aboutsummaryrefslogtreecommitdiff
path: root/hw/pxa2xx.c
diff options
context:
space:
mode:
authorbalrog <balrog@c046a42c-6fe2-441c-8c8c-71466251a162>2007-04-30 01:26:42 +0000
committerbalrog <balrog@c046a42c-6fe2-441c-8c8c-71466251a162>2007-04-30 01:26:42 +0000
commitc1713132e07955819477a87a0ce830358e77a147 (patch)
tree343a836606f7444e68688a4019cce1221bd0cd1c /hw/pxa2xx.c
parent201a51fc386c0a2b55b13ad99589b1dfd1f39a5d (diff)
Core features of ARM XScale processors. Main PXA270 and PXA255 peripherals.
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2749 c046a42c-6fe2-441c-8c8c-71466251a162
Diffstat (limited to 'hw/pxa2xx.c')
-rw-r--r--hw/pxa2xx.c1673
1 files changed, 1673 insertions, 0 deletions
diff --git a/hw/pxa2xx.c b/hw/pxa2xx.c
new file mode 100644
index 0000000000..f9d2925bf4
--- /dev/null
+++ b/hw/pxa2xx.c
@@ -0,0 +1,1673 @@
+/*
+ * Intel XScale PXA255/270 processor support.
+ *
+ * Copyright (c) 2006 Openedhand Ltd.
+ * Written by Andrzej Zaborowski <balrog@zabor.org>
+ *
+ * This code is licenced under the GPL.
+ */
+
+# include "vl.h"
+
+static struct {
+ target_phys_addr_t io_base;
+ int irqn;
+} pxa255_serial[] = {
+ { 0x40100000, PXA2XX_PIC_FFUART },
+ { 0x40200000, PXA2XX_PIC_BTUART },
+ { 0x40700000, PXA2XX_PIC_STUART },
+ { 0x41600000, PXA25X_PIC_HWUART },
+ { 0, 0 }
+}, pxa270_serial[] = {
+ { 0x40100000, PXA2XX_PIC_FFUART },
+ { 0x40200000, PXA2XX_PIC_BTUART },
+ { 0x40700000, PXA2XX_PIC_STUART },
+ { 0, 0 }
+};
+
+static struct {
+ target_phys_addr_t io_base;
+ int irqn;
+} pxa250_ssp[] = {
+ { 0x41000000, PXA2XX_PIC_SSP },
+ { 0, 0 }
+}, pxa255_ssp[] = {
+ { 0x41000000, PXA2XX_PIC_SSP },
+ { 0x41400000, PXA25X_PIC_NSSP },
+ { 0, 0 }
+}, pxa26x_ssp[] = {
+ { 0x41000000, PXA2XX_PIC_SSP },
+ { 0x41400000, PXA25X_PIC_NSSP },
+ { 0x41500000, PXA26X_PIC_ASSP },
+ { 0, 0 }
+}, pxa27x_ssp[] = {
+ { 0x41000000, PXA2XX_PIC_SSP },
+ { 0x41700000, PXA27X_PIC_SSP2 },
+ { 0x41900000, PXA2XX_PIC_SSP3 },
+ { 0, 0 }
+};
+
+#define PMCR 0x00 /* Power Manager Control register */
+#define PSSR 0x04 /* Power Manager Sleep Status register */
+#define PSPR 0x08 /* Power Manager Scratch-Pad register */
+#define PWER 0x0c /* Power Manager Wake-Up Enable register */
+#define PRER 0x10 /* Power Manager Rising-Edge Detect Enable register */
+#define PFER 0x14 /* Power Manager Falling-Edge Detect Enable register */
+#define PEDR 0x18 /* Power Manager Edge-Detect Status register */
+#define PCFR 0x1c /* Power Manager General Configuration register */
+#define PGSR0 0x20 /* Power Manager GPIO Sleep-State register 0 */
+#define PGSR1 0x24 /* Power Manager GPIO Sleep-State register 1 */
+#define PGSR2 0x28 /* Power Manager GPIO Sleep-State register 2 */
+#define PGSR3 0x2c /* Power Manager GPIO Sleep-State register 3 */
+#define RCSR 0x30 /* Reset Controller Status register */
+#define PSLR 0x34 /* Power Manager Sleep Configuration register */
+#define PTSR 0x38 /* Power Manager Standby Configuration register */
+#define PVCR 0x40 /* Power Manager Voltage Change Control register */
+#define PUCR 0x4c /* Power Manager USIM Card Control/Status register */
+#define PKWR 0x50 /* Power Manager Keyboard Wake-Up Enable register */
+#define PKSR 0x54 /* Power Manager Keyboard Level-Detect Status */
+#define PCMD0 0x80 /* Power Manager I2C Command register File 0 */
+#define PCMD31 0xfc /* Power Manager I2C Command register File 31 */
+
+static uint32_t pxa2xx_pm_read(void *opaque, target_phys_addr_t addr)
+{
+ struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
+ addr -= s->pm_base;
+
+ switch (addr) {
+ case PMCR ... PCMD31:
+ if (addr & 3)
+ goto fail;
+
+ return s->pm_regs[addr >> 2];
+ default:
+ fail:
+ printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
+ break;
+ }
+ return 0;
+}
+
+static void pxa2xx_pm_write(void *opaque, target_phys_addr_t addr,
+ uint32_t value)
+{
+ struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
+ addr -= s->pm_base;
+
+ switch (addr) {
+ case PMCR:
+ s->pm_regs[addr >> 2] &= 0x15 & ~(value & 0x2a);
+ s->pm_regs[addr >> 2] |= value & 0x15;
+ break;
+
+ case PSSR: /* Read-clean registers */
+ case RCSR:
+ case PKSR:
+ s->pm_regs[addr >> 2] &= ~value;
+ break;
+
+ default: /* Read-write registers */
+ if (addr >= PMCR && addr <= PCMD31 && !(addr & 3)) {
+ s->pm_regs[addr >> 2] = value;
+ break;
+ }
+
+ printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
+ break;
+ }
+}
+
+static CPUReadMemoryFunc *pxa2xx_pm_readfn[] = {
+ pxa2xx_pm_read,
+ pxa2xx_pm_read,
+ pxa2xx_pm_read,
+};
+
+static CPUWriteMemoryFunc *pxa2xx_pm_writefn[] = {
+ pxa2xx_pm_write,
+ pxa2xx_pm_write,
+ pxa2xx_pm_write,
+};
+
+#define CCCR 0x00 /* Core Clock Configuration register */
+#define CKEN 0x04 /* Clock Enable register */
+#define OSCC 0x08 /* Oscillator Configuration register */
+#define CCSR 0x0c /* Core Clock Status register */
+
+static uint32_t pxa2xx_cm_read(void *opaque, target_phys_addr_t addr)
+{
+ struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
+ addr -= s->cm_base;
+
+ switch (addr) {
+ case CCCR:
+ case CKEN:
+ case OSCC:
+ return s->cm_regs[addr >> 2];
+
+ case CCSR:
+ return s->cm_regs[CCCR >> 2] | (3 << 28);
+
+ default:
+ printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
+ break;
+ }
+ return 0;
+}
+
+static void pxa2xx_cm_write(void *opaque, target_phys_addr_t addr,
+ uint32_t value)
+{
+ struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
+ addr -= s->cm_base;
+
+ switch (addr) {
+ case CCCR:
+ case CKEN:
+ s->cm_regs[addr >> 2] = value;
+ break;
+
+ case OSCC:
+ s->cm_regs[addr >> 2] &= ~0x6e;
+ s->cm_regs[addr >> 2] |= value & 0x6e;
+ break;
+
+ default:
+ printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
+ break;
+ }
+}
+
+static CPUReadMemoryFunc *pxa2xx_cm_readfn[] = {
+ pxa2xx_cm_read,
+ pxa2xx_cm_read,
+ pxa2xx_cm_read,
+};
+
+static CPUWriteMemoryFunc *pxa2xx_cm_writefn[] = {
+ pxa2xx_cm_write,
+ pxa2xx_cm_write,
+ pxa2xx_cm_write,
+};
+
+static uint32_t pxa2xx_clkpwr_read(void *opaque, int op2, int reg, int crm)
+{
+ struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
+
+ switch (reg) {
+ case 6: /* Clock Configuration register */
+ return s->clkcfg;
+
+ case 7: /* Power Mode register */
+ return 0;
+
+ default:
+ printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
+ break;
+ }
+ return 0;
+}
+
+static void pxa2xx_clkpwr_write(void *opaque, int op2, int reg, int crm,
+ uint32_t value)
+{
+ struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
+ static const char *pwrmode[8] = {
+ "Normal", "Idle", "Deep-idle", "Standby",
+ "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
+ };
+
+ switch (reg) {
+ case 6: /* Clock Configuration register */
+ s->clkcfg = value & 0xf;
+ if (value & 2)
+ printf("%s: CPU frequency change attempt\n", __FUNCTION__);
+ break;
+
+ case 7: /* Power Mode register */
+ if (value & 8)
+ printf("%s: CPU voltage change attempt\n", __FUNCTION__);
+ switch (value & 7) {
+ case 0:
+ /* Do nothing */
+ break;
+
+ case 1:
+ /* Idle */
+ if (!(s->cm_regs[CCCR] & (1 << 31))) { /* CPDIS */
+ cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
+ break;
+ }
+ /* Fall through. */
+
+ case 2:
+ /* Deep-Idle */
+ cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
+ s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
+ goto message;
+
+ case 3:
+ cpu_reset(s->env);
+ s->env->cp15.c1_sys = 0;
+ s->env->cp15.c1_coproc = 0;
+ s->env->cp15.c2 = 0;
+ s->env->cp15.c3 = 0;
+ s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */
+ s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
+
+ /*
+ * The scratch-pad register is almost universally used
+ * for storing the return address on suspend. For the
+ * lack of a resuming bootloader, perform a jump
+ * directly to that address.
+ */
+ memset(s->env->regs, 0, 4 * 15);
+ s->env->regs[15] = s->pm_regs[PSPR >> 2];
+
+#if 0
+ buffer = 0xe59ff000; /* ldr pc, [pc, #0] */
+ cpu_physical_memory_write(0, &buffer, 4);
+ buffer = s->pm_regs[PSPR >> 2];
+ cpu_physical_memory_write(8, &buffer, 4);
+#endif
+
+ /* Suspend */
+ cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
+
+ goto message;
+
+ default:
+ message:
+ printf("%s: machine entered %s mode\n", __FUNCTION__,
+ pwrmode[value & 7]);
+ }
+ break;
+
+ default:
+ printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
+ break;
+ }
+}
+
+/* Performace Monitoring Registers */
+#define CPPMNC 0 /* Performance Monitor Control register */
+#define CPCCNT 1 /* Clock Counter register */
+#define CPINTEN 4 /* Interrupt Enable register */
+#define CPFLAG 5 /* Overflow Flag register */
+#define CPEVTSEL 8 /* Event Selection register */
+
+#define CPPMN0 0 /* Performance Count register 0 */
+#define CPPMN1 1 /* Performance Count register 1 */
+#define CPPMN2 2 /* Performance Count register 2 */
+#define CPPMN3 3 /* Performance Count register 3 */
+
+static uint32_t pxa2xx_perf_read(void *opaque, int op2, int reg, int crm)
+{
+ struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
+
+ switch (reg) {
+ case CPPMNC:
+ return s->pmnc;
+ case CPCCNT:
+ if (s->pmnc & 1)
+ return qemu_get_clock(vm_clock);
+ else
+ return 0;
+ case CPINTEN:
+ case CPFLAG:
+ case CPEVTSEL:
+ return 0;
+
+ default:
+ printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
+ break;
+ }
+ return 0;
+}
+
+static void pxa2xx_perf_write(void *opaque, int op2, int reg, int crm,
+ uint32_t value)
+{
+ struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
+
+ switch (reg) {
+ case CPPMNC:
+ s->pmnc = value;
+ break;
+
+ case CPCCNT:
+ case CPINTEN:
+ case CPFLAG:
+ case CPEVTSEL:
+ break;
+
+ default:
+ printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
+ break;
+ }
+}
+
+static uint32_t pxa2xx_cp14_read(void *opaque, int op2, int reg, int crm)
+{
+ switch (crm) {
+ case 0:
+ return pxa2xx_clkpwr_read(opaque, op2, reg, crm);
+ case 1:
+ return pxa2xx_perf_read(opaque, op2, reg, crm);
+ case 2:
+ switch (reg) {
+ case CPPMN0:
+ case CPPMN1:
+ case CPPMN2:
+ case CPPMN3:
+ return 0;
+ }
+ /* Fall through */
+ default:
+ printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
+ break;
+ }
+ return 0;
+}
+
+static void pxa2xx_cp14_write(void *opaque, int op2, int reg, int crm,
+ uint32_t value)
+{
+ switch (crm) {
+ case 0:
+ pxa2xx_clkpwr_write(opaque, op2, reg, crm, value);
+ break;
+ case 1:
+ pxa2xx_perf_write(opaque, op2, reg, crm, value);
+ break;
+ case 2:
+ switch (reg) {
+ case CPPMN0:
+ case CPPMN1:
+ case CPPMN2:
+ case CPPMN3:
+ return;
+ }
+ /* Fall through */
+ default:
+ printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
+ break;
+ }
+}
+
+#define MDCNFG 0x00 /* SDRAM Configuration register */
+#define MDREFR 0x04 /* SDRAM Refresh Control register */
+#define MSC0 0x08 /* Static Memory Control register 0 */
+#define MSC1 0x0c /* Static Memory Control register 1 */
+#define MSC2 0x10 /* Static Memory Control register 2 */
+#define MECR 0x14 /* Expansion Memory Bus Config register */
+#define SXCNFG 0x1c /* Synchronous Static Memory Config register */
+#define MCMEM0 0x28 /* PC Card Memory Socket 0 Timing register */
+#define MCMEM1 0x2c /* PC Card Memory Socket 1 Timing register */
+#define MCATT0 0x30 /* PC Card Attribute Socket 0 register */
+#define MCATT1 0x34 /* PC Card Attribute Socket 1 register */
+#define MCIO0 0x38 /* PC Card I/O Socket 0 Timing register */
+#define MCIO1 0x3c /* PC Card I/O Socket 1 Timing register */
+#define MDMRS 0x40 /* SDRAM Mode Register Set Config register */
+#define BOOT_DEF 0x44 /* Boot-time Default Configuration register */
+#define ARB_CNTL 0x48 /* Arbiter Control register */
+#define BSCNTR0 0x4c /* Memory Buffer Strength Control register 0 */
+#define BSCNTR1 0x50 /* Memory Buffer Strength Control register 1 */
+#define LCDBSCNTR 0x54 /* LCD Buffer Strength Control register */
+#define MDMRSLP 0x58 /* Low Power SDRAM Mode Set Config register */
+#define BSCNTR2 0x5c /* Memory Buffer Strength Control register 2 */
+#define BSCNTR3 0x60 /* Memory Buffer Strength Control register 3 */
+#define SA1110 0x64 /* SA-1110 Memory Compatibility register */
+
+static uint32_t pxa2xx_mm_read(void *opaque, target_phys_addr_t addr)
+{
+ struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
+ addr -= s->mm_base;
+
+ switch (addr) {
+ case MDCNFG ... SA1110:
+ if ((addr & 3) == 0)
+ return s->mm_regs[addr >> 2];
+
+ default:
+ printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
+ break;
+ }
+ return 0;
+}
+
+static void pxa2xx_mm_write(void *opaque, target_phys_addr_t addr,
+ uint32_t value)
+{
+ struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
+ addr -= s->mm_base;
+
+ switch (addr) {
+ case MDCNFG ... SA1110:
+ if ((addr & 3) == 0) {
+ s->mm_regs[addr >> 2] = value;
+ break;
+ }
+
+ default:
+ printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
+ break;
+ }
+}
+
+static CPUReadMemoryFunc *pxa2xx_mm_readfn[] = {
+ pxa2xx_mm_read,
+ pxa2xx_mm_read,
+ pxa2xx_mm_read,
+};
+
+static CPUWriteMemoryFunc *pxa2xx_mm_writefn[] = {
+ pxa2xx_mm_write,
+ pxa2xx_mm_write,
+ pxa2xx_mm_write,
+};
+
+/* Synchronous Serial Ports */
+struct pxa2xx_ssp_s {
+ target_phys_addr_t base;
+ qemu_irq irq;
+ int enable;
+
+ uint32_t sscr[2];
+ uint32_t sspsp;
+ uint32_t ssto;
+ uint32_t ssitr;
+ uint32_t sssr;
+ uint8_t sstsa;
+ uint8_t ssrsa;
+ uint8_t ssacd;
+
+ uint32_t rx_fifo[16];
+ int rx_level;
+ int rx_start;
+
+ uint32_t (*readfn)(void *opaque);
+ void (*writefn)(void *opaque, uint32_t value);
+ void *opaque;
+};
+
+#define SSCR0 0x00 /* SSP Control register 0 */
+#define SSCR1 0x04 /* SSP Control register 1 */
+#define SSSR 0x08 /* SSP Status register */
+#define SSITR 0x0c /* SSP Interrupt Test register */
+#define SSDR 0x10 /* SSP Data register */
+#define SSTO 0x28 /* SSP Time-Out register */
+#define SSPSP 0x2c /* SSP Programmable Serial Protocol register */
+#define SSTSA 0x30 /* SSP TX Time Slot Active register */
+#define SSRSA 0x34 /* SSP RX Time Slot Active register */
+#define SSTSS 0x38 /* SSP Time Slot Status register */
+#define SSACD 0x3c /* SSP Audio Clock Divider register */
+
+/* Bitfields for above registers */
+#define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
+#define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
+#define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
+#define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
+#define SSCR0_SSE (1 << 7)
+#define SSCR0_RIM (1 << 22)
+#define SSCR0_TIM (1 << 23)
+#define SSCR0_MOD (1 << 31)
+#define SSCR0_DSS(x) (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
+#define SSCR1_RIE (1 << 0)
+#define SSCR1_TIE (1 << 1)
+#define SSCR1_LBM (1 << 2)
+#define SSCR1_MWDS (1 << 5)
+#define SSCR1_TFT(x) ((((x) >> 6) & 0xf) + 1)
+#define SSCR1_RFT(x) ((((x) >> 10) & 0xf) + 1)
+#define SSCR1_EFWR (1 << 14)
+#define SSCR1_PINTE (1 << 18)
+#define SSCR1_TINTE (1 << 19)
+#define SSCR1_RSRE (1 << 20)
+#define SSCR1_TSRE (1 << 21)
+#define SSCR1_EBCEI (1 << 29)
+#define SSITR_INT (7 << 5)
+#define SSSR_TNF (1 << 2)
+#define SSSR_RNE (1 << 3)
+#define SSSR_TFS (1 << 5)
+#define SSSR_RFS (1 << 6)
+#define SSSR_ROR (1 << 7)
+#define SSSR_PINT (1 << 18)
+#define SSSR_TINT (1 << 19)
+#define SSSR_EOC (1 << 20)
+#define SSSR_TUR (1 << 21)
+#define SSSR_BCE (1 << 23)
+#define SSSR_RW 0x00bc0080
+
+static void pxa2xx_ssp_int_update(struct pxa2xx_ssp_s *s)
+{
+ int level = 0;
+
+ level |= s->ssitr & SSITR_INT;
+ level |= (s->sssr & SSSR_BCE) && (s->sscr[1] & SSCR1_EBCEI);
+ level |= (s->sssr & SSSR_TUR) && !(s->sscr[0] & SSCR0_TIM);
+ level |= (s->sssr & SSSR_EOC) && (s->sssr & (SSSR_TINT | SSSR_PINT));
+ level |= (s->sssr & SSSR_TINT) && (s->sscr[1] & SSCR1_TINTE);
+ level |= (s->sssr & SSSR_PINT) && (s->sscr[1] & SSCR1_PINTE);
+ level |= (s->sssr & SSSR_ROR) && !(s->sscr[0] & SSCR0_RIM);
+ level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE);
+ level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE);
+ qemu_set_irq(s->irq, !!level);
+}
+
+static void pxa2xx_ssp_fifo_update(struct pxa2xx_ssp_s *s)
+{
+ s->sssr &= ~(0xf << 12); /* Clear RFL */
+ s->sssr &= ~(0xf << 8); /* Clear TFL */
+ s->sssr &= ~SSSR_TNF;
+ if (s->enable) {
+ s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
+ if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
+ s->sssr |= SSSR_RFS;
+ else
+ s->sssr &= ~SSSR_RFS;
+ if (0 <= SSCR1_TFT(s->sscr[1]))
+ s->sssr |= SSSR_TFS;
+ else
+ s->sssr &= ~SSSR_TFS;
+ if (s->rx_level)
+ s->sssr |= SSSR_RNE;
+ else
+ s->sssr &= ~SSSR_RNE;
+ s->sssr |= SSSR_TNF;
+ }
+
+ pxa2xx_ssp_int_update(s);
+}
+
+static uint32_t pxa2xx_ssp_read(void *opaque, target_phys_addr_t addr)
+{
+ struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
+ uint32_t retval;
+ addr -= s->base;
+
+ switch (addr) {
+ case SSCR0:
+ return s->sscr[0];
+ case SSCR1:
+ return s->sscr[1];
+ case SSPSP:
+ return s->sspsp;
+ case SSTO:
+ return s->ssto;
+ case SSITR:
+ return s->ssitr;
+ case SSSR:
+ return s->sssr | s->ssitr;
+ case SSDR:
+ if (!s->enable)
+ return 0xffffffff;
+ if (s->rx_level < 1) {
+ printf("%s: SSP Rx Underrun\n", __FUNCTION__);
+ return 0xffffffff;
+ }
+ s->rx_level --;
+ retval = s->rx_fifo[s->rx_start ++];
+ s->rx_start &= 0xf;
+ pxa2xx_ssp_fifo_update(s);
+ return retval;
+ case SSTSA:
+ return s->sstsa;
+ case SSRSA:
+ return s->ssrsa;
+ case SSTSS:
+ return 0;
+ case SSACD:
+ return s->ssacd;
+ default:
+ printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
+ break;
+ }
+ return 0;
+}
+
+static void pxa2xx_ssp_write(void *opaque, target_phys_addr_t addr,
+ uint32_t value)
+{
+ struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
+ addr -= s->base;
+
+ switch (addr) {
+ case SSCR0:
+ s->sscr[0] = value & 0xc7ffffff;
+ s->enable = value & SSCR0_SSE;
+ if (value & SSCR0_MOD)
+ printf("%s: Attempt to use network mode\n", __FUNCTION__);
+ if (s->enable && SSCR0_DSS(value) < 4)
+ printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
+ SSCR0_DSS(value));
+ if (!(value & SSCR0_SSE)) {
+ s->sssr = 0;
+ s->ssitr = 0;
+ s->rx_level = 0;
+ }
+ pxa2xx_ssp_fifo_update(s);
+ break;
+
+ case SSCR1:
+ s->sscr[1] = value;
+ if (value & (SSCR1_LBM | SSCR1_EFWR))
+ printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
+ pxa2xx_ssp_fifo_update(s);
+ break;
+
+ case SSPSP:
+ s->sspsp = value;
+ break;
+
+ case SSTO:
+ s->ssto = value;
+ break;
+
+ case SSITR:
+ s->ssitr = value & SSITR_INT;
+ pxa2xx_ssp_int_update(s);
+ break;
+
+ case SSSR:
+ s->sssr &= ~(value & SSSR_RW);
+ pxa2xx_ssp_int_update(s);
+ break;
+
+ case SSDR:
+ if (SSCR0_UWIRE(s->sscr[0])) {
+ if (s->sscr[1] & SSCR1_MWDS)
+ value &= 0xffff;
+ else
+ value &= 0xff;
+ } else
+ /* Note how 32bits overflow does no harm here */
+ value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
+
+ /* Data goes from here to the Tx FIFO and is shifted out from
+ * there directly to the slave, no need to buffer it.
+ */
+ if (s->enable) {
+ if (s->writefn)
+ s->writefn(s->opaque, value);
+
+ if (s->rx_level < 0x10) {
+ if (s->readfn)
+ s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] =
+ s->readfn(s->opaque);
+ else
+ s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = 0x0;
+ } else
+ s->sssr |= SSSR_ROR;
+ }
+ pxa2xx_ssp_fifo_update(s);
+ break;
+
+ case SSTSA:
+ s->sstsa = value;
+ break;
+
+ case SSRSA:
+ s->ssrsa = value;
+ break;
+
+ case SSACD:
+ s->ssacd = value;
+ break;
+
+ default:
+ printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
+ break;
+ }
+}
+
+void pxa2xx_ssp_attach(struct pxa2xx_ssp_s *port,
+ uint32_t (*readfn)(void *opaque),
+ void (*writefn)(void *opaque, uint32_t value), void *opaque)
+{
+ if (!port) {
+ printf("%s: no such SSP\n", __FUNCTION__);
+ exit(-1);
+ }
+
+ port->opaque = opaque;
+ port->readfn = readfn;
+ port->writefn = writefn;
+}
+
+static CPUReadMemoryFunc *pxa2xx_ssp_readfn[] = {
+ pxa2xx_ssp_read,
+ pxa2xx_ssp_read,
+ pxa2xx_ssp_read,
+};
+
+static CPUWriteMemoryFunc *pxa2xx_ssp_writefn[] = {
+ pxa2xx_ssp_write,
+ pxa2xx_ssp_write,
+ pxa2xx_ssp_write,
+};
+
+/* Real-Time Clock */
+#define RCNR 0x00 /* RTC Counter register */
+#define RTAR 0x04 /* RTC Alarm register */
+#define RTSR 0x08 /* RTC Status register */
+#define RTTR 0x0c /* RTC Timer Trim register */
+#define RDCR 0x10 /* RTC Day Counter register */
+#define RYCR 0x14 /* RTC Year Counter register */
+#define RDAR1 0x18 /* RTC Wristwatch Day Alarm register 1 */
+#define RYAR1 0x1c /* RTC Wristwatch Year Alarm register 1 */
+#define RDAR2 0x20 /* RTC Wristwatch Day Alarm register 2 */
+#define RYAR2 0x24 /* RTC Wristwatch Year Alarm register 2 */
+#define SWCR 0x28 /* RTC Stopwatch Counter register */
+#define SWAR1 0x2c /* RTC Stopwatch Alarm register 1 */
+#define SWAR2 0x30 /* RTC Stopwatch Alarm register 2 */
+#define RTCPICR 0x34 /* RTC Periodic Interrupt Counter register */
+#define PIAR 0x38 /* RTC Periodic Interrupt Alarm register */
+
+static inline void pxa2xx_rtc_int_update(struct pxa2xx_state_s *s)
+{
+ qemu_set_irq(s->pic[PXA2XX_PIC_RTCALARM], !!(s->rtsr & 0x2553));
+}
+
+static void pxa2xx_rtc_hzupdate(struct pxa2xx_state_s *s)
+{
+ int64_t rt = qemu_get_clock(rt_clock);
+ s->last_rcnr += ((rt - s->last_hz) << 15) /
+ (1000 * ((s->rttr & 0xffff) + 1));
+ s->last_rdcr += ((rt - s->last_hz) << 15) /
+ (1000 * ((s->rttr & 0xffff) + 1));
+ s->last_hz = rt;
+}
+
+static void pxa2xx_rtc_swupdate(struct pxa2xx_state_s *s)
+{
+ int64_t rt = qemu_get_clock(rt_clock);
+ if (s->rtsr & (1 << 12))
+ s->last_swcr += (rt - s->last_sw) / 10;
+ s->last_sw = rt;
+}
+
+static void pxa2xx_rtc_piupdate(struct pxa2xx_state_s *s)
+{
+ int64_t rt = qemu_get_clock(rt_clock);
+ if (s->rtsr & (1 << 15))
+ s->last_swcr += rt - s->last_pi;
+ s->last_pi = rt;
+}
+
+static inline void pxa2xx_rtc_alarm_update(struct pxa2xx_state_s *s,
+ uint32_t rtsr)
+{
+ if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
+ qemu_mod_timer(s->rtc_hz, s->last_hz +
+ (((s->rtar - s->last_rcnr) * 1000 *
+ ((s->rttr & 0xffff) + 1)) >> 15));
+ else
+ qemu_del_timer(s->rtc_hz);
+
+ if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
+ qemu_mod_timer(s->rtc_rdal1, s->last_hz +
+ (((s->rdar1 - s->last_rdcr) * 1000 *
+ ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
+ else
+ qemu_del_timer(s->rtc_rdal1);
+
+ if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
+ qemu_mod_timer(s->rtc_rdal2, s->last_hz +
+ (((s->rdar2 - s->last_rdcr) * 1000 *
+ ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
+ else
+ qemu_del_timer(s->rtc_rdal2);
+
+ if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
+ qemu_mod_timer(s->rtc_swal1, s->last_sw +
+ (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
+ else
+ qemu_del_timer(s->rtc_swal1);
+
+ if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
+ qemu_mod_timer(s->rtc_swal2, s->last_sw +
+ (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
+ else
+ qemu_del_timer(s->rtc_swal2);
+
+ if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
+ qemu_mod_timer(s->rtc_pi, s->last_pi +
+ (s->piar & 0xffff) - s->last_rtcpicr);
+ else
+ qemu_del_timer(s->rtc_pi);
+}
+
+static inline void pxa2xx_rtc_hz_tick(void *opaque)
+{
+ struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
+ s->rtsr |= (1 << 0);
+ pxa2xx_rtc_alarm_update(s, s->rtsr);
+ pxa2xx_rtc_int_update(s);
+}
+
+static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
+{
+ struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
+ s->rtsr |= (1 << 4);
+ pxa2xx_rtc_alarm_update(s, s->rtsr);
+ pxa2xx_rtc_int_update(s);
+}
+
+static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
+{
+ struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
+ s->rtsr |= (1 << 6);
+ pxa2xx_rtc_alarm_update(s, s->rtsr);
+ pxa2xx_rtc_int_update(s);
+}
+
+static inline void pxa2xx_rtc_swal1_tick(void *opaque)
+{
+ struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
+ s->rtsr |= (1 << 8);
+ pxa2xx_rtc_alarm_update(s, s->rtsr);
+ pxa2xx_rtc_int_update(s);
+}
+
+static inline void pxa2xx_rtc_swal2_tick(void *opaque)
+{
+ struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
+ s->rtsr |= (1 << 10);
+ pxa2xx_rtc_alarm_update(s, s->rtsr);
+ pxa2xx_rtc_int_update(s);
+}
+
+static inline void pxa2xx_rtc_pi_tick(void *opaque)
+{
+ struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
+ s->rtsr |= (1 << 13);
+ pxa2xx_rtc_piupdate(s);
+ s->last_rtcpicr = 0;
+ pxa2xx_rtc_alarm_update(s, s->rtsr);
+ pxa2xx_rtc_int_update(s);
+}
+
+static uint32_t pxa2xx_rtc_read(void *opaque, target_phys_addr_t addr)
+{
+ struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
+ addr -= s->rtc_base;
+
+ switch (addr) {
+ case RTTR:
+ return s->rttr;
+ case RTSR:
+ return s->rtsr;
+ case RTAR:
+ return s->rtar;
+ case RDAR1:
+ return s->rdar1;
+ case RDAR2:
+ return s->rdar2;
+ case RYAR1:
+ return s->ryar1;
+ case RYAR2:
+ return s->ryar2;
+ case SWAR1:
+ return s->swar1;
+ case SWAR2:
+ return s->swar2;
+ case PIAR:
+ return s->piar;
+ case RCNR:
+ return s->last_rcnr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
+ (1000 * ((s->rttr & 0xffff) + 1));
+ case RDCR:
+ return s->last_rdcr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
+ (1000 * ((s->rttr & 0xffff) + 1));
+ case RYCR:
+ return s->last_rycr;
+ case SWCR:
+ if (s->rtsr & (1 << 12))
+ return s->last_swcr + (qemu_get_clock(rt_clock) - s->last_sw) / 10;
+ else
+ return s->last_swcr;
+ default:
+ printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
+ break;
+ }
+ return 0;
+}
+
+static void pxa2xx_rtc_write(void *opaque, target_phys_addr_t addr,
+ uint32_t value)
+{
+ struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
+ addr -= s->rtc_base;
+
+ switch (addr) {
+ case RTTR:
+ if (!(s->rttr & (1 << 31))) {
+ pxa2xx_rtc_hzupdate(s);
+ s->rttr = value;
+ pxa2xx_rtc_alarm_update(s, s->rtsr);
+ }
+ break;
+
+ case RTSR:
+ if ((s->rtsr ^ value) & (1 << 15))
+ pxa2xx_rtc_piupdate(s);
+
+ if ((s->rtsr ^ value) & (1 << 12))
+ pxa2xx_rtc_swupdate(s);
+
+ if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
+ pxa2xx_rtc_alarm_update(s, value);
+
+ s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
+ pxa2xx_rtc_int_update(s);
+ break;
+
+ case RTAR:
+ s->rtar = value;
+ pxa2xx_rtc_alarm_update(s, s->rtsr);
+ break;
+
+ case RDAR1:
+ s->rdar1 = value;
+ pxa2xx_rtc_alarm_update(s, s->rtsr);
+ break;
+
+ case RDAR2:
+ s->rdar2 = value;
+ pxa2xx_rtc_alarm_update(s, s->rtsr);
+ break;
+
+ case RYAR1:
+ s->ryar1 = value;
+ pxa2xx_rtc_alarm_update(s, s->rtsr);
+ break;
+
+ case RYAR2:
+ s->ryar2 = value;
+ pxa2xx_rtc_alarm_update(s, s->rtsr);
+ break;
+
+ case SWAR1:
+ pxa2xx_rtc_swupdate(s);
+ s->swar1 = value;
+ s->last_swcr = 0;
+ pxa2xx_rtc_alarm_update(s, s->rtsr);
+ break;
+
+ case SWAR2:
+ s->swar2 = value;
+ pxa2xx_rtc_alarm_update(s, s->rtsr);
+ break;
+
+ case PIAR:
+ s->piar = value;
+ pxa2xx_rtc_alarm_update(s, s->rtsr);
+ break;
+
+ case RCNR:
+ pxa2xx_rtc_hzupdate(s);
+ s->last_rcnr = value;
+ pxa2xx_rtc_alarm_update(s, s->rtsr);
+ break;
+
+ case RDCR:
+ pxa2xx_rtc_hzupdate(s);
+ s->last_rdcr = value;
+ pxa2xx_rtc_alarm_update(s, s->rtsr);
+ break;
+
+ case RYCR:
+ s->last_rycr = value;
+ break;
+
+ case SWCR:
+ pxa2xx_rtc_swupdate(s);
+ s->last_swcr = value;
+ pxa2xx_rtc_alarm_update(s, s->rtsr);
+ break;
+
+ case RTCPICR:
+ pxa2xx_rtc_piupdate(s);
+ s->last_rtcpicr = value & 0xffff;
+ pxa2xx_rtc_alarm_update(s, s->rtsr);
+ break;
+
+ default:
+ printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
+ }
+}
+
+static void pxa2xx_rtc_reset(struct pxa2xx_state_s *s)
+{
+ struct tm *tm;
+ time_t ti;
+ int wom;
+
+ s->rttr = 0x7fff;
+ s->rtsr = 0;
+
+ time(&ti);
+ if (rtc_utc)
+ tm = gmtime(&ti);
+ else
+ tm = localtime(&ti);
+ wom = ((tm->tm_mday - 1) / 7) + 1;
+
+ s->last_rcnr = (uint32_t) ti;
+ s->last_rdcr = (wom << 20) | ((tm->tm_wday + 1) << 17) |
+ (tm->tm_hour << 12) | (tm->tm_min << 6) | tm->tm_sec;
+ s->last_rycr = ((tm->tm_year + 1900) << 9) |
+ ((tm->tm_mon + 1) << 5) | tm->tm_mday;
+ s->last_swcr = (tm->tm_hour << 19) |
+ (tm->tm_min << 13) | (tm->tm_sec << 7);
+ s->last_rtcpicr = 0;
+ s->last_hz = s->last_sw = s->last_pi = qemu_get_clock(rt_clock);
+
+ s->rtc_hz = qemu_new_timer(rt_clock, pxa2xx_rtc_hz_tick, s);
+ s->rtc_rdal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal1_tick, s);
+ s->rtc_rdal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal2_tick, s);
+ s->rtc_swal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal1_tick, s);
+ s->rtc_swal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal2_tick, s);
+ s->rtc_pi = qemu_new_timer(rt_clock, pxa2xx_rtc_pi_tick, s);
+}
+
+static CPUReadMemoryFunc *pxa2xx_rtc_readfn[] = {
+ pxa2xx_rtc_read,
+ pxa2xx_rtc_read,
+ pxa2xx_rtc_read,
+};
+
+static CPUWriteMemoryFunc *pxa2xx_rtc_writefn[] = {
+ pxa2xx_rtc_write,
+ pxa2xx_rtc_write,
+ pxa2xx_rtc_write,
+};
+
+/* PXA Inter-IC Sound Controller */
+static void pxa2xx_i2s_reset(struct pxa2xx_i2s_s *i2s)
+{
+ i2s->rx_len = 0;
+ i2s->tx_len = 0;
+ i2s->fifo_len = 0;
+ i2s->clk = 0x1a;
+ i2s->control[0] = 0x00;
+ i2s->control[1] = 0x00;
+ i2s->status = 0x00;
+ i2s->mask = 0x00;
+}
+
+#define SACR_TFTH(val) ((val >> 8) & 0xf)
+#define SACR_RFTH(val) ((val >> 12) & 0xf)
+#define SACR_DREC(val) (val & (1 << 3))
+#define SACR_DPRL(val) (val & (1 << 4))
+
+static inline void pxa2xx_i2s_update(struct pxa2xx_i2s_s *i2s)
+{
+ int rfs, tfs;
+ rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
+ !SACR_DREC(i2s->control[1]);
+ tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
+ i2s->enable && !SACR_DPRL(i2s->control[1]);
+
+ pxa2xx_dma_request(i2s->dma, PXA2XX_RX_RQ_I2S, rfs);
+ pxa2xx_dma_request(i2s->dma, PXA2XX_TX_RQ_I2S, tfs);
+
+ i2s->status &= 0xe0;
+ if (i2s->rx_len)
+ i2s->status |= 1 << 1; /* RNE */
+ if (i2s->enable)
+ i2s->status |= 1 << 2; /* BSY */
+ if (tfs)
+ i2s->status |= 1 << 3; /* TFS */
+ if (rfs)
+ i2s->status |= 1 << 4; /* RFS */
+ if (!(i2s->tx_len && i2s->enable))
+ i2s->status |= i2s->fifo_len << 8; /* TFL */
+ i2s->status |= MAX(i2s->rx_len, 0xf) << 12; /* RFL */
+
+ qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
+}
+
+#define SACR0 0x00 /* Serial Audio Global Control register */
+#define SACR1 0x04 /* Serial Audio I2S/MSB-Justified Control register */
+#define SASR0 0x0c /* Serial Audio Interface and FIFO Status register */
+#define SAIMR 0x14 /* Serial Audio Interrupt Mask register */
+#define SAICR 0x18 /* Serial Audio Interrupt Clear register */
+#define SADIV 0x60 /* Serial Audio Clock Divider register */
+#define SADR 0x80 /* Serial Audio Data register */
+
+static uint32_t pxa2xx_i2s_read(void *opaque, target_phys_addr_t addr)
+{
+ struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
+ addr -= s->base;
+
+ switch (addr) {
+ case SACR0:
+ return s->control[0];
+ case SACR1:
+ return s->control[1];
+ case SASR0:
+ return s->status;
+ case SAIMR:
+ return s->mask;
+ case SAICR:
+ return 0;
+ case SADIV:
+ return s->clk;
+ case SADR:
+ if (s->rx_len > 0) {
+ s->rx_len --;
+ pxa2xx_i2s_update(s);
+ return s->codec_in(s->opaque);
+ }
+ return 0;
+ default:
+ printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
+ break;
+ }
+ return 0;
+}
+
+static void pxa2xx_i2s_write(void *opaque, target_phys_addr_t addr,
+ uint32_t value)
+{
+ struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
+ uint32_t *sample;
+ addr -= s->base;
+
+ switch (addr) {
+ case SACR0:
+ if (value & (1 << 3)) /* RST */
+ pxa2xx_i2s_reset(s);
+ s->control[0] = value & 0xff3d;
+ if (!s->enable && (value & 1) && s->tx_len) { /* ENB */
+ for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
+ s->codec_out(s->opaque, *sample);
+ s->status &= ~(1 << 7); /* I2SOFF */
+ }
+ if (value & (1 << 4)) /* EFWR */
+ printf("%s: Attempt to use special function\n", __FUNCTION__);
+ s->enable = ((value ^ 4) & 5) == 5; /* ENB && !RST*/
+ pxa2xx_i2s_update(s);
+ break;
+ case SACR1:
+ s->control[1] = value & 0x0039;
+ if (value & (1 << 5)) /* ENLBF */
+ printf("%s: Attempt to use loopback function\n", __FUNCTION__);
+ if (value & (1 << 4)) /* DPRL */
+ s->fifo_len = 0;
+ pxa2xx_i2s_update(s);
+ break;
+ case SAIMR:
+ s->mask = value & 0x0078;
+ pxa2xx_i2s_update(s);
+ break;
+ case SAICR:
+ s->status &= ~(value & (3 << 5));
+ pxa2xx_i2s_update(s);
+ break;
+ case SADIV:
+ s->clk = value & 0x007f;
+ break;
+ case SADR:
+ if (s->tx_len && s->enable) {
+ s->tx_len --;
+ pxa2xx_i2s_update(s);
+ s->codec_out(s->opaque, value);
+ } else if (s->fifo_len < 16) {
+ s->fifo[s->fifo_len ++] = value;
+ pxa2xx_i2s_update(s);
+ }
+ break;
+ default:
+ printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
+ }
+}
+
+static CPUReadMemoryFunc *pxa2xx_i2s_readfn[] = {
+ pxa2xx_i2s_read,
+ pxa2xx_i2s_read,
+ pxa2xx_i2s_read,
+};
+
+static CPUWriteMemoryFunc *pxa2xx_i2s_writefn[] = {
+ pxa2xx_i2s_write,
+ pxa2xx_i2s_write,
+ pxa2xx_i2s_write,
+};
+
+static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
+{
+ struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
+ uint32_t *sample;
+
+ /* Signal FIFO errors */
+ if (s->enable && s->tx_len)
+ s->status |= 1 << 5; /* TUR */
+ if (s->enable && s->rx_len)
+ s->status |= 1 << 6; /* ROR */
+
+ /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
+ * handle the cases where it makes a difference. */
+ s->tx_len = tx - s->fifo_len;
+ s->rx_len = rx;
+ /* Note that is s->codec_out wasn't set, we wouldn't get called. */
+ if (s->enable)
+ for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
+ s->codec_out(s->opaque, *sample);
+ pxa2xx_i2s_update(s);
+}
+
+static struct pxa2xx_i2s_s *pxa2xx_i2s_init(target_phys_addr_t base,
+ qemu_irq irq, struct pxa2xx_dma_state_s *dma)
+{
+ int iomemtype;
+ struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *)
+ qemu_mallocz(sizeof(struct pxa2xx_i2s_s));
+
+ s->base = base;
+ s->irq = irq;
+ s->dma = dma;
+ s->data_req = pxa2xx_i2s_data_req;
+
+ pxa2xx_i2s_reset(s);
+
+ iomemtype = cpu_register_io_memory(0, pxa2xx_i2s_readfn,
+ pxa2xx_i2s_writefn, s);
+ cpu_register_physical_memory(s->base & 0xfff00000, 0xfffff, iomemtype);
+
+ return s;
+}
+
+/* PXA Fast Infra-red Communications Port */
+struct pxa2xx_fir_s {
+ target_phys_addr_t base;
+ qemu_irq irq;
+ struct pxa2xx_dma_state_s *dma;
+ int enable;
+ CharDriverState *chr;
+
+ uint8_t control[3];
+ uint8_t status[2];
+
+ int rx_len;
+ int rx_start;
+ uint8_t rx_fifo[64];
+};
+
+static void pxa2xx_fir_reset(struct pxa2xx_fir_s *s)
+{
+ s->control[0] = 0x00;
+ s->control[1] = 0x00;
+ s->control[2] = 0x00;
+ s->status[0] = 0x00;
+ s->status[1] = 0x00;
+ s->enable = 0;
+}
+
+static inline void pxa2xx_fir_update(struct pxa2xx_fir_s *s)
+{
+ static const int tresh[4] = { 8, 16, 32, 0 };
+ int intr = 0;
+ if ((s->control[0] & (1 << 4)) && /* RXE */
+ s->rx_len >= tresh[s->control[2] & 3]) /* TRIG */
+ s->status[0] |= 1 << 4; /* RFS */
+ else
+ s->status[0] &= ~(1 << 4); /* RFS */
+ if (s->control[0] & (1 << 3)) /* TXE */
+ s->status[0] |= 1 << 3; /* TFS */
+ else
+ s->status[0] &= ~(1 << 3); /* TFS */
+ if (s->rx_len)
+ s->status[1] |= 1 << 2; /* RNE */
+ else
+ s->status[1] &= ~(1 << 2); /* RNE */
+ if (s->control[0] & (1 << 4)) /* RXE */
+ s->status[1] |= 1 << 0; /* RSY */
+ else
+ s->status[1] &= ~(1 << 0); /* RSY */
+
+ intr |= (s->control[0] & (1 << 5)) && /* RIE */
+ (s->status[0] & (1 << 4)); /* RFS */
+ intr |= (s->control[0] & (1 << 6)) && /* TIE */
+ (s->status[0] & (1 << 3)); /* TFS */
+ intr |= (s->control[2] & (1 << 4)) && /* TRAIL */
+ (s->status[0] & (1 << 6)); /* EOC */
+ intr |= (s->control[0] & (1 << 2)) && /* TUS */
+ (s->status[0] & (1 << 1)); /* TUR */
+ intr |= s->status[0] & 0x25; /* FRE, RAB, EIF */
+
+ pxa2xx_dma_request(s->dma, PXA2XX_RX_RQ_ICP, (s->status[0] >> 4) & 1);
+ pxa2xx_dma_request(s->dma, PXA2XX_TX_RQ_ICP, (s->status[0] >> 3) & 1);
+
+ qemu_set_irq(s->irq, intr && s->enable);
+}
+
+#define ICCR0 0x00 /* FICP Control register 0 */
+#define ICCR1 0x04 /* FICP Control register 1 */
+#define ICCR2 0x08 /* FICP Control register 2 */
+#define ICDR 0x0c /* FICP Data register */
+#define ICSR0 0x14 /* FICP Status register 0 */
+#define ICSR1 0x18 /* FICP Status register 1 */
+#define ICFOR 0x1c /* FICP FIFO Occupancy Status register */
+
+static uint32_t pxa2xx_fir_read(void *opaque, target_phys_addr_t addr)
+{
+ struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
+ uint8_t ret;
+ addr -= s->base;
+
+ switch (addr) {
+ case ICCR0:
+ return s->control[0];
+ case ICCR1:
+ return s->control[1];
+ case ICCR2:
+ return s->control[2];
+ case ICDR:
+ s->status[0] &= ~0x01;
+ s->status[1] &= ~0x72;
+ if (s->rx_len) {
+ s->rx_len --;
+ ret = s->rx_fifo[s->rx_start ++];
+ s->rx_start &= 63;
+ pxa2xx_fir_update(s);
+ return ret;
+ }
+ printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
+ break;
+ case ICSR0:
+ return s->status[0];
+ case ICSR1:
+ return s->status[1] | (1 << 3); /* TNF */
+ case ICFOR:
+ return s->rx_len;
+ default:
+ printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
+ break;
+ }
+ return 0;
+}
+
+static void pxa2xx_fir_write(void *opaque, target_phys_addr_t addr,
+ uint32_t value)
+{
+ struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
+ uint8_t ch;
+ addr -= s->base;
+
+ switch (addr) {
+ case ICCR0:
+ s->control[0] = value;
+ if (!(value & (1 << 4))) /* RXE */
+ s->rx_len = s->rx_start = 0;
+ if (!(value & (1 << 3))) /* TXE */
+ /* Nop */;
+ s->enable = value & 1; /* ITR */
+ if (!s->enable)
+ s->status[0] = 0;
+ pxa2xx_fir_update(s);
+ break;
+ case ICCR1:
+ s->control[1] = value;
+ break;
+ case ICCR2:
+ s->control[2] = value & 0x3f;
+ pxa2xx_fir_update(s);
+ break;
+ case ICDR:
+ if (s->control[2] & (1 << 2)) /* TXP */
+ ch = value;
+ else
+ ch = ~value;
+ if (s->chr && s->enable && (s->control[0] & (1 << 3))) /* TXE */
+ qemu_chr_write(s->chr, &ch, 1);
+ break;
+ case ICSR0:
+ s->status[0] &= ~(value & 0x66);
+ pxa2xx_fir_update(s);
+ break;
+ case ICFOR:
+ break;
+ default:
+ printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
+ }
+}
+
+static CPUReadMemoryFunc *pxa2xx_fir_readfn[] = {
+ pxa2xx_fir_read,
+ pxa2xx_fir_read,
+ pxa2xx_fir_read,
+};
+
+static CPUWriteMemoryFunc *pxa2xx_fir_writefn[] = {
+ pxa2xx_fir_write,
+ pxa2xx_fir_write,
+ pxa2xx_fir_write,
+};
+
+static int pxa2xx_fir_is_empty(void *opaque)
+{
+ struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
+ return (s->rx_len < 64);
+}
+
+static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
+{
+ struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
+ if (!(s->control[0] & (1 << 4))) /* RXE */
+ return;
+
+ while (size --) {
+ s->status[1] |= 1 << 4; /* EOF */
+ if (s->rx_len >= 64) {
+ s->status[1] |= 1 << 6; /* ROR */
+ break;
+ }
+
+ if (s->control[2] & (1 << 3)) /* RXP */
+ s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
+ else
+ s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
+ }
+
+ pxa2xx_fir_update(s);
+}
+
+static void pxa2xx_fir_event(void *opaque, int event)
+{
+}
+
+static struct pxa2xx_fir_s *pxa2xx_fir_init(target_phys_addr_t base,
+ qemu_irq irq, struct pxa2xx_dma_state_s *dma,
+ CharDriverState *chr)
+{
+ int iomemtype;
+ struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *)
+ qemu_mallocz(sizeof(struct pxa2xx_fir_s));
+
+ s->base = base;
+ s->irq = irq;
+ s->dma = dma;
+ s->chr = chr;
+
+ pxa2xx_fir_reset(s);
+
+ iomemtype = cpu_register_io_memory(0, pxa2xx_fir_readfn,
+ pxa2xx_fir_writefn, s);
+ cpu_register_physical_memory(s->base, 0xfff, iomemtype);
+
+ if (chr)
+ qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
+ pxa2xx_fir_rx, pxa2xx_fir_event, s);
+
+ return s;
+}
+
+void pxa2xx_reset(int line, int level, void *opaque)
+{
+ struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
+ if (level && (s->pm_regs[PCFR >> 2] & 0x10)) { /* GPR_EN */
+ cpu_reset(s->env);
+ /* TODO: reset peripherals */
+ }
+}
+
+/* Initialise a PXA270 integrated chip (ARM based core). */
+struct pxa2xx_state_s *pxa270_init(DisplayState *ds, const char *revision)
+{
+ struct pxa2xx_state_s *s;
+ struct pxa2xx_ssp_s *ssp;
+ char *cpu_model;
+ int iomemtype, i;
+ s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));
+
+ s->env = cpu_init();
+ asprintf(&cpu_model, "pxa270-%s", revision);
+ cpu_arm_set_model(s->env, cpu_model);
+ free(cpu_model);
+
+ s->pic = pxa2xx_pic_init(0x40d00000, s->env);
+
+ s->dma = pxa27x_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
+
+ s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121);
+
+ for (i = 0; pxa270_serial[i].io_base; i ++)
+ if (serial_hds[i])
+ serial_mm_init(pxa270_serial[i].io_base, 2,
+ s->pic[pxa270_serial[i].irqn], serial_hds[i], 1);
+ else
+ break;
+ if (serial_hds[i])
+ s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
+ s->dma, serial_hds[i]);
+
+ s->cm_base = 0x41300000;
+ s->cm_regs[CCCR >> 4] = 0x02000210; /* 416.0 MHz */
+ s->clkcfg = 0x00000009; /* Turbo mode active */
+ iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
+ pxa2xx_cm_writefn, s);
+ cpu_register_physical_memory(s->cm_base, 0xfff, iomemtype);
+
+ cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
+
+ s->mm_base = 0x48000000;
+ s->mm_regs[MDMRS >> 2] = 0x00020002;
+ s->mm_regs[MDREFR >> 2] = 0x03ca4000;
+ s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
+ iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
+ pxa2xx_mm_writefn, s);
+ cpu_register_physical_memory(s->mm_base, 0xfff, iomemtype);
+
+ for (i = 0; pxa27x_ssp[i].io_base; i ++);
+ s->ssp = (struct pxa2xx_ssp_s **)
+ qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
+ ssp = (struct pxa2xx_ssp_s *)
+ qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
+ for (i = 0; pxa27x_ssp[i].io_base; i ++) {
+ s->ssp[i] = &ssp[i];
+ ssp[i].base = pxa27x_ssp[i].io_base;
+ ssp[i].irq = s->pic[pxa27x_ssp[i].irqn];
+
+ iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
+ pxa2xx_ssp_writefn, &ssp[i]);
+ cpu_register_physical_memory(ssp[i].base, 0xfff, iomemtype);
+ }
+
+ s->rtc_base = 0x40900000;
+ iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
+ pxa2xx_rtc_writefn, s);
+ cpu_register_physical_memory(s->rtc_base, 0xfff, iomemtype);
+ pxa2xx_rtc_reset(s);
+
+ s->pm_base = 0x40f00000;
+ iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
+ pxa2xx_pm_writefn, s);
+ cpu_register_physical_memory(s->pm_base, 0xfff, iomemtype);
+
+ s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
+
+ /* GPIO1 resets the processor */
+ /* The handler can be overriden by board-specific code */
+ pxa2xx_gpio_handler_set(s->gpio, 1, pxa2xx_reset, s);
+ return s;
+}
+
+/* Initialise a PXA255 integrated chip (ARM based core). */
+struct pxa2xx_state_s *pxa255_init(DisplayState *ds)
+{
+ struct pxa2xx_state_s *s;
+ struct pxa2xx_ssp_s *ssp;
+ int iomemtype, i;
+ s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));
+
+ s->env = cpu_init();
+ cpu_arm_set_model(s->env, "pxa255");
+
+ s->pic = pxa2xx_pic_init(0x40d00000, s->env);
+
+ s->dma = pxa255_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
+
+ s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121);
+
+ for (i = 0; pxa255_serial[i].io_base; i ++)
+ if (serial_hds[i])
+ serial_mm_init(pxa255_serial[i].io_base, 2,
+ s->pic[pxa255_serial[i].irqn], serial_hds[i], 1);
+ else
+ break;
+ if (serial_hds[i])
+ s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
+ s->dma, serial_hds[i]);
+
+ s->cm_base = 0x41300000;
+ s->cm_regs[CCCR >> 4] = 0x02000210; /* 416.0 MHz */
+ s->clkcfg = 0x00000009; /* Turbo mode active */
+ iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
+ pxa2xx_cm_writefn, s);
+ cpu_register_physical_memory(s->cm_base, 0xfff, iomemtype);
+
+ cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
+
+ s->mm_base = 0x48000000;
+ s->mm_regs[MDMRS >> 2] = 0x00020002;
+ s->mm_regs[MDREFR >> 2] = 0x03ca4000;
+ s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
+ iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
+ pxa2xx_mm_writefn, s);
+ cpu_register_physical_memory(s->mm_base, 0xfff, iomemtype);
+
+ for (i = 0; pxa255_ssp[i].io_base; i ++);
+ s->ssp = (struct pxa2xx_ssp_s **)
+ qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
+ ssp = (struct pxa2xx_ssp_s *)
+ qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
+ for (i = 0; pxa255_ssp[i].io_base; i ++) {
+ s->ssp[i] = &ssp[i];
+ ssp[i].base = pxa255_ssp[i].io_base;
+ ssp[i].irq = s->pic[pxa255_ssp[i].irqn];
+
+ iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
+ pxa2xx_ssp_writefn, &ssp[i]);
+ cpu_register_physical_memory(ssp[i].base, 0xfff, iomemtype);
+ }
+
+ s->rtc_base = 0x40900000;
+ iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
+ pxa2xx_rtc_writefn, s);
+ cpu_register_physical_memory(s->rtc_base, 0xfff, iomemtype);
+ pxa2xx_rtc_reset(s);
+
+ s->pm_base = 0x40f00000;
+ iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
+ pxa2xx_pm_writefn, s);
+ cpu_register_physical_memory(s->pm_base, 0xfff, iomemtype);
+
+ s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
+
+ /* GPIO1 resets the processor */
+ /* The handler can be overriden by board-specific code */
+ pxa2xx_gpio_handler_set(s->gpio, 1, pxa2xx_reset, s);
+ return s;
+}