aboutsummaryrefslogtreecommitdiff
path: root/include/block/coroutine.h
diff options
context:
space:
mode:
authorAnthony Liguori <aliguori@us.ibm.com>2012-12-19 17:15:39 -0600
committerAnthony Liguori <aliguori@us.ibm.com>2012-12-19 17:15:39 -0600
commit27dd7730582be85c7d4f680f5f71146629809c86 (patch)
tree3a36db2e407711ed222de28b839744db48a75059 /include/block/coroutine.h
parent914606d26e654d4c01bd5186f4d05e3fd445e219 (diff)
parentec5e016c9a68588bd01be387416923c7dcafb951 (diff)
Merge remote-tracking branch 'bonzini/header-dirs' into staging
* bonzini/header-dirs: (45 commits) janitor: move remaining public headers to include/ hw: move executable format header files to hw/ fpu: move public header file to include/fpu softmmu: move remaining include files to include/ subdirectories softmmu: move include files to include/sysemu/ misc: move include files to include/qemu/ qom: move include files to include/qom/ migration: move include files to include/migration/ monitor: move include files to include/monitor/ exec: move include files to include/exec/ block: move include files to include/block/ qapi: move include files to include/qobject/ janitor: add guards to headers qapi: make struct Visitor opaque qapi: remove qapi/qapi-types-core.h qapi: move inclusions of qemu-common.h from headers to .c files ui: move files to ui/ and include/ui/ qemu-ga: move qemu-ga files to qga/ net: reorganize headers net: move net.c to net/ ... Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
Diffstat (limited to 'include/block/coroutine.h')
-rw-r--r--include/block/coroutine.h211
1 files changed, 211 insertions, 0 deletions
diff --git a/include/block/coroutine.h b/include/block/coroutine.h
new file mode 100644
index 0000000000..c31fae3f3c
--- /dev/null
+++ b/include/block/coroutine.h
@@ -0,0 +1,211 @@
+/*
+ * QEMU coroutine implementation
+ *
+ * Copyright IBM, Corp. 2011
+ *
+ * Authors:
+ * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
+ * Kevin Wolf <kwolf@redhat.com>
+ *
+ * This work is licensed under the terms of the GNU LGPL, version 2 or later.
+ * See the COPYING.LIB file in the top-level directory.
+ *
+ */
+
+#ifndef QEMU_COROUTINE_H
+#define QEMU_COROUTINE_H
+
+#include <stdbool.h>
+#include "qemu/queue.h"
+#include "qemu/timer.h"
+
+/**
+ * Coroutines are a mechanism for stack switching and can be used for
+ * cooperative userspace threading. These functions provide a simple but
+ * useful flavor of coroutines that is suitable for writing sequential code,
+ * rather than callbacks, for operations that need to give up control while
+ * waiting for events to complete.
+ *
+ * These functions are re-entrant and may be used outside the global mutex.
+ */
+
+/**
+ * Mark a function that executes in coroutine context
+ *
+ * Functions that execute in coroutine context cannot be called directly from
+ * normal functions. In the future it would be nice to enable compiler or
+ * static checker support for catching such errors. This annotation might make
+ * it possible and in the meantime it serves as documentation.
+ *
+ * For example:
+ *
+ * static void coroutine_fn foo(void) {
+ * ....
+ * }
+ */
+#define coroutine_fn
+
+typedef struct Coroutine Coroutine;
+
+/**
+ * Coroutine entry point
+ *
+ * When the coroutine is entered for the first time, opaque is passed in as an
+ * argument.
+ *
+ * When this function returns, the coroutine is destroyed automatically and
+ * execution continues in the caller who last entered the coroutine.
+ */
+typedef void coroutine_fn CoroutineEntry(void *opaque);
+
+/**
+ * Create a new coroutine
+ *
+ * Use qemu_coroutine_enter() to actually transfer control to the coroutine.
+ */
+Coroutine *qemu_coroutine_create(CoroutineEntry *entry);
+
+/**
+ * Transfer control to a coroutine
+ *
+ * The opaque argument is passed as the argument to the entry point when
+ * entering the coroutine for the first time. It is subsequently ignored.
+ */
+void qemu_coroutine_enter(Coroutine *coroutine, void *opaque);
+
+/**
+ * Transfer control back to a coroutine's caller
+ *
+ * This function does not return until the coroutine is re-entered using
+ * qemu_coroutine_enter().
+ */
+void coroutine_fn qemu_coroutine_yield(void);
+
+/**
+ * Get the currently executing coroutine
+ */
+Coroutine *coroutine_fn qemu_coroutine_self(void);
+
+/**
+ * Return whether or not currently inside a coroutine
+ *
+ * This can be used to write functions that work both when in coroutine context
+ * and when not in coroutine context. Note that such functions cannot use the
+ * coroutine_fn annotation since they work outside coroutine context.
+ */
+bool qemu_in_coroutine(void);
+
+
+
+/**
+ * CoQueues are a mechanism to queue coroutines in order to continue executing
+ * them later. They provide the fundamental primitives on which coroutine locks
+ * are built.
+ */
+typedef struct CoQueue {
+ QTAILQ_HEAD(, Coroutine) entries;
+} CoQueue;
+
+/**
+ * Initialise a CoQueue. This must be called before any other operation is used
+ * on the CoQueue.
+ */
+void qemu_co_queue_init(CoQueue *queue);
+
+/**
+ * Adds the current coroutine to the CoQueue and transfers control to the
+ * caller of the coroutine.
+ */
+void coroutine_fn qemu_co_queue_wait(CoQueue *queue);
+
+/**
+ * Adds the current coroutine to the head of the CoQueue and transfers control to the
+ * caller of the coroutine.
+ */
+void coroutine_fn qemu_co_queue_wait_insert_head(CoQueue *queue);
+
+/**
+ * Restarts the next coroutine in the CoQueue and removes it from the queue.
+ *
+ * Returns true if a coroutine was restarted, false if the queue is empty.
+ */
+bool qemu_co_queue_next(CoQueue *queue);
+
+/**
+ * Restarts all coroutines in the CoQueue and leaves the queue empty.
+ */
+void qemu_co_queue_restart_all(CoQueue *queue);
+
+/**
+ * Checks if the CoQueue is empty.
+ */
+bool qemu_co_queue_empty(CoQueue *queue);
+
+
+/**
+ * Provides a mutex that can be used to synchronise coroutines
+ */
+typedef struct CoMutex {
+ bool locked;
+ CoQueue queue;
+} CoMutex;
+
+/**
+ * Initialises a CoMutex. This must be called before any other operation is used
+ * on the CoMutex.
+ */
+void qemu_co_mutex_init(CoMutex *mutex);
+
+/**
+ * Locks the mutex. If the lock cannot be taken immediately, control is
+ * transferred to the caller of the current coroutine.
+ */
+void coroutine_fn qemu_co_mutex_lock(CoMutex *mutex);
+
+/**
+ * Unlocks the mutex and schedules the next coroutine that was waiting for this
+ * lock to be run.
+ */
+void coroutine_fn qemu_co_mutex_unlock(CoMutex *mutex);
+
+typedef struct CoRwlock {
+ bool writer;
+ int reader;
+ CoQueue queue;
+} CoRwlock;
+
+/**
+ * Initialises a CoRwlock. This must be called before any other operation
+ * is used on the CoRwlock
+ */
+void qemu_co_rwlock_init(CoRwlock *lock);
+
+/**
+ * Read locks the CoRwlock. If the lock cannot be taken immediately because
+ * of a parallel writer, control is transferred to the caller of the current
+ * coroutine.
+ */
+void qemu_co_rwlock_rdlock(CoRwlock *lock);
+
+/**
+ * Write Locks the mutex. If the lock cannot be taken immediately because
+ * of a parallel reader, control is transferred to the caller of the current
+ * coroutine.
+ */
+void qemu_co_rwlock_wrlock(CoRwlock *lock);
+
+/**
+ * Unlocks the read/write lock and schedules the next coroutine that was
+ * waiting for this lock to be run.
+ */
+void qemu_co_rwlock_unlock(CoRwlock *lock);
+
+/**
+ * Yield the coroutine for a given duration
+ *
+ * Note this function uses timers and hence only works when a main loop is in
+ * use. See main-loop.h and do not use from qemu-tool programs.
+ */
+void coroutine_fn co_sleep_ns(QEMUClock *clock, int64_t ns);
+
+#endif /* QEMU_COROUTINE_H */