aboutsummaryrefslogtreecommitdiff
path: root/include
diff options
context:
space:
mode:
authorDamien Hedde <damien.hedde@greensocs.com>2020-01-30 16:02:03 +0000
committerPeter Maydell <peter.maydell@linaro.org>2020-01-30 16:02:03 +0000
commitbc5a39bf2688130bae86351a6c6b005cf9566a3c (patch)
treef5fb0d4814925cd973865c52e7cc0b7151634a44 /include
parent70804c83f2914acaca74c1789a6b869bd5d1ea67 (diff)
hw/core: create Resettable QOM interface
This commit defines an interface allowing multi-phase reset. This aims to solve a problem of the actual single-phase reset (built in DeviceClass and BusClass): reset behavior is dependent on the order in which reset handlers are called. In particular doing external side-effect (like setting an qemu_irq) is problematic because receiving object may not be reset yet. The Resettable interface divides the reset in 3 well defined phases. To reset an object tree, all 1st phases are executed then all 2nd then all 3rd. See the comments in include/hw/resettable.h for a more complete description. The interface defines 3 phases to let the future possibility of holding an object into reset for some time. The qdev/qbus reset in DeviceClass and BusClass will be modified in following commits to use this interface. A mechanism is provided to allow executing a transitional reset handler in place of the 2nd phase which is executed in children-then-parent order inside a tree. This will allow to transition devices and buses smoothly while keeping the exact current qdev/qbus reset behavior for now. Documentation will be added in a following commit. Signed-off-by: Damien Hedde <damien.hedde@greensocs.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com> Message-id: 20200123132823.1117486-4-damien.hedde@greensocs.com Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Diffstat (limited to 'include')
-rw-r--r--include/hw/resettable.h211
1 files changed, 211 insertions, 0 deletions
diff --git a/include/hw/resettable.h b/include/hw/resettable.h
new file mode 100644
index 0000000000..c0b9fc6ad6
--- /dev/null
+++ b/include/hw/resettable.h
@@ -0,0 +1,211 @@
+/*
+ * Resettable interface header.
+ *
+ * Copyright (c) 2019 GreenSocs SAS
+ *
+ * Authors:
+ * Damien Hedde
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ */
+
+#ifndef HW_RESETTABLE_H
+#define HW_RESETTABLE_H
+
+#include "qom/object.h"
+
+#define TYPE_RESETTABLE_INTERFACE "resettable"
+
+#define RESETTABLE_CLASS(class) \
+ OBJECT_CLASS_CHECK(ResettableClass, (class), TYPE_RESETTABLE_INTERFACE)
+
+#define RESETTABLE_GET_CLASS(obj) \
+ OBJECT_GET_CLASS(ResettableClass, (obj), TYPE_RESETTABLE_INTERFACE)
+
+typedef struct ResettableState ResettableState;
+
+/**
+ * ResetType:
+ * Types of reset.
+ *
+ * + Cold: reset resulting from a power cycle of the object.
+ *
+ * TODO: Support has to be added to handle more types. In particular,
+ * ResettableState structure needs to be expanded.
+ */
+typedef enum ResetType {
+ RESET_TYPE_COLD,
+} ResetType;
+
+/*
+ * ResettableClass:
+ * Interface for resettable objects.
+ *
+ * See docs/devel/reset.rst for more detailed information about how QEMU models
+ * reset. This whole API must only be used when holding the iothread mutex.
+ *
+ * All objects which can be reset must implement this interface;
+ * it is usually provided by a base class such as DeviceClass or BusClass.
+ * Every Resettable object must maintain some state tracking the
+ * progress of a reset operation by providing a ResettableState structure.
+ * The functions defined in this module take care of updating the
+ * state of the reset.
+ * The base class implementation of the interface provides this
+ * state and implements the associated method: get_state.
+ *
+ * Concrete object implementations (typically specific devices
+ * such as a UART model) should provide the functions
+ * for the phases.enter, phases.hold and phases.exit methods, which
+ * they can set in their class init function, either directly or
+ * by calling resettable_class_set_parent_phases().
+ * The phase methods are guaranteed to only only ever be called once
+ * for any reset event, in the order 'enter', 'hold', 'exit'.
+ * An object will always move quickly from 'enter' to 'hold'
+ * but might remain in 'hold' for an arbitrary period of time
+ * before eventually reset is deasserted and the 'exit' phase is called.
+ * Object implementations should be prepared for functions handling
+ * inbound connections from other devices (such as qemu_irq handler
+ * functions) to be called at any point during reset after their
+ * 'enter' method has been called.
+ *
+ * Users of a resettable object should not call these methods
+ * directly, but instead use the function resettable_reset().
+ *
+ * @phases.enter: This phase is called when the object enters reset. It
+ * should reset local state of the object, but it must not do anything that
+ * has a side-effect on other objects, such as raising or lowering a qemu_irq
+ * line or reading or writing guest memory. It takes the reset's type as
+ * argument.
+ *
+ * @phases.hold: This phase is called for entry into reset, once every object
+ * in the system which is being reset has had its @phases.enter method called.
+ * At this point devices can do actions that affect other objects.
+ *
+ * @phases.exit: This phase is called when the object leaves the reset state.
+ * Actions affecting other objects are permitted.
+ *
+ * @get_state: Mandatory method which must return a pointer to a
+ * ResettableState.
+ *
+ * @get_transitional_function: transitional method to handle Resettable objects
+ * not yet fully moved to this interface. It will be removed as soon as it is
+ * not needed anymore. This method is optional and may return a pointer to a
+ * function to be used instead of the phases. If the method exists and returns
+ * a non-NULL function pointer then that function is executed as a replacement
+ * of the 'hold' phase method taking the object as argument. The two other phase
+ * methods are not executed.
+ *
+ * @child_foreach: Executes a given callback on every Resettable child. Child
+ * in this context means a child in the qbus tree, so the children of a qbus
+ * are the devices on it, and the children of a device are all the buses it
+ * owns. This is not the same as the QOM object hierarchy. The function takes
+ * additional opaque and ResetType arguments which must be passed unmodified to
+ * the callback.
+ */
+typedef void (*ResettableEnterPhase)(Object *obj, ResetType type);
+typedef void (*ResettableHoldPhase)(Object *obj);
+typedef void (*ResettableExitPhase)(Object *obj);
+typedef ResettableState * (*ResettableGetState)(Object *obj);
+typedef void (*ResettableTrFunction)(Object *obj);
+typedef ResettableTrFunction (*ResettableGetTrFunction)(Object *obj);
+typedef void (*ResettableChildCallback)(Object *, void *opaque,
+ ResetType type);
+typedef void (*ResettableChildForeach)(Object *obj,
+ ResettableChildCallback cb,
+ void *opaque, ResetType type);
+typedef struct ResettablePhases {
+ ResettableEnterPhase enter;
+ ResettableHoldPhase hold;
+ ResettableExitPhase exit;
+} ResettablePhases;
+typedef struct ResettableClass {
+ InterfaceClass parent_class;
+
+ /* Phase methods */
+ ResettablePhases phases;
+
+ /* State access method */
+ ResettableGetState get_state;
+
+ /* Transitional method for legacy reset compatibility */
+ ResettableGetTrFunction get_transitional_function;
+
+ /* Hierarchy handling method */
+ ResettableChildForeach child_foreach;
+} ResettableClass;
+
+/**
+ * ResettableState:
+ * Structure holding reset related state. The fields should not be accessed
+ * directly; the definition is here to allow further inclusion into other
+ * objects.
+ *
+ * @count: Number of reset level the object is into. It is incremented when
+ * the reset operation starts and decremented when it finishes.
+ * @hold_phase_pending: flag which indicates that we need to invoke the 'hold'
+ * phase handler for this object.
+ * @exit_phase_in_progress: true if we are currently in the exit phase
+ */
+struct ResettableState {
+ unsigned count;
+ bool hold_phase_pending;
+ bool exit_phase_in_progress;
+};
+
+/**
+ * resettable_reset:
+ * Trigger a reset on an object @obj of type @type. @obj must implement
+ * Resettable interface.
+ *
+ * Calling this function is equivalent to calling @resettable_assert_reset()
+ * then @resettable_release_reset().
+ */
+void resettable_reset(Object *obj, ResetType type);
+
+/**
+ * resettable_assert_reset:
+ * Put an object @obj into reset. @obj must implement Resettable interface.
+ *
+ * @resettable_release_reset() must eventually be called after this call.
+ * There must be one call to @resettable_release_reset() per call of
+ * @resettable_assert_reset(), with the same type argument.
+ *
+ * NOTE: Until support for migration is added, the @resettable_release_reset()
+ * must not be delayed. It must occur just after @resettable_assert_reset() so
+ * that migration cannot be triggered in between. Prefer using
+ * @resettable_reset() for now.
+ */
+void resettable_assert_reset(Object *obj, ResetType type);
+
+/**
+ * resettable_release_reset:
+ * Release the object @obj from reset. @obj must implement Resettable interface.
+ *
+ * See @resettable_assert_reset() description for details.
+ */
+void resettable_release_reset(Object *obj, ResetType type);
+
+/**
+ * resettable_is_in_reset:
+ * Return true if @obj is under reset.
+ *
+ * @obj must implement Resettable interface.
+ */
+bool resettable_is_in_reset(Object *obj);
+
+/**
+ * resettable_class_set_parent_phases:
+ *
+ * Save @rc current reset phases into @parent_phases and override @rc phases
+ * by the given new methods (@enter, @hold and @exit).
+ * Each phase is overridden only if the new one is not NULL allowing to
+ * override a subset of phases.
+ */
+void resettable_class_set_parent_phases(ResettableClass *rc,
+ ResettableEnterPhase enter,
+ ResettableHoldPhase hold,
+ ResettableExitPhase exit,
+ ResettablePhases *parent_phases);
+
+#endif