aboutsummaryrefslogtreecommitdiff
path: root/include/hw/elf_ops.h
diff options
context:
space:
mode:
authorPeter Crosthwaite <crosthwaitepeter@gmail.com>2016-03-04 11:30:21 +0000
committerPeter Maydell <peter.maydell@linaro.org>2016-03-04 11:30:21 +0000
commit7ef295ea5b412cbaf82f719ccd49efb51296e841 (patch)
treeda99e5270fcf99285c0b5dfb787c4b304687843a /include/hw/elf_ops.h
parent140b7ce5fff6fc660b2484dfd9d33ed2e42ec5a9 (diff)
loader: Add data swap option to load-elf
Some CPUs are of an opposite data-endianness to other components in the system. Sometimes elfs have the data sections layed out with this CPU data-endianness accounting for when loaded via the CPU, so byte swaps (relative to other system components) will occur. The leading example, is ARM's BE32 mode, which is is basically LE with address manipulation on half-word and byte accesses to access the hw/byte reversed address. This means that word data is invariant across LE and BE32. This also means that instructions are still LE. The expectation is that the elf will be loaded via the CPU in this endianness scheme, which means the data in the elf is reversed at compile time. As QEMU loads via the system memory directly, rather than the CPU, we need a mechanism to reverse elf data endianness to implement this possibility. Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Peter Crosthwaite <crosthwaite.peter@gmail.com> Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Diffstat (limited to 'include/hw/elf_ops.h')
-rw-r--r--include/hw/elf_ops.h22
1 files changed, 21 insertions, 1 deletions
diff --git a/include/hw/elf_ops.h b/include/hw/elf_ops.h
index 0010c441d9..f510e7ec2a 100644
--- a/include/hw/elf_ops.h
+++ b/include/hw/elf_ops.h
@@ -263,7 +263,7 @@ static int glue(load_elf, SZ)(const char *name, int fd,
void *translate_opaque,
int must_swab, uint64_t *pentry,
uint64_t *lowaddr, uint64_t *highaddr,
- int elf_machine, int clear_lsb)
+ int elf_machine, int clear_lsb, int data_swab)
{
struct elfhdr ehdr;
struct elf_phdr *phdr = NULL, *ph;
@@ -366,6 +366,26 @@ static int glue(load_elf, SZ)(const char *name, int fd,
addr = ph->p_paddr;
}
+ if (data_swab) {
+ int j;
+ for (j = 0; j < file_size; j += (1 << data_swab)) {
+ uint8_t *dp = data + j;
+ switch (data_swab) {
+ case (1):
+ *(uint16_t *)dp = bswap16(*(uint16_t *)dp);
+ break;
+ case (2):
+ *(uint32_t *)dp = bswap32(*(uint32_t *)dp);
+ break;
+ case (3):
+ *(uint64_t *)dp = bswap64(*(uint64_t *)dp);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ }
+ }
+
/* the entry pointer in the ELF header is a virtual
* address, if the text segments paddr and vaddr differ
* we need to adjust the entry */