aboutsummaryrefslogtreecommitdiff
path: root/qemu-doc.texi
diff options
context:
space:
mode:
authorStefan Weil <sw@weilnetz.de>2012-05-11 22:21:50 +0200
committerStefan Weil <sw@weilnetz.de>2012-05-14 07:27:24 +0200
commit3804da9dbeb2ce9f54a10450f57683914bc69c82 (patch)
tree1f01f7fe3a51da02a4e2e2500c2215b599cd5665 /qemu-doc.texi
parent8bd383b41a115ca52e1587549a0c7638f2356dcc (diff)
qemu-doc: Fix executable name in examples
The executable name qemu was replaced some time ago by qemu-system-i386. Fix all examples accordingly. Some examples will only work with qemu-system-i386 or qemu-system-x86_64 for obvious reasons ("dos.img"). To keep things simple, I did not vary the executable name. Place holders like qemu-system-TARGET were also only used once in the enhanced description for QEMU launches using Wine. Signed-off-by: Stefan Weil <sw@weilnetz.de>
Diffstat (limited to 'qemu-doc.texi')
-rw-r--r--qemu-doc.texi71
1 files changed, 36 insertions, 35 deletions
diff --git a/qemu-doc.texi b/qemu-doc.texi
index e5d7ac41ab..6feac2cdbd 100644
--- a/qemu-doc.texi
+++ b/qemu-doc.texi
@@ -230,12 +230,12 @@ Note that, by default, GUS shares IRQ(7) with parallel ports and so
qemu must be told to not have parallel ports to have working GUS
@example
-qemu dos.img -soundhw gus -parallel none
+qemu-system-i386 dos.img -soundhw gus -parallel none
@end example
Alternatively:
@example
-qemu dos.img -device gus,irq=5
+qemu-system-i386 dos.img -device gus,irq=5
@end example
Or some other unclaimed IRQ.
@@ -251,7 +251,7 @@ CS4231A is the chip used in Windows Sound System and GUSMAX products
Download and uncompress the linux image (@file{linux.img}) and type:
@example
-qemu linux.img
+qemu-system-i386 linux.img
@end example
Linux should boot and give you a prompt.
@@ -261,7 +261,7 @@ Linux should boot and give you a prompt.
@example
@c man begin SYNOPSIS
-usage: qemu [options] [@var{disk_image}]
+usage: qemu-system-i386 [options] [@var{disk_image}]
@c man end
@end example
@@ -575,7 +575,7 @@ QEMU can automatically create a virtual FAT disk image from a
directory tree. In order to use it, just type:
@example
-qemu linux.img -hdb fat:/my_directory
+qemu-system-i386 linux.img -hdb fat:/my_directory
@end example
Then you access access to all the files in the @file{/my_directory}
@@ -585,14 +585,14 @@ them via SAMBA or NFS. The default access is @emph{read-only}.
Floppies can be emulated with the @code{:floppy:} option:
@example
-qemu linux.img -fda fat:floppy:/my_directory
+qemu-system-i386 linux.img -fda fat:floppy:/my_directory
@end example
A read/write support is available for testing (beta stage) with the
@code{:rw:} option:
@example
-qemu linux.img -fda fat:floppy:rw:/my_directory
+qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
@end example
What you should @emph{never} do:
@@ -610,14 +610,14 @@ QEMU can access directly to block device exported using the Network Block Device
protocol.
@example
-qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
+qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
@end example
If the NBD server is located on the same host, you can use an unix socket instead
of an inet socket:
@example
-qemu linux.img -hdb nbd:unix:/tmp/my_socket
+qemu-system-i386 linux.img -hdb nbd:unix:/tmp/my_socket
@end example
In this case, the block device must be exported using qemu-nbd:
@@ -633,15 +633,15 @@ qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
and then you can use it with two guests:
@example
-qemu linux1.img -hdb nbd:unix:/tmp/my_socket
-qemu linux2.img -hdb nbd:unix:/tmp/my_socket
+qemu-system-i386 linux1.img -hdb nbd:unix:/tmp/my_socket
+qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
@end example
If the nbd-server uses named exports (since NBD 2.9.18), you must use the
"exportname" option:
@example
-qemu -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
-qemu -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
+qemu-system-i386 -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
+qemu-system-i386 -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
@end example
@node disk_images_sheepdog
@@ -666,7 +666,7 @@ qemu-img convert @var{filename} sheepdog:@var{image}
You can boot from the Sheepdog disk image with the command:
@example
-qemu sheepdog:@var{image}
+qemu-system-i386 sheepdog:@var{image}
@end example
You can also create a snapshot of the Sheepdog image like qcow2.
@@ -678,7 +678,7 @@ where @var{tag} is a tag name of the newly created snapshot.
To boot from the Sheepdog snapshot, specify the tag name of the
snapshot.
@example
-qemu sheepdog:@var{image}:@var{tag}
+qemu-system-i386 sheepdog:@var{image}:@var{tag}
@end example
You can create a cloned image from the existing snapshot.
@@ -692,7 +692,7 @@ If the Sheepdog daemon doesn't run on the local host, you need to
specify one of the Sheepdog servers to connect to.
@example
qemu-img create sheepdog:@var{hostname}:@var{port}:@var{image} @var{size}
-qemu sheepdog:@var{hostname}:@var{port}:@var{image}
+qemu-system-i386 sheepdog:@var{hostname}:@var{port}:@var{image}
@end example
@node disk_images_iscsi
@@ -899,7 +899,7 @@ zero-copy communication to the application level of the guests. The basic
syntax is:
@example
-qemu -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
+qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
@end example
If desired, interrupts can be sent between guest VMs accessing the same shared
@@ -909,9 +909,9 @@ is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
memory server is:
@example
-qemu -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
- [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
-qemu -chardev socket,path=<path>,id=<id>
+qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
+ [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
+qemu-system-i386 -chardev socket,path=<path>,id=<id>
@end example
When using the server, the guest will be assigned a VM ID (>=0) that allows guests
@@ -941,7 +941,7 @@ kernel testing.
The syntax is:
@example
-qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
+qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
@end example
Use @option{-kernel} to provide the Linux kernel image and
@@ -956,8 +956,8 @@ If you do not need graphical output, you can disable it and redirect
the virtual serial port and the QEMU monitor to the console with the
@option{-nographic} option. The typical command line is:
@example
-qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
- -append "root=/dev/hda console=ttyS0" -nographic
+qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
+ -append "root=/dev/hda console=ttyS0" -nographic
@end example
Use @key{Ctrl-a c} to switch between the serial console and the
@@ -1020,7 +1020,7 @@ Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
specifies NIC options as with @code{-net nic,}@var{options} (see description).
For instance, user-mode networking can be used with
@example
-qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
+qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
@end example
Currently this cannot be used in machines that support PCI NICs.
@item bt[:@var{hci-type}]
@@ -1030,7 +1030,7 @@ no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
This USB device implements the USB Transport Layer of HCI. Example
usage:
@example
-qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
+qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
@end example
@end table
@@ -1108,7 +1108,7 @@ For this setup it is recommended to restrict it to listen on a UNIX domain
socket only. For example
@example
-qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
+qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
@end example
This ensures that only users on local box with read/write access to that
@@ -1129,7 +1129,7 @@ option, and then once QEMU is running the password is set with the monitor. Unti
the monitor is used to set the password all clients will be rejected.
@example
-qemu [...OPTIONS...] -vnc :1,password -monitor stdio
+qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
(qemu) change vnc password
Password: ********
(qemu)
@@ -1146,7 +1146,7 @@ support provides a secure session, but no authentication. This allows any
client to connect, and provides an encrypted session.
@example
-qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
+qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
@end example
In the above example @code{/etc/pki/qemu} should contain at least three files,
@@ -1164,7 +1164,7 @@ then validate against the CA certificate. This is a good choice if deploying
in an environment with a private internal certificate authority.
@example
-qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
+qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
@end example
@@ -1175,7 +1175,7 @@ Finally, the previous method can be combined with VNC password authentication
to provide two layers of authentication for clients.
@example
-qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
+qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
(qemu) change vnc password
Password: ********
(qemu)
@@ -1198,7 +1198,7 @@ used for authentication, but assuming use of one supporting SSF,
then QEMU can be launched with:
@example
-qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
+qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
@end example
@node vnc_sec_certificate_sasl
@@ -1212,7 +1212,7 @@ credentials. This can be enabled, by combining the 'sasl' option
with the aforementioned TLS + x509 options:
@example
-qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
+qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
@end example
@@ -1380,8 +1380,8 @@ QEMU has a primitive support to work with gdb, so that you can do
In order to use gdb, launch qemu with the '-s' option. It will wait for a
gdb connection:
@example
-> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
- -append "root=/dev/hda"
+qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
+ -append "root=/dev/hda"
Connected to host network interface: tun0
Waiting gdb connection on port 1234
@end example
@@ -2669,7 +2669,8 @@ installation directory.
@end itemize
-Wine can be used to launch the resulting qemu.exe compiled for Win32.
+Wine can be used to launch the resulting qemu-system-i386.exe
+and all other qemu-system-@var{target}.exe compiled for Win32.
@node Mac OS X
@section Mac OS X