aboutsummaryrefslogtreecommitdiff
path: root/hw/i386/x86.c
diff options
context:
space:
mode:
authorSergio Lopez <slp@redhat.com>2019-10-08 11:56:49 +0200
committerPaolo Bonzini <pbonzini@redhat.com>2019-10-22 09:38:42 +0200
commit549e984e67d8b3ea868be4ba935cecb9c1e753dc (patch)
treeca3d3bda8ff3619f79a1ee356de497ac07577dfa /hw/i386/x86.c
parent86a9a7916b6b69e429f078dd9c89c2907ff43308 (diff)
hw/i386/pc: move shared x86 functions to x86.c and export them
Move x86 functions that will be shared between PC and non-PC machine types to x86.c, along with their helpers. Signed-off-by: Sergio Lopez <slp@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Stefano Garzarella <sgarzare@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Diffstat (limited to 'hw/i386/x86.c')
-rw-r--r--hw/i386/x86.c690
1 files changed, 690 insertions, 0 deletions
diff --git a/hw/i386/x86.c b/hw/i386/x86.c
new file mode 100644
index 0000000000..71fb093983
--- /dev/null
+++ b/hw/i386/x86.c
@@ -0,0 +1,690 @@
+/*
+ * Copyright (c) 2003-2004 Fabrice Bellard
+ * Copyright (c) 2019 Red Hat, Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+#include "qemu/osdep.h"
+#include "qemu/error-report.h"
+#include "qemu/option.h"
+#include "qemu/cutils.h"
+#include "qemu/units.h"
+#include "qemu-common.h"
+#include "qapi/error.h"
+#include "qapi/qmp/qerror.h"
+#include "qapi/qapi-visit-common.h"
+#include "qapi/visitor.h"
+#include "sysemu/qtest.h"
+#include "sysemu/numa.h"
+#include "sysemu/replay.h"
+#include "sysemu/sysemu.h"
+
+#include "hw/i386/x86.h"
+#include "hw/i386/pc.h"
+#include "target/i386/cpu.h"
+#include "hw/i386/topology.h"
+#include "hw/i386/fw_cfg.h"
+
+#include "hw/acpi/cpu_hotplug.h"
+#include "hw/nmi.h"
+#include "hw/loader.h"
+#include "multiboot.h"
+#include "elf.h"
+#include "standard-headers/asm-x86/bootparam.h"
+
+#define BIOS_FILENAME "bios.bin"
+
+/* Physical Address of PVH entry point read from kernel ELF NOTE */
+static size_t pvh_start_addr;
+
+/*
+ * Calculates initial APIC ID for a specific CPU index
+ *
+ * Currently we need to be able to calculate the APIC ID from the CPU index
+ * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
+ * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
+ * all CPUs up to max_cpus.
+ */
+uint32_t x86_cpu_apic_id_from_index(PCMachineState *pcms,
+ unsigned int cpu_index)
+{
+ MachineState *ms = MACHINE(pcms);
+ PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
+ uint32_t correct_id;
+ static bool warned;
+
+ correct_id = x86_apicid_from_cpu_idx(pcms->smp_dies, ms->smp.cores,
+ ms->smp.threads, cpu_index);
+ if (pcmc->compat_apic_id_mode) {
+ if (cpu_index != correct_id && !warned && !qtest_enabled()) {
+ error_report("APIC IDs set in compatibility mode, "
+ "CPU topology won't match the configuration");
+ warned = true;
+ }
+ return cpu_index;
+ } else {
+ return correct_id;
+ }
+}
+
+void x86_cpu_new(PCMachineState *pcms, int64_t apic_id, Error **errp)
+{
+ Object *cpu = NULL;
+ Error *local_err = NULL;
+ CPUX86State *env = NULL;
+
+ cpu = object_new(MACHINE(pcms)->cpu_type);
+
+ env = &X86_CPU(cpu)->env;
+ env->nr_dies = pcms->smp_dies;
+
+ object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
+ object_property_set_bool(cpu, true, "realized", &local_err);
+
+ object_unref(cpu);
+ error_propagate(errp, local_err);
+}
+
+void x86_cpus_init(PCMachineState *pcms)
+{
+ int i;
+ const CPUArchIdList *possible_cpus;
+ MachineState *ms = MACHINE(pcms);
+ MachineClass *mc = MACHINE_GET_CLASS(pcms);
+ PCMachineClass *pcmc = PC_MACHINE_CLASS(mc);
+
+ x86_cpu_set_default_version(pcmc->default_cpu_version);
+
+ /*
+ * Calculates the limit to CPU APIC ID values
+ *
+ * Limit for the APIC ID value, so that all
+ * CPU APIC IDs are < pcms->apic_id_limit.
+ *
+ * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
+ */
+ pcms->apic_id_limit = x86_cpu_apic_id_from_index(pcms,
+ ms->smp.max_cpus - 1) + 1;
+ possible_cpus = mc->possible_cpu_arch_ids(ms);
+ for (i = 0; i < ms->smp.cpus; i++) {
+ x86_cpu_new(pcms, possible_cpus->cpus[i].arch_id, &error_fatal);
+ }
+}
+
+CpuInstanceProperties
+x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
+{
+ MachineClass *mc = MACHINE_GET_CLASS(ms);
+ const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
+
+ assert(cpu_index < possible_cpus->len);
+ return possible_cpus->cpus[cpu_index].props;
+}
+
+int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
+{
+ X86CPUTopoInfo topo;
+ PCMachineState *pcms = PC_MACHINE(ms);
+
+ assert(idx < ms->possible_cpus->len);
+ x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
+ pcms->smp_dies, ms->smp.cores,
+ ms->smp.threads, &topo);
+ return topo.pkg_id % ms->numa_state->num_nodes;
+}
+
+const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
+{
+ PCMachineState *pcms = PC_MACHINE(ms);
+ int i;
+ unsigned int max_cpus = ms->smp.max_cpus;
+
+ if (ms->possible_cpus) {
+ /*
+ * make sure that max_cpus hasn't changed since the first use, i.e.
+ * -smp hasn't been parsed after it
+ */
+ assert(ms->possible_cpus->len == max_cpus);
+ return ms->possible_cpus;
+ }
+
+ ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
+ sizeof(CPUArchId) * max_cpus);
+ ms->possible_cpus->len = max_cpus;
+ for (i = 0; i < ms->possible_cpus->len; i++) {
+ X86CPUTopoInfo topo;
+
+ ms->possible_cpus->cpus[i].type = ms->cpu_type;
+ ms->possible_cpus->cpus[i].vcpus_count = 1;
+ ms->possible_cpus->cpus[i].arch_id =
+ x86_cpu_apic_id_from_index(pcms, i);
+ x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
+ pcms->smp_dies, ms->smp.cores,
+ ms->smp.threads, &topo);
+ ms->possible_cpus->cpus[i].props.has_socket_id = true;
+ ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
+ if (pcms->smp_dies > 1) {
+ ms->possible_cpus->cpus[i].props.has_die_id = true;
+ ms->possible_cpus->cpus[i].props.die_id = topo.die_id;
+ }
+ ms->possible_cpus->cpus[i].props.has_core_id = true;
+ ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
+ ms->possible_cpus->cpus[i].props.has_thread_id = true;
+ ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
+ }
+ return ms->possible_cpus;
+}
+
+static long get_file_size(FILE *f)
+{
+ long where, size;
+
+ /* XXX: on Unix systems, using fstat() probably makes more sense */
+
+ where = ftell(f);
+ fseek(f, 0, SEEK_END);
+ size = ftell(f);
+ fseek(f, where, SEEK_SET);
+
+ return size;
+}
+
+struct setup_data {
+ uint64_t next;
+ uint32_t type;
+ uint32_t len;
+ uint8_t data[0];
+} __attribute__((packed));
+
+
+/*
+ * The entry point into the kernel for PVH boot is different from
+ * the native entry point. The PVH entry is defined by the x86/HVM
+ * direct boot ABI and is available in an ELFNOTE in the kernel binary.
+ *
+ * This function is passed to load_elf() when it is called from
+ * load_elfboot() which then additionally checks for an ELF Note of
+ * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
+ * parse the PVH entry address from the ELF Note.
+ *
+ * Due to trickery in elf_opts.h, load_elf() is actually available as
+ * load_elf32() or load_elf64() and this routine needs to be able
+ * to deal with being called as 32 or 64 bit.
+ *
+ * The address of the PVH entry point is saved to the 'pvh_start_addr'
+ * global variable. (although the entry point is 32-bit, the kernel
+ * binary can be either 32-bit or 64-bit).
+ */
+static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
+{
+ size_t *elf_note_data_addr;
+
+ /* Check if ELF Note header passed in is valid */
+ if (arg1 == NULL) {
+ return 0;
+ }
+
+ if (is64) {
+ struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
+ uint64_t nhdr_size64 = sizeof(struct elf64_note);
+ uint64_t phdr_align = *(uint64_t *)arg2;
+ uint64_t nhdr_namesz = nhdr64->n_namesz;
+
+ elf_note_data_addr =
+ ((void *)nhdr64) + nhdr_size64 +
+ QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
+ } else {
+ struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
+ uint32_t nhdr_size32 = sizeof(struct elf32_note);
+ uint32_t phdr_align = *(uint32_t *)arg2;
+ uint32_t nhdr_namesz = nhdr32->n_namesz;
+
+ elf_note_data_addr =
+ ((void *)nhdr32) + nhdr_size32 +
+ QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
+ }
+
+ pvh_start_addr = *elf_note_data_addr;
+
+ return pvh_start_addr;
+}
+
+static bool load_elfboot(const char *kernel_filename,
+ int kernel_file_size,
+ uint8_t *header,
+ size_t pvh_xen_start_addr,
+ FWCfgState *fw_cfg)
+{
+ uint32_t flags = 0;
+ uint32_t mh_load_addr = 0;
+ uint32_t elf_kernel_size = 0;
+ uint64_t elf_entry;
+ uint64_t elf_low, elf_high;
+ int kernel_size;
+
+ if (ldl_p(header) != 0x464c457f) {
+ return false; /* no elfboot */
+ }
+
+ bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
+ flags = elf_is64 ?
+ ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
+
+ if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
+ error_report("elfboot unsupported flags = %x", flags);
+ exit(1);
+ }
+
+ uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
+ kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
+ NULL, &elf_note_type, &elf_entry,
+ &elf_low, &elf_high, 0, I386_ELF_MACHINE,
+ 0, 0);
+
+ if (kernel_size < 0) {
+ error_report("Error while loading elf kernel");
+ exit(1);
+ }
+ mh_load_addr = elf_low;
+ elf_kernel_size = elf_high - elf_low;
+
+ if (pvh_start_addr == 0) {
+ error_report("Error loading uncompressed kernel without PVH ELF Note");
+ exit(1);
+ }
+ fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
+ fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
+ fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
+
+ return true;
+}
+
+void x86_load_linux(PCMachineState *pcms,
+ FWCfgState *fw_cfg)
+{
+ uint16_t protocol;
+ int setup_size, kernel_size, cmdline_size;
+ int dtb_size, setup_data_offset;
+ uint32_t initrd_max;
+ uint8_t header[8192], *setup, *kernel;
+ hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
+ FILE *f;
+ char *vmode;
+ MachineState *machine = MACHINE(pcms);
+ PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
+ struct setup_data *setup_data;
+ const char *kernel_filename = machine->kernel_filename;
+ const char *initrd_filename = machine->initrd_filename;
+ const char *dtb_filename = machine->dtb;
+ const char *kernel_cmdline = machine->kernel_cmdline;
+
+ /* Align to 16 bytes as a paranoia measure */
+ cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
+
+ /* load the kernel header */
+ f = fopen(kernel_filename, "rb");
+ if (!f) {
+ fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
+ kernel_filename, strerror(errno));
+ exit(1);
+ }
+
+ kernel_size = get_file_size(f);
+ if (!kernel_size ||
+ fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
+ MIN(ARRAY_SIZE(header), kernel_size)) {
+ fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
+ kernel_filename, strerror(errno));
+ exit(1);
+ }
+
+ /* kernel protocol version */
+ if (ldl_p(header + 0x202) == 0x53726448) {
+ protocol = lduw_p(header + 0x206);
+ } else {
+ /*
+ * This could be a multiboot kernel. If it is, let's stop treating it
+ * like a Linux kernel.
+ * Note: some multiboot images could be in the ELF format (the same of
+ * PVH), so we try multiboot first since we check the multiboot magic
+ * header before to load it.
+ */
+ if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
+ kernel_cmdline, kernel_size, header)) {
+ return;
+ }
+ /*
+ * Check if the file is an uncompressed kernel file (ELF) and load it,
+ * saving the PVH entry point used by the x86/HVM direct boot ABI.
+ * If load_elfboot() is successful, populate the fw_cfg info.
+ */
+ if (pcmc->pvh_enabled &&
+ load_elfboot(kernel_filename, kernel_size,
+ header, pvh_start_addr, fw_cfg)) {
+ fclose(f);
+
+ fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
+ strlen(kernel_cmdline) + 1);
+ fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
+
+ fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
+ fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
+ header, sizeof(header));
+
+ /* load initrd */
+ if (initrd_filename) {
+ GMappedFile *mapped_file;
+ gsize initrd_size;
+ gchar *initrd_data;
+ GError *gerr = NULL;
+
+ mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
+ if (!mapped_file) {
+ fprintf(stderr, "qemu: error reading initrd %s: %s\n",
+ initrd_filename, gerr->message);
+ exit(1);
+ }
+ pcms->initrd_mapped_file = mapped_file;
+
+ initrd_data = g_mapped_file_get_contents(mapped_file);
+ initrd_size = g_mapped_file_get_length(mapped_file);
+ initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
+ if (initrd_size >= initrd_max) {
+ fprintf(stderr, "qemu: initrd is too large, cannot support."
+ "(max: %"PRIu32", need %"PRId64")\n",
+ initrd_max, (uint64_t)initrd_size);
+ exit(1);
+ }
+
+ initrd_addr = (initrd_max - initrd_size) & ~4095;
+
+ fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
+ fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
+ fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
+ initrd_size);
+ }
+
+ option_rom[nb_option_roms].bootindex = 0;
+ option_rom[nb_option_roms].name = "pvh.bin";
+ nb_option_roms++;
+
+ return;
+ }
+ protocol = 0;
+ }
+
+ if (protocol < 0x200 || !(header[0x211] & 0x01)) {
+ /* Low kernel */
+ real_addr = 0x90000;
+ cmdline_addr = 0x9a000 - cmdline_size;
+ prot_addr = 0x10000;
+ } else if (protocol < 0x202) {
+ /* High but ancient kernel */
+ real_addr = 0x90000;
+ cmdline_addr = 0x9a000 - cmdline_size;
+ prot_addr = 0x100000;
+ } else {
+ /* High and recent kernel */
+ real_addr = 0x10000;
+ cmdline_addr = 0x20000;
+ prot_addr = 0x100000;
+ }
+
+ /* highest address for loading the initrd */
+ if (protocol >= 0x20c &&
+ lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
+ /*
+ * Linux has supported initrd up to 4 GB for a very long time (2007,
+ * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
+ * though it only sets initrd_max to 2 GB to "work around bootloader
+ * bugs". Luckily, QEMU firmware(which does something like bootloader)
+ * has supported this.
+ *
+ * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
+ * be loaded into any address.
+ *
+ * In addition, initrd_max is uint32_t simply because QEMU doesn't
+ * support the 64-bit boot protocol (specifically the ext_ramdisk_image
+ * field).
+ *
+ * Therefore here just limit initrd_max to UINT32_MAX simply as well.
+ */
+ initrd_max = UINT32_MAX;
+ } else if (protocol >= 0x203) {
+ initrd_max = ldl_p(header + 0x22c);
+ } else {
+ initrd_max = 0x37ffffff;
+ }
+
+ if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
+ initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
+ }
+
+ fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
+ fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
+ fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
+
+ if (protocol >= 0x202) {
+ stl_p(header + 0x228, cmdline_addr);
+ } else {
+ stw_p(header + 0x20, 0xA33F);
+ stw_p(header + 0x22, cmdline_addr - real_addr);
+ }
+
+ /* handle vga= parameter */
+ vmode = strstr(kernel_cmdline, "vga=");
+ if (vmode) {
+ unsigned int video_mode;
+ int ret;
+ /* skip "vga=" */
+ vmode += 4;
+ if (!strncmp(vmode, "normal", 6)) {
+ video_mode = 0xffff;
+ } else if (!strncmp(vmode, "ext", 3)) {
+ video_mode = 0xfffe;
+ } else if (!strncmp(vmode, "ask", 3)) {
+ video_mode = 0xfffd;
+ } else {
+ ret = qemu_strtoui(vmode, NULL, 0, &video_mode);
+ if (ret != 0) {
+ fprintf(stderr, "qemu: can't parse 'vga' parameter: %s\n",
+ strerror(-ret));
+ exit(1);
+ }
+ }
+ stw_p(header + 0x1fa, video_mode);
+ }
+
+ /* loader type */
+ /*
+ * High nybble = B reserved for QEMU; low nybble is revision number.
+ * If this code is substantially changed, you may want to consider
+ * incrementing the revision.
+ */
+ if (protocol >= 0x200) {
+ header[0x210] = 0xB0;
+ }
+ /* heap */
+ if (protocol >= 0x201) {
+ header[0x211] |= 0x80; /* CAN_USE_HEAP */
+ stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
+ }
+
+ /* load initrd */
+ if (initrd_filename) {
+ GMappedFile *mapped_file;
+ gsize initrd_size;
+ gchar *initrd_data;
+ GError *gerr = NULL;
+
+ if (protocol < 0x200) {
+ fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
+ exit(1);
+ }
+
+ mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
+ if (!mapped_file) {
+ fprintf(stderr, "qemu: error reading initrd %s: %s\n",
+ initrd_filename, gerr->message);
+ exit(1);
+ }
+ pcms->initrd_mapped_file = mapped_file;
+
+ initrd_data = g_mapped_file_get_contents(mapped_file);
+ initrd_size = g_mapped_file_get_length(mapped_file);
+ if (initrd_size >= initrd_max) {
+ fprintf(stderr, "qemu: initrd is too large, cannot support."
+ "(max: %"PRIu32", need %"PRId64")\n",
+ initrd_max, (uint64_t)initrd_size);
+ exit(1);
+ }
+
+ initrd_addr = (initrd_max - initrd_size) & ~4095;
+
+ fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
+ fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
+ fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
+
+ stl_p(header + 0x218, initrd_addr);
+ stl_p(header + 0x21c, initrd_size);
+ }
+
+ /* load kernel and setup */
+ setup_size = header[0x1f1];
+ if (setup_size == 0) {
+ setup_size = 4;
+ }
+ setup_size = (setup_size + 1) * 512;
+ if (setup_size > kernel_size) {
+ fprintf(stderr, "qemu: invalid kernel header\n");
+ exit(1);
+ }
+ kernel_size -= setup_size;
+
+ setup = g_malloc(setup_size);
+ kernel = g_malloc(kernel_size);
+ fseek(f, 0, SEEK_SET);
+ if (fread(setup, 1, setup_size, f) != setup_size) {
+ fprintf(stderr, "fread() failed\n");
+ exit(1);
+ }
+ if (fread(kernel, 1, kernel_size, f) != kernel_size) {
+ fprintf(stderr, "fread() failed\n");
+ exit(1);
+ }
+ fclose(f);
+
+ /* append dtb to kernel */
+ if (dtb_filename) {
+ if (protocol < 0x209) {
+ fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
+ exit(1);
+ }
+
+ dtb_size = get_image_size(dtb_filename);
+ if (dtb_size <= 0) {
+ fprintf(stderr, "qemu: error reading dtb %s: %s\n",
+ dtb_filename, strerror(errno));
+ exit(1);
+ }
+
+ setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
+ kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
+ kernel = g_realloc(kernel, kernel_size);
+
+ stq_p(header + 0x250, prot_addr + setup_data_offset);
+
+ setup_data = (struct setup_data *)(kernel + setup_data_offset);
+ setup_data->next = 0;
+ setup_data->type = cpu_to_le32(SETUP_DTB);
+ setup_data->len = cpu_to_le32(dtb_size);
+
+ load_image_size(dtb_filename, setup_data->data, dtb_size);
+ }
+
+ memcpy(setup, header, MIN(sizeof(header), setup_size));
+
+ fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
+ fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
+ fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
+
+ fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
+ fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
+ fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
+
+ option_rom[nb_option_roms].bootindex = 0;
+ option_rom[nb_option_roms].name = "linuxboot.bin";
+ if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
+ option_rom[nb_option_roms].name = "linuxboot_dma.bin";
+ }
+ nb_option_roms++;
+}
+
+void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
+{
+ char *filename;
+ MemoryRegion *bios, *isa_bios;
+ int bios_size, isa_bios_size;
+ int ret;
+
+ /* BIOS load */
+ if (bios_name == NULL) {
+ bios_name = BIOS_FILENAME;
+ }
+ filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
+ if (filename) {
+ bios_size = get_image_size(filename);
+ } else {
+ bios_size = -1;
+ }
+ if (bios_size <= 0 ||
+ (bios_size % 65536) != 0) {
+ goto bios_error;
+ }
+ bios = g_malloc(sizeof(*bios));
+ memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
+ if (!isapc_ram_fw) {
+ memory_region_set_readonly(bios, true);
+ }
+ ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
+ if (ret != 0) {
+ bios_error:
+ fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
+ exit(1);
+ }
+ g_free(filename);
+
+ /* map the last 128KB of the BIOS in ISA space */
+ isa_bios_size = MIN(bios_size, 128 * KiB);
+ isa_bios = g_malloc(sizeof(*isa_bios));
+ memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
+ bios_size - isa_bios_size, isa_bios_size);
+ memory_region_add_subregion_overlap(rom_memory,
+ 0x100000 - isa_bios_size,
+ isa_bios,
+ 1);
+ if (!isapc_ram_fw) {
+ memory_region_set_readonly(isa_bios, true);
+ }
+
+ /* map all the bios at the top of memory */
+ memory_region_add_subregion(rom_memory,
+ (uint32_t)(-bios_size),
+ bios);
+}