key needs to be created in base64 encoding: + +@example + # openssl rand -base64 32 > key.b64 + # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"') +@end example + +Each secret to be encrypted needs to have a random initialization vector +generated. These do not need to be kept secret + +@example + # openssl rand -base64 16 > iv.b64 + # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"') +@end example + +The secret to be defined can now be encrypted, in this case we're +telling openssl to base64 encode the result, but it could be left +as raw bytes if desired. + +@example + # SECRET=$(echo -n "letmein" | + openssl enc -aes-256-cbc -a -K $KEY -iv $IV) +@end example + +When launching QEMU, create a master secret pointing to @code{key.b64} +and specify that to be used to decrypt the user password. Pass the +contents of @code{iv.b64} to the second secret + +@example + # $QEMU \ + -object secret,id=secmaster0,format=base64,file=key.b64 \ + -object secret,id=sec0,keyid=secmaster0,format=base64,\ + data=$SECRET,iv=$(<iv.b64) +@end example + @end table ETEXI |