diff options
author | Sergio Lopez <slp@redhat.com> | 2019-10-08 11:56:49 +0200 |
---|---|---|
committer | Paolo Bonzini <pbonzini@redhat.com> | 2019-10-22 09:38:42 +0200 |
commit | 549e984e67d8b3ea868be4ba935cecb9c1e753dc (patch) | |
tree | ca3d3bda8ff3619f79a1ee356de497ac07577dfa /hw/i386/x86.c | |
parent | 86a9a7916b6b69e429f078dd9c89c2907ff43308 (diff) |
hw/i386/pc: move shared x86 functions to x86.c and export them
Move x86 functions that will be shared between PC and non-PC machine
types to x86.c, along with their helpers.
Signed-off-by: Sergio Lopez <slp@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Stefano Garzarella <sgarzare@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Diffstat (limited to 'hw/i386/x86.c')
-rw-r--r-- | hw/i386/x86.c | 690 |
1 files changed, 690 insertions, 0 deletions
diff --git a/hw/i386/x86.c b/hw/i386/x86.c new file mode 100644 index 0000000000..71fb093983 --- /dev/null +++ b/hw/i386/x86.c @@ -0,0 +1,690 @@ +/* + * Copyright (c) 2003-2004 Fabrice Bellard + * Copyright (c) 2019 Red Hat, Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ +#include "qemu/osdep.h" +#include "qemu/error-report.h" +#include "qemu/option.h" +#include "qemu/cutils.h" +#include "qemu/units.h" +#include "qemu-common.h" +#include "qapi/error.h" +#include "qapi/qmp/qerror.h" +#include "qapi/qapi-visit-common.h" +#include "qapi/visitor.h" +#include "sysemu/qtest.h" +#include "sysemu/numa.h" +#include "sysemu/replay.h" +#include "sysemu/sysemu.h" + +#include "hw/i386/x86.h" +#include "hw/i386/pc.h" +#include "target/i386/cpu.h" +#include "hw/i386/topology.h" +#include "hw/i386/fw_cfg.h" + +#include "hw/acpi/cpu_hotplug.h" +#include "hw/nmi.h" +#include "hw/loader.h" +#include "multiboot.h" +#include "elf.h" +#include "standard-headers/asm-x86/bootparam.h" + +#define BIOS_FILENAME "bios.bin" + +/* Physical Address of PVH entry point read from kernel ELF NOTE */ +static size_t pvh_start_addr; + +/* + * Calculates initial APIC ID for a specific CPU index + * + * Currently we need to be able to calculate the APIC ID from the CPU index + * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have + * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of + * all CPUs up to max_cpus. + */ +uint32_t x86_cpu_apic_id_from_index(PCMachineState *pcms, + unsigned int cpu_index) +{ + MachineState *ms = MACHINE(pcms); + PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); + uint32_t correct_id; + static bool warned; + + correct_id = x86_apicid_from_cpu_idx(pcms->smp_dies, ms->smp.cores, + ms->smp.threads, cpu_index); + if (pcmc->compat_apic_id_mode) { + if (cpu_index != correct_id && !warned && !qtest_enabled()) { + error_report("APIC IDs set in compatibility mode, " + "CPU topology won't match the configuration"); + warned = true; + } + return cpu_index; + } else { + return correct_id; + } +} + +void x86_cpu_new(PCMachineState *pcms, int64_t apic_id, Error **errp) +{ + Object *cpu = NULL; + Error *local_err = NULL; + CPUX86State *env = NULL; + + cpu = object_new(MACHINE(pcms)->cpu_type); + + env = &X86_CPU(cpu)->env; + env->nr_dies = pcms->smp_dies; + + object_property_set_uint(cpu, apic_id, "apic-id", &local_err); + object_property_set_bool(cpu, true, "realized", &local_err); + + object_unref(cpu); + error_propagate(errp, local_err); +} + +void x86_cpus_init(PCMachineState *pcms) +{ + int i; + const CPUArchIdList *possible_cpus; + MachineState *ms = MACHINE(pcms); + MachineClass *mc = MACHINE_GET_CLASS(pcms); + PCMachineClass *pcmc = PC_MACHINE_CLASS(mc); + + x86_cpu_set_default_version(pcmc->default_cpu_version); + + /* + * Calculates the limit to CPU APIC ID values + * + * Limit for the APIC ID value, so that all + * CPU APIC IDs are < pcms->apic_id_limit. + * + * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). + */ + pcms->apic_id_limit = x86_cpu_apic_id_from_index(pcms, + ms->smp.max_cpus - 1) + 1; + possible_cpus = mc->possible_cpu_arch_ids(ms); + for (i = 0; i < ms->smp.cpus; i++) { + x86_cpu_new(pcms, possible_cpus->cpus[i].arch_id, &error_fatal); + } +} + +CpuInstanceProperties +x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index) +{ + MachineClass *mc = MACHINE_GET_CLASS(ms); + const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); + + assert(cpu_index < possible_cpus->len); + return possible_cpus->cpus[cpu_index].props; +} + +int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx) +{ + X86CPUTopoInfo topo; + PCMachineState *pcms = PC_MACHINE(ms); + + assert(idx < ms->possible_cpus->len); + x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id, + pcms->smp_dies, ms->smp.cores, + ms->smp.threads, &topo); + return topo.pkg_id % ms->numa_state->num_nodes; +} + +const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms) +{ + PCMachineState *pcms = PC_MACHINE(ms); + int i; + unsigned int max_cpus = ms->smp.max_cpus; + + if (ms->possible_cpus) { + /* + * make sure that max_cpus hasn't changed since the first use, i.e. + * -smp hasn't been parsed after it + */ + assert(ms->possible_cpus->len == max_cpus); + return ms->possible_cpus; + } + + ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + + sizeof(CPUArchId) * max_cpus); + ms->possible_cpus->len = max_cpus; + for (i = 0; i < ms->possible_cpus->len; i++) { + X86CPUTopoInfo topo; + + ms->possible_cpus->cpus[i].type = ms->cpu_type; + ms->possible_cpus->cpus[i].vcpus_count = 1; + ms->possible_cpus->cpus[i].arch_id = + x86_cpu_apic_id_from_index(pcms, i); + x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id, + pcms->smp_dies, ms->smp.cores, + ms->smp.threads, &topo); + ms->possible_cpus->cpus[i].props.has_socket_id = true; + ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id; + if (pcms->smp_dies > 1) { + ms->possible_cpus->cpus[i].props.has_die_id = true; + ms->possible_cpus->cpus[i].props.die_id = topo.die_id; + } + ms->possible_cpus->cpus[i].props.has_core_id = true; + ms->possible_cpus->cpus[i].props.core_id = topo.core_id; + ms->possible_cpus->cpus[i].props.has_thread_id = true; + ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id; + } + return ms->possible_cpus; +} + +static long get_file_size(FILE *f) +{ + long where, size; + + /* XXX: on Unix systems, using fstat() probably makes more sense */ + + where = ftell(f); + fseek(f, 0, SEEK_END); + size = ftell(f); + fseek(f, where, SEEK_SET); + + return size; +} + +struct setup_data { + uint64_t next; + uint32_t type; + uint32_t len; + uint8_t data[0]; +} __attribute__((packed)); + + +/* + * The entry point into the kernel for PVH boot is different from + * the native entry point. The PVH entry is defined by the x86/HVM + * direct boot ABI and is available in an ELFNOTE in the kernel binary. + * + * This function is passed to load_elf() when it is called from + * load_elfboot() which then additionally checks for an ELF Note of + * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to + * parse the PVH entry address from the ELF Note. + * + * Due to trickery in elf_opts.h, load_elf() is actually available as + * load_elf32() or load_elf64() and this routine needs to be able + * to deal with being called as 32 or 64 bit. + * + * The address of the PVH entry point is saved to the 'pvh_start_addr' + * global variable. (although the entry point is 32-bit, the kernel + * binary can be either 32-bit or 64-bit). + */ +static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) +{ + size_t *elf_note_data_addr; + + /* Check if ELF Note header passed in is valid */ + if (arg1 == NULL) { + return 0; + } + + if (is64) { + struct elf64_note *nhdr64 = (struct elf64_note *)arg1; + uint64_t nhdr_size64 = sizeof(struct elf64_note); + uint64_t phdr_align = *(uint64_t *)arg2; + uint64_t nhdr_namesz = nhdr64->n_namesz; + + elf_note_data_addr = + ((void *)nhdr64) + nhdr_size64 + + QEMU_ALIGN_UP(nhdr_namesz, phdr_align); + } else { + struct elf32_note *nhdr32 = (struct elf32_note *)arg1; + uint32_t nhdr_size32 = sizeof(struct elf32_note); + uint32_t phdr_align = *(uint32_t *)arg2; + uint32_t nhdr_namesz = nhdr32->n_namesz; + + elf_note_data_addr = + ((void *)nhdr32) + nhdr_size32 + + QEMU_ALIGN_UP(nhdr_namesz, phdr_align); + } + + pvh_start_addr = *elf_note_data_addr; + + return pvh_start_addr; +} + +static bool load_elfboot(const char *kernel_filename, + int kernel_file_size, + uint8_t *header, + size_t pvh_xen_start_addr, + FWCfgState *fw_cfg) +{ + uint32_t flags = 0; + uint32_t mh_load_addr = 0; + uint32_t elf_kernel_size = 0; + uint64_t elf_entry; + uint64_t elf_low, elf_high; + int kernel_size; + + if (ldl_p(header) != 0x464c457f) { + return false; /* no elfboot */ + } + + bool elf_is64 = header[EI_CLASS] == ELFCLASS64; + flags = elf_is64 ? + ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; + + if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ + error_report("elfboot unsupported flags = %x", flags); + exit(1); + } + + uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; + kernel_size = load_elf(kernel_filename, read_pvh_start_addr, + NULL, &elf_note_type, &elf_entry, + &elf_low, &elf_high, 0, I386_ELF_MACHINE, + 0, 0); + + if (kernel_size < 0) { + error_report("Error while loading elf kernel"); + exit(1); + } + mh_load_addr = elf_low; + elf_kernel_size = elf_high - elf_low; + + if (pvh_start_addr == 0) { + error_report("Error loading uncompressed kernel without PVH ELF Note"); + exit(1); + } + fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); + fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); + fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); + + return true; +} + +void x86_load_linux(PCMachineState *pcms, + FWCfgState *fw_cfg) +{ + uint16_t protocol; + int setup_size, kernel_size, cmdline_size; + int dtb_size, setup_data_offset; + uint32_t initrd_max; + uint8_t header[8192], *setup, *kernel; + hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; + FILE *f; + char *vmode; + MachineState *machine = MACHINE(pcms); + PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); + struct setup_data *setup_data; + const char *kernel_filename = machine->kernel_filename; + const char *initrd_filename = machine->initrd_filename; + const char *dtb_filename = machine->dtb; + const char *kernel_cmdline = machine->kernel_cmdline; + + /* Align to 16 bytes as a paranoia measure */ + cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; + + /* load the kernel header */ + f = fopen(kernel_filename, "rb"); + if (!f) { + fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", + kernel_filename, strerror(errno)); + exit(1); + } + + kernel_size = get_file_size(f); + if (!kernel_size || + fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != + MIN(ARRAY_SIZE(header), kernel_size)) { + fprintf(stderr, "qemu: could not load kernel '%s': %s\n", + kernel_filename, strerror(errno)); + exit(1); + } + + /* kernel protocol version */ + if (ldl_p(header + 0x202) == 0x53726448) { + protocol = lduw_p(header + 0x206); + } else { + /* + * This could be a multiboot kernel. If it is, let's stop treating it + * like a Linux kernel. + * Note: some multiboot images could be in the ELF format (the same of + * PVH), so we try multiboot first since we check the multiboot magic + * header before to load it. + */ + if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, + kernel_cmdline, kernel_size, header)) { + return; + } + /* + * Check if the file is an uncompressed kernel file (ELF) and load it, + * saving the PVH entry point used by the x86/HVM direct boot ABI. + * If load_elfboot() is successful, populate the fw_cfg info. + */ + if (pcmc->pvh_enabled && + load_elfboot(kernel_filename, kernel_size, + header, pvh_start_addr, fw_cfg)) { + fclose(f); + + fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, + strlen(kernel_cmdline) + 1); + fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); + + fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); + fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, + header, sizeof(header)); + + /* load initrd */ + if (initrd_filename) { + GMappedFile *mapped_file; + gsize initrd_size; + gchar *initrd_data; + GError *gerr = NULL; + + mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); + if (!mapped_file) { + fprintf(stderr, "qemu: error reading initrd %s: %s\n", + initrd_filename, gerr->message); + exit(1); + } + pcms->initrd_mapped_file = mapped_file; + + initrd_data = g_mapped_file_get_contents(mapped_file); + initrd_size = g_mapped_file_get_length(mapped_file); + initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; + if (initrd_size >= initrd_max) { + fprintf(stderr, "qemu: initrd is too large, cannot support." + "(max: %"PRIu32", need %"PRId64")\n", + initrd_max, (uint64_t)initrd_size); + exit(1); + } + + initrd_addr = (initrd_max - initrd_size) & ~4095; + + fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); + fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); + fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, + initrd_size); + } + + option_rom[nb_option_roms].bootindex = 0; + option_rom[nb_option_roms].name = "pvh.bin"; + nb_option_roms++; + + return; + } + protocol = 0; + } + + if (protocol < 0x200 || !(header[0x211] & 0x01)) { + /* Low kernel */ + real_addr = 0x90000; + cmdline_addr = 0x9a000 - cmdline_size; + prot_addr = 0x10000; + } else if (protocol < 0x202) { + /* High but ancient kernel */ + real_addr = 0x90000; + cmdline_addr = 0x9a000 - cmdline_size; + prot_addr = 0x100000; + } else { + /* High and recent kernel */ + real_addr = 0x10000; + cmdline_addr = 0x20000; + prot_addr = 0x100000; + } + + /* highest address for loading the initrd */ + if (protocol >= 0x20c && + lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { + /* + * Linux has supported initrd up to 4 GB for a very long time (2007, + * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), + * though it only sets initrd_max to 2 GB to "work around bootloader + * bugs". Luckily, QEMU firmware(which does something like bootloader) + * has supported this. + * + * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can + * be loaded into any address. + * + * In addition, initrd_max is uint32_t simply because QEMU doesn't + * support the 64-bit boot protocol (specifically the ext_ramdisk_image + * field). + * + * Therefore here just limit initrd_max to UINT32_MAX simply as well. + */ + initrd_max = UINT32_MAX; + } else if (protocol >= 0x203) { + initrd_max = ldl_p(header + 0x22c); + } else { + initrd_max = 0x37ffffff; + } + + if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { + initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; + } + + fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); + fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); + fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); + + if (protocol >= 0x202) { + stl_p(header + 0x228, cmdline_addr); + } else { + stw_p(header + 0x20, 0xA33F); + stw_p(header + 0x22, cmdline_addr - real_addr); + } + + /* handle vga= parameter */ + vmode = strstr(kernel_cmdline, "vga="); + if (vmode) { + unsigned int video_mode; + int ret; + /* skip "vga=" */ + vmode += 4; + if (!strncmp(vmode, "normal", 6)) { + video_mode = 0xffff; + } else if (!strncmp(vmode, "ext", 3)) { + video_mode = 0xfffe; + } else if (!strncmp(vmode, "ask", 3)) { + video_mode = 0xfffd; + } else { + ret = qemu_strtoui(vmode, NULL, 0, &video_mode); + if (ret != 0) { + fprintf(stderr, "qemu: can't parse 'vga' parameter: %s\n", + strerror(-ret)); + exit(1); + } + } + stw_p(header + 0x1fa, video_mode); + } + + /* loader type */ + /* + * High nybble = B reserved for QEMU; low nybble is revision number. + * If this code is substantially changed, you may want to consider + * incrementing the revision. + */ + if (protocol >= 0x200) { + header[0x210] = 0xB0; + } + /* heap */ + if (protocol >= 0x201) { + header[0x211] |= 0x80; /* CAN_USE_HEAP */ + stw_p(header + 0x224, cmdline_addr - real_addr - 0x200); + } + + /* load initrd */ + if (initrd_filename) { + GMappedFile *mapped_file; + gsize initrd_size; + gchar *initrd_data; + GError *gerr = NULL; + + if (protocol < 0x200) { + fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); + exit(1); + } + + mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); + if (!mapped_file) { + fprintf(stderr, "qemu: error reading initrd %s: %s\n", + initrd_filename, gerr->message); + exit(1); + } + pcms->initrd_mapped_file = mapped_file; + + initrd_data = g_mapped_file_get_contents(mapped_file); + initrd_size = g_mapped_file_get_length(mapped_file); + if (initrd_size >= initrd_max) { + fprintf(stderr, "qemu: initrd is too large, cannot support." + "(max: %"PRIu32", need %"PRId64")\n", + initrd_max, (uint64_t)initrd_size); + exit(1); + } + + initrd_addr = (initrd_max - initrd_size) & ~4095; + + fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); + fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); + fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); + + stl_p(header + 0x218, initrd_addr); + stl_p(header + 0x21c, initrd_size); + } + + /* load kernel and setup */ + setup_size = header[0x1f1]; + if (setup_size == 0) { + setup_size = 4; + } + setup_size = (setup_size + 1) * 512; + if (setup_size > kernel_size) { + fprintf(stderr, "qemu: invalid kernel header\n"); + exit(1); + } + kernel_size -= setup_size; + + setup = g_malloc(setup_size); + kernel = g_malloc(kernel_size); + fseek(f, 0, SEEK_SET); + if (fread(setup, 1, setup_size, f) != setup_size) { + fprintf(stderr, "fread() failed\n"); + exit(1); + } + if (fread(kernel, 1, kernel_size, f) != kernel_size) { + fprintf(stderr, "fread() failed\n"); + exit(1); + } + fclose(f); + + /* append dtb to kernel */ + if (dtb_filename) { + if (protocol < 0x209) { + fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); + exit(1); + } + + dtb_size = get_image_size(dtb_filename); + if (dtb_size <= 0) { + fprintf(stderr, "qemu: error reading dtb %s: %s\n", + dtb_filename, strerror(errno)); + exit(1); + } + + setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); + kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; + kernel = g_realloc(kernel, kernel_size); + + stq_p(header + 0x250, prot_addr + setup_data_offset); + + setup_data = (struct setup_data *)(kernel + setup_data_offset); + setup_data->next = 0; + setup_data->type = cpu_to_le32(SETUP_DTB); + setup_data->len = cpu_to_le32(dtb_size); + + load_image_size(dtb_filename, setup_data->data, dtb_size); + } + + memcpy(setup, header, MIN(sizeof(header), setup_size)); + + fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); + fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); + fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); + + fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); + fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); + fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); + + option_rom[nb_option_roms].bootindex = 0; + option_rom[nb_option_roms].name = "linuxboot.bin"; + if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { + option_rom[nb_option_roms].name = "linuxboot_dma.bin"; + } + nb_option_roms++; +} + +void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw) +{ + char *filename; + MemoryRegion *bios, *isa_bios; + int bios_size, isa_bios_size; + int ret; + + /* BIOS load */ + if (bios_name == NULL) { + bios_name = BIOS_FILENAME; + } + filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); + if (filename) { + bios_size = get_image_size(filename); + } else { + bios_size = -1; + } + if (bios_size <= 0 || + (bios_size % 65536) != 0) { + goto bios_error; + } + bios = g_malloc(sizeof(*bios)); + memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal); + if (!isapc_ram_fw) { + memory_region_set_readonly(bios, true); + } + ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); + if (ret != 0) { + bios_error: + fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); + exit(1); + } + g_free(filename); + + /* map the last 128KB of the BIOS in ISA space */ + isa_bios_size = MIN(bios_size, 128 * KiB); + isa_bios = g_malloc(sizeof(*isa_bios)); + memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, + bios_size - isa_bios_size, isa_bios_size); + memory_region_add_subregion_overlap(rom_memory, + 0x100000 - isa_bios_size, + isa_bios, + 1); + if (!isapc_ram_fw) { + memory_region_set_readonly(isa_bios, true); + } + + /* map all the bios at the top of memory */ + memory_region_add_subregion(rom_memory, + (uint32_t)(-bios_size), + bios); +} |