aboutsummaryrefslogtreecommitdiff
path: root/hw/arm
diff options
context:
space:
mode:
authorPeter Maydell <peter.maydell@linaro.org>2016-03-04 11:46:32 +0000
committerPeter Maydell <peter.maydell@linaro.org>2016-03-04 11:46:32 +0000
commit3c0f12df65da872d5fbccae469f2cb21ed1c03b7 (patch)
treeda8e1ea0ee497fea96ed2bf52ef5ca93285bc9f4 /hw/arm
parent2d3b7c0164e1b9287304bc70dd6ed071ba3e8dfc (diff)
parentba63cf47a93041137a94e86b7d0cd87fc896949b (diff)
Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20160304' into staging
target-arm queue: * Correct handling of writes to CPSR from gdbstub in user mode * virt: lift maximum RAM limit to 255GB * sdhci: implement reset * virt: if booting in Secure mode, provide secure-only RAM, make first flash device secure-only, and assume the EL3 boot rom will handle PSCI * bcm2835: use explicit endianness accessors rather than ldl/stl_phys * support big-endian in system mode for ARM * implement SETEND instruction * arm_gic: implement the GICv2 GICC_DIR register * fix SRS bug: only trap from S-EL1 to EL3 if specified mode is Mon # gpg: Signature made Fri 04 Mar 2016 11:38:53 GMT using RSA key ID 14360CDE # gpg: Good signature from "Peter Maydell <peter.maydell@linaro.org>" # gpg: aka "Peter Maydell <pmaydell@gmail.com>" # gpg: aka "Peter Maydell <pmaydell@chiark.greenend.org.uk>" * remotes/pmaydell/tags/pull-target-arm-20160304: (30 commits) target-arm: Only trap SRS from S-EL1 if specified mode is MON hw/intc/arm_gic.c: Implement GICv2 GICC_DIR arm: boot: Support big-endian elfs loader: Add data swap option to load-elf loader: load_elf(): Add doc comment loader: add API to load elf header target-arm: implement BE32 mode in system emulation target-arm: implement setend target-arm: introduce tbflag for endianness target-arm: a64: Add endianness support target-arm: introduce disas flag for endianness target-arm: pass DisasContext to gen_aa32_ld*/st* target-arm: implement SCTLR.EE linux-user: arm: handle CPSR.E correctly in strex emulation linux-user: arm: set CPSR.E/SCTLR.E0E correctly for BE mode arm: cpu: handle BE32 user-mode as BE target-arm: cpu: Move cpu_is_big_endian to header target-arm: implement SCTLR.B, drop bswap_code linux-user: arm: pass env to get_user_code_* linux-user: arm: fix coding style for some linux-user signal functions ... Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Diffstat (limited to 'hw/arm')
-rw-r--r--hw/arm/armv7m.c2
-rw-r--r--hw/arm/boot.c93
-rw-r--r--hw/arm/virt.c168
3 files changed, 215 insertions, 48 deletions
diff --git a/hw/arm/armv7m.c b/hw/arm/armv7m.c
index f3973f721a..ed7d97fc21 100644
--- a/hw/arm/armv7m.c
+++ b/hw/arm/armv7m.c
@@ -211,7 +211,7 @@ DeviceState *armv7m_init(MemoryRegion *system_memory, int mem_size, int num_irq,
if (kernel_filename) {
image_size = load_elf(kernel_filename, NULL, NULL, &entry, &lowaddr,
- NULL, big_endian, EM_ARM, 1);
+ NULL, big_endian, EM_ARM, 1, 0);
if (image_size < 0) {
image_size = load_image_targphys(kernel_filename, 0, mem_size);
lowaddr = 0;
diff --git a/hw/arm/boot.c b/hw/arm/boot.c
index 0a56d34cfe..8ba0e4272a 100644
--- a/hw/arm/boot.c
+++ b/hw/arm/boot.c
@@ -518,9 +518,34 @@ static void do_cpu_reset(void *opaque)
cpu_reset(cs);
if (info) {
if (!info->is_linux) {
+ int i;
/* Jump to the entry point. */
uint64_t entry = info->entry;
+ switch (info->endianness) {
+ case ARM_ENDIANNESS_LE:
+ env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
+ for (i = 1; i < 4; ++i) {
+ env->cp15.sctlr_el[i] &= ~SCTLR_EE;
+ }
+ env->uncached_cpsr &= ~CPSR_E;
+ break;
+ case ARM_ENDIANNESS_BE8:
+ env->cp15.sctlr_el[1] |= SCTLR_E0E;
+ for (i = 1; i < 4; ++i) {
+ env->cp15.sctlr_el[i] |= SCTLR_EE;
+ }
+ env->uncached_cpsr |= CPSR_E;
+ break;
+ case ARM_ENDIANNESS_BE32:
+ env->cp15.sctlr_el[1] |= SCTLR_B;
+ break;
+ case ARM_ENDIANNESS_UNKNOWN:
+ break; /* Board's decision */
+ default:
+ g_assert_not_reached();
+ }
+
if (!env->aarch64) {
env->thumb = info->entry & 1;
entry &= 0xfffffffe;
@@ -638,6 +663,62 @@ static int do_arm_linux_init(Object *obj, void *opaque)
return 0;
}
+static uint64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
+ uint64_t *lowaddr, uint64_t *highaddr,
+ int elf_machine)
+{
+ bool elf_is64;
+ union {
+ Elf32_Ehdr h32;
+ Elf64_Ehdr h64;
+ } elf_header;
+ int data_swab = 0;
+ bool big_endian;
+ uint64_t ret = -1;
+ Error *err = NULL;
+
+
+ load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
+ if (err) {
+ return ret;
+ }
+
+ if (elf_is64) {
+ big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
+ info->endianness = big_endian ? ARM_ENDIANNESS_BE8
+ : ARM_ENDIANNESS_LE;
+ } else {
+ big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
+ if (big_endian) {
+ if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
+ info->endianness = ARM_ENDIANNESS_BE8;
+ } else {
+ info->endianness = ARM_ENDIANNESS_BE32;
+ /* In BE32, the CPU has a different view of the per-byte
+ * address map than the rest of the system. BE32 ELF files
+ * are organised such that they can be programmed through
+ * the CPU's per-word byte-reversed view of the world. QEMU
+ * however loads ELF files independently of the CPU. So
+ * tell the ELF loader to byte reverse the data for us.
+ */
+ data_swab = 2;
+ }
+ } else {
+ info->endianness = ARM_ENDIANNESS_LE;
+ }
+ }
+
+ ret = load_elf(info->kernel_filename, NULL, NULL,
+ pentry, lowaddr, highaddr, big_endian, elf_machine,
+ 1, data_swab);
+ if (ret <= 0) {
+ /* The header loaded but the image didn't */
+ exit(1);
+ }
+
+ return ret;
+}
+
static void arm_load_kernel_notify(Notifier *notifier, void *data)
{
CPUState *cs;
@@ -647,7 +728,6 @@ static void arm_load_kernel_notify(Notifier *notifier, void *data)
uint64_t elf_entry, elf_low_addr, elf_high_addr;
int elf_machine;
hwaddr entry, kernel_load_offset;
- int big_endian;
static const ARMInsnFixup *primary_loader;
ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier,
notifier, notifier);
@@ -733,12 +813,6 @@ static void arm_load_kernel_notify(Notifier *notifier, void *data)
if (info->nb_cpus == 0)
info->nb_cpus = 1;
-#ifdef TARGET_WORDS_BIGENDIAN
- big_endian = 1;
-#else
- big_endian = 0;
-#endif
-
/* We want to put the initrd far enough into RAM that when the
* kernel is uncompressed it will not clobber the initrd. However
* on boards without much RAM we must ensure that we still leave
@@ -753,9 +827,8 @@ static void arm_load_kernel_notify(Notifier *notifier, void *data)
MIN(info->ram_size / 2, 128 * 1024 * 1024);
/* Assume that raw images are linux kernels, and ELF images are not. */
- kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry,
- &elf_low_addr, &elf_high_addr, big_endian,
- elf_machine, 1);
+ kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr,
+ &elf_high_addr, elf_machine);
if (kernel_size > 0 && have_dtb(info)) {
/* If there is still some room left at the base of RAM, try and put
* the DTB there like we do for images loaded with -bios or -pflash.
diff --git a/hw/arm/virt.c b/hw/arm/virt.c
index 44bbbea92b..8c6c99625f 100644
--- a/hw/arm/virt.c
+++ b/hw/arm/virt.c
@@ -73,6 +73,7 @@ typedef struct VirtBoardInfo {
uint32_t clock_phandle;
uint32_t gic_phandle;
uint32_t v2m_phandle;
+ bool using_psci;
} VirtBoardInfo;
typedef struct {
@@ -95,6 +96,23 @@ typedef struct {
#define VIRT_MACHINE_CLASS(klass) \
OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
+/* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
+ * RAM can go up to the 256GB mark, leaving 256GB of the physical
+ * address space unallocated and free for future use between 256G and 512G.
+ * If we need to provide more RAM to VMs in the future then we need to:
+ * * allocate a second bank of RAM starting at 2TB and working up
+ * * fix the DT and ACPI table generation code in QEMU to correctly
+ * report two split lumps of RAM to the guest
+ * * fix KVM in the host kernel to allow guests with >40 bit address spaces
+ * (We don't want to fill all the way up to 512GB with RAM because
+ * we might want it for non-RAM purposes later. Conversely it seems
+ * reasonable to assume that anybody configuring a VM with a quarter
+ * of a terabyte of RAM will be doing it on a host with more than a
+ * terabyte of physical address space.)
+ */
+#define RAMLIMIT_GB 255
+#define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
+
/* Addresses and sizes of our components.
* 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
* 128MB..256MB is used for miscellaneous device I/O.
@@ -127,10 +145,11 @@ static const MemMapEntry a15memmap[] = {
[VIRT_MMIO] = { 0x0a000000, 0x00000200 },
/* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
[VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
+ [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
[VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
[VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
[VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
- [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
+ [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
/* Second PCIe window, 512GB wide at the 512GB boundary */
[VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
};
@@ -230,6 +249,10 @@ static void fdt_add_psci_node(const VirtBoardInfo *vbi)
void *fdt = vbi->fdt;
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
+ if (!vbi->using_psci) {
+ return;
+ }
+
qemu_fdt_add_subnode(fdt, "/psci");
if (armcpu->psci_version == 2) {
const char comp[] = "arm,psci-0.2\0arm,psci";
@@ -341,7 +364,7 @@ static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
armcpu->dtb_compatible);
- if (vbi->smp_cpus > 1) {
+ if (vbi->using_psci && vbi->smp_cpus > 1) {
qemu_fdt_setprop_string(vbi->fdt, nodename,
"enable-method", "psci");
}
@@ -678,13 +701,15 @@ static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
}
static void create_one_flash(const char *name, hwaddr flashbase,
- hwaddr flashsize)
+ hwaddr flashsize, const char *file,
+ MemoryRegion *sysmem)
{
/* Create and map a single flash device. We use the same
* parameters as the flash devices on the Versatile Express board.
*/
DriveInfo *dinfo = drive_get_next(IF_PFLASH);
DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
+ SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
const uint64_t sectorlength = 256 * 1024;
if (dinfo) {
@@ -704,19 +729,10 @@ static void create_one_flash(const char *name, hwaddr flashbase,
qdev_prop_set_string(dev, "name", name);
qdev_init_nofail(dev);
- sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
-}
-
-static void create_flash(const VirtBoardInfo *vbi)
-{
- /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
- * Any file passed via -bios goes in the first of these.
- */
- hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
- hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
- char *nodename;
+ memory_region_add_subregion(sysmem, flashbase,
+ sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
- if (bios_name) {
+ if (file) {
char *fn;
int image_size;
@@ -726,30 +742,73 @@ static void create_flash(const VirtBoardInfo *vbi)
"but you cannot use both options at once");
exit(1);
}
- fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
+ fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
if (!fn) {
- error_report("Could not find ROM image '%s'", bios_name);
+ error_report("Could not find ROM image '%s'", file);
exit(1);
}
- image_size = load_image_targphys(fn, flashbase, flashsize);
+ image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
g_free(fn);
if (image_size < 0) {
- error_report("Could not load ROM image '%s'", bios_name);
+ error_report("Could not load ROM image '%s'", file);
exit(1);
}
}
+}
- create_one_flash("virt.flash0", flashbase, flashsize);
- create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
+static void create_flash(const VirtBoardInfo *vbi,
+ MemoryRegion *sysmem,
+ MemoryRegion *secure_sysmem)
+{
+ /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
+ * Any file passed via -bios goes in the first of these.
+ * sysmem is the system memory space. secure_sysmem is the secure view
+ * of the system, and the first flash device should be made visible only
+ * there. The second flash device is visible to both secure and nonsecure.
+ * If sysmem == secure_sysmem this means there is no separate Secure
+ * address space and both flash devices are generally visible.
+ */
+ hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
+ hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
+ char *nodename;
- nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
- qemu_fdt_add_subnode(vbi->fdt, nodename);
- qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
- qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
- 2, flashbase, 2, flashsize,
- 2, flashbase + flashsize, 2, flashsize);
- qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
- g_free(nodename);
+ create_one_flash("virt.flash0", flashbase, flashsize,
+ bios_name, secure_sysmem);
+ create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
+ NULL, sysmem);
+
+ if (sysmem == secure_sysmem) {
+ /* Report both flash devices as a single node in the DT */
+ nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
+ qemu_fdt_add_subnode(vbi->fdt, nodename);
+ qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
+ qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
+ 2, flashbase, 2, flashsize,
+ 2, flashbase + flashsize, 2, flashsize);
+ qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
+ g_free(nodename);
+ } else {
+ /* Report the devices as separate nodes so we can mark one as
+ * only visible to the secure world.
+ */
+ nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
+ qemu_fdt_add_subnode(vbi->fdt, nodename);
+ qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
+ qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
+ 2, flashbase, 2, flashsize);
+ qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
+ qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
+ qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
+ g_free(nodename);
+
+ nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
+ qemu_fdt_add_subnode(vbi->fdt, nodename);
+ qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
+ qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
+ 2, flashbase + flashsize, 2, flashsize);
+ qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
+ g_free(nodename);
+ }
}
static void create_fw_cfg(const VirtBoardInfo *vbi, AddressSpace *as)
@@ -960,6 +1019,27 @@ static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
sysbus_mmio_get_region(s, 0));
}
+static void create_secure_ram(VirtBoardInfo *vbi, MemoryRegion *secure_sysmem)
+{
+ MemoryRegion *secram = g_new(MemoryRegion, 1);
+ char *nodename;
+ hwaddr base = vbi->memmap[VIRT_SECURE_MEM].base;
+ hwaddr size = vbi->memmap[VIRT_SECURE_MEM].size;
+
+ memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
+ vmstate_register_ram_global(secram);
+ memory_region_add_subregion(secure_sysmem, base, secram);
+
+ nodename = g_strdup_printf("/secram@%" PRIx64, base);
+ qemu_fdt_add_subnode(vbi->fdt, nodename);
+ qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "memory");
+ qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg", 2, base, 2, size);
+ qemu_fdt_setprop_string(vbi->fdt, nodename, "status", "disabled");
+ qemu_fdt_setprop_string(vbi->fdt, nodename, "secure-status", "okay");
+
+ g_free(nodename);
+}
+
static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
{
const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
@@ -1020,6 +1100,7 @@ static void machvirt_init(MachineState *machine)
VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
VirtGuestInfo *guest_info = &guest_info_state->info;
char **cpustr;
+ bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
if (!cpu_model) {
cpu_model = "cortex-a15";
@@ -1047,6 +1128,15 @@ static void machvirt_init(MachineState *machine)
exit(1);
}
+ /* If we have an EL3 boot ROM then the assumption is that it will
+ * implement PSCI itself, so disable QEMU's internal implementation
+ * so it doesn't get in the way. Instead of starting secondary
+ * CPUs in PSCI powerdown state we will start them all running and
+ * let the boot ROM sort them out.
+ * The usual case is that we do use QEMU's PSCI implementation.
+ */
+ vbi->using_psci = !(vms->secure && firmware_loaded);
+
/* The maximum number of CPUs depends on the GIC version, or on how
* many redistributors we can fit into the memory map.
*/
@@ -1066,7 +1156,7 @@ static void machvirt_init(MachineState *machine)
vbi->smp_cpus = smp_cpus;
if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
- error_report("mach-virt: cannot model more than 30GB RAM");
+ error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
exit(1);
}
@@ -1114,12 +1204,15 @@ static void machvirt_init(MachineState *machine)
object_property_set_bool(cpuobj, false, "has_el3", NULL);
}
- object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
- NULL);
+ if (vbi->using_psci) {
+ object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC,
+ "psci-conduit", NULL);
- /* Secondary CPUs start in PSCI powered-down state */
- if (n > 0) {
- object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
+ /* Secondary CPUs start in PSCI powered-down state */
+ if (n > 0) {
+ object_property_set_bool(cpuobj, true,
+ "start-powered-off", NULL);
+ }
}
if (object_property_find(cpuobj, "reset-cbar", NULL)) {
@@ -1145,13 +1238,14 @@ static void machvirt_init(MachineState *machine)
machine->ram_size);
memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
- create_flash(vbi);
+ create_flash(vbi, sysmem, secure_sysmem ? secure_sysmem : sysmem);
create_gic(vbi, pic, gic_version, vms->secure);
create_uart(vbi, pic, VIRT_UART, sysmem);
if (vms->secure) {
+ create_secure_ram(vbi, secure_sysmem);
create_uart(vbi, pic, VIRT_SECURE_UART, secure_sysmem);
}
@@ -1187,7 +1281,7 @@ static void machvirt_init(MachineState *machine)
vbi->bootinfo.board_id = -1;
vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
vbi->bootinfo.get_dtb = machvirt_dtb;
- vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
+ vbi->bootinfo.firmware_loaded = firmware_loaded;
arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
/*