aboutsummaryrefslogtreecommitdiff
path: root/hw/arm
diff options
context:
space:
mode:
authorPeter Maydell <peter.maydell@linaro.org>2018-03-02 10:45:40 +0000
committerPeter Maydell <peter.maydell@linaro.org>2018-03-02 11:03:45 +0000
commit9e5e54d1af26c4b0a4a32259a465b77db21900a0 (patch)
treef6ee427697e6f13f32cdccec493be9d2fdb6e239 /hw/arm
parentb1ce38e12baf64c9cbe6e71c5b165a87248451b2 (diff)
hw/arm/iotkit: Model Arm IOT Kit
Model the Arm IoT Kit documented in http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html The Arm IoT Kit is a subsystem which includes a CPU and some devices, and is intended be extended by adding extra devices to form a complete system. It is used in the MPS2 board's AN505 image for the Cortex-M33. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20180220180325.29818-19-peter.maydell@linaro.org
Diffstat (limited to 'hw/arm')
-rw-r--r--hw/arm/Makefile.objs1
-rw-r--r--hw/arm/iotkit.c598
2 files changed, 599 insertions, 0 deletions
diff --git a/hw/arm/Makefile.objs b/hw/arm/Makefile.objs
index 1c896bafb4..79cd30bb92 100644
--- a/hw/arm/Makefile.objs
+++ b/hw/arm/Makefile.objs
@@ -20,3 +20,4 @@ obj-$(CONFIG_FSL_IMX6) += fsl-imx6.o sabrelite.o
obj-$(CONFIG_ASPEED_SOC) += aspeed_soc.o aspeed.o
obj-$(CONFIG_MPS2) += mps2.o
obj-$(CONFIG_MSF2) += msf2-soc.o msf2-som.o
+obj-$(CONFIG_IOTKIT) += iotkit.o
diff --git a/hw/arm/iotkit.c b/hw/arm/iotkit.c
new file mode 100644
index 0000000000..c5f0a5b98a
--- /dev/null
+++ b/hw/arm/iotkit.c
@@ -0,0 +1,598 @@
+/*
+ * Arm IoT Kit
+ *
+ * Copyright (c) 2018 Linaro Limited
+ * Written by Peter Maydell
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 or
+ * (at your option) any later version.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/log.h"
+#include "qapi/error.h"
+#include "trace.h"
+#include "hw/sysbus.h"
+#include "hw/registerfields.h"
+#include "hw/arm/iotkit.h"
+#include "hw/misc/unimp.h"
+#include "hw/arm/arm.h"
+
+/* Create an alias region of @size bytes starting at @base
+ * which mirrors the memory starting at @orig.
+ */
+static void make_alias(IoTKit *s, MemoryRegion *mr, const char *name,
+ hwaddr base, hwaddr size, hwaddr orig)
+{
+ memory_region_init_alias(mr, NULL, name, &s->container, orig, size);
+ /* The alias is even lower priority than unimplemented_device regions */
+ memory_region_add_subregion_overlap(&s->container, base, mr, -1500);
+}
+
+static void init_sysbus_child(Object *parent, const char *childname,
+ void *child, size_t childsize,
+ const char *childtype)
+{
+ object_initialize(child, childsize, childtype);
+ object_property_add_child(parent, childname, OBJECT(child), &error_abort);
+ qdev_set_parent_bus(DEVICE(child), sysbus_get_default());
+}
+
+static void irq_status_forwarder(void *opaque, int n, int level)
+{
+ qemu_irq destirq = opaque;
+
+ qemu_set_irq(destirq, level);
+}
+
+static void nsccfg_handler(void *opaque, int n, int level)
+{
+ IoTKit *s = IOTKIT(opaque);
+
+ s->nsccfg = level;
+}
+
+static void iotkit_forward_ppc(IoTKit *s, const char *ppcname, int ppcnum)
+{
+ /* Each of the 4 AHB and 4 APB PPCs that might be present in a
+ * system using the IoTKit has a collection of control lines which
+ * are provided by the security controller and which we want to
+ * expose as control lines on the IoTKit device itself, so the
+ * code using the IoTKit can wire them up to the PPCs.
+ */
+ SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
+ DeviceState *iotkitdev = DEVICE(s);
+ DeviceState *dev_secctl = DEVICE(&s->secctl);
+ DeviceState *dev_splitter = DEVICE(splitter);
+ char *name;
+
+ name = g_strdup_printf("%s_nonsec", ppcname);
+ qdev_pass_gpios(dev_secctl, iotkitdev, name);
+ g_free(name);
+ name = g_strdup_printf("%s_ap", ppcname);
+ qdev_pass_gpios(dev_secctl, iotkitdev, name);
+ g_free(name);
+ name = g_strdup_printf("%s_irq_enable", ppcname);
+ qdev_pass_gpios(dev_secctl, iotkitdev, name);
+ g_free(name);
+ name = g_strdup_printf("%s_irq_clear", ppcname);
+ qdev_pass_gpios(dev_secctl, iotkitdev, name);
+ g_free(name);
+
+ /* irq_status is a little more tricky, because we need to
+ * split it so we can send it both to the security controller
+ * and to our OR gate for the NVIC interrupt line.
+ * Connect up the splitter's outputs, and create a GPIO input
+ * which will pass the line state to the input splitter.
+ */
+ name = g_strdup_printf("%s_irq_status", ppcname);
+ qdev_connect_gpio_out(dev_splitter, 0,
+ qdev_get_gpio_in_named(dev_secctl,
+ name, 0));
+ qdev_connect_gpio_out(dev_splitter, 1,
+ qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
+ s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
+ qdev_init_gpio_in_named_with_opaque(iotkitdev, irq_status_forwarder,
+ s->irq_status_in[ppcnum], name, 1);
+ g_free(name);
+}
+
+static void iotkit_forward_sec_resp_cfg(IoTKit *s)
+{
+ /* Forward the 3rd output from the splitter device as a
+ * named GPIO output of the iotkit object.
+ */
+ DeviceState *dev = DEVICE(s);
+ DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
+
+ qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
+ s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
+ s->sec_resp_cfg, 1);
+ qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
+}
+
+static void iotkit_init(Object *obj)
+{
+ IoTKit *s = IOTKIT(obj);
+ int i;
+
+ memory_region_init(&s->container, obj, "iotkit-container", UINT64_MAX);
+
+ init_sysbus_child(obj, "armv7m", &s->armv7m, sizeof(s->armv7m),
+ TYPE_ARMV7M);
+ qdev_prop_set_string(DEVICE(&s->armv7m), "cpu-type",
+ ARM_CPU_TYPE_NAME("cortex-m33"));
+
+ init_sysbus_child(obj, "secctl", &s->secctl, sizeof(s->secctl),
+ TYPE_IOTKIT_SECCTL);
+ init_sysbus_child(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
+ TYPE_TZ_PPC);
+ init_sysbus_child(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
+ TYPE_TZ_PPC);
+ init_sysbus_child(obj, "timer0", &s->timer0, sizeof(s->timer0),
+ TYPE_CMSDK_APB_TIMER);
+ init_sysbus_child(obj, "timer1", &s->timer1, sizeof(s->timer1),
+ TYPE_CMSDK_APB_TIMER);
+ init_sysbus_child(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
+ TYPE_UNIMPLEMENTED_DEVICE);
+ object_initialize(&s->ppc_irq_orgate, sizeof(s->ppc_irq_orgate),
+ TYPE_OR_IRQ);
+ object_property_add_child(obj, "ppc-irq-orgate",
+ OBJECT(&s->ppc_irq_orgate), &error_abort);
+ object_initialize(&s->sec_resp_splitter, sizeof(s->sec_resp_splitter),
+ TYPE_SPLIT_IRQ);
+ object_property_add_child(obj, "sec-resp-splitter",
+ OBJECT(&s->sec_resp_splitter), &error_abort);
+ for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
+ char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
+ SplitIRQ *splitter = &s->ppc_irq_splitter[i];
+
+ object_initialize(splitter, sizeof(*splitter), TYPE_SPLIT_IRQ);
+ object_property_add_child(obj, name, OBJECT(splitter), &error_abort);
+ }
+ init_sysbus_child(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
+ TYPE_UNIMPLEMENTED_DEVICE);
+}
+
+static void iotkit_exp_irq(void *opaque, int n, int level)
+{
+ IoTKit *s = IOTKIT(opaque);
+
+ qemu_set_irq(s->exp_irqs[n], level);
+}
+
+static void iotkit_realize(DeviceState *dev, Error **errp)
+{
+ IoTKit *s = IOTKIT(dev);
+ int i;
+ MemoryRegion *mr;
+ Error *err = NULL;
+ SysBusDevice *sbd_apb_ppc0;
+ SysBusDevice *sbd_secctl;
+ DeviceState *dev_apb_ppc0;
+ DeviceState *dev_apb_ppc1;
+ DeviceState *dev_secctl;
+ DeviceState *dev_splitter;
+
+ if (!s->board_memory) {
+ error_setg(errp, "memory property was not set");
+ return;
+ }
+
+ if (!s->mainclk_frq) {
+ error_setg(errp, "MAINCLK property was not set");
+ return;
+ }
+
+ /* Handling of which devices should be available only to secure
+ * code is usually done differently for M profile than for A profile.
+ * Instead of putting some devices only into the secure address space,
+ * devices exist in both address spaces but with hard-wired security
+ * permissions that will cause the CPU to fault for non-secure accesses.
+ *
+ * The IoTKit has an IDAU (Implementation Defined Access Unit),
+ * which specifies hard-wired security permissions for different
+ * areas of the physical address space. For the IoTKit IDAU, the
+ * top 4 bits of the physical address are the IDAU region ID, and
+ * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
+ * region, otherwise it is an S region.
+ *
+ * The various devices and RAMs are generally all mapped twice,
+ * once into a region that the IDAU defines as secure and once
+ * into a non-secure region. They sit behind either a Memory
+ * Protection Controller (for RAM) or a Peripheral Protection
+ * Controller (for devices), which allow a more fine grained
+ * configuration of whether non-secure accesses are permitted.
+ *
+ * (The other place that guest software can configure security
+ * permissions is in the architected SAU (Security Attribution
+ * Unit), which is entirely inside the CPU. The IDAU can upgrade
+ * the security attributes for a region to more restrictive than
+ * the SAU specifies, but cannot downgrade them.)
+ *
+ * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
+ * 0x20000000..0x2007ffff 32KB FPGA block RAM
+ * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
+ * 0x40000000..0x4000ffff base peripheral region 1
+ * 0x40010000..0x4001ffff CPU peripherals (none for IoTKit)
+ * 0x40020000..0x4002ffff system control element peripherals
+ * 0x40080000..0x400fffff base peripheral region 2
+ * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
+ */
+
+ memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
+
+ qdev_prop_set_uint32(DEVICE(&s->armv7m), "num-irq", s->exp_numirq + 32);
+ /* In real hardware the initial Secure VTOR is set from the INITSVTOR0
+ * register in the IoT Kit System Control Register block, and the
+ * initial value of that is in turn specifiable by the FPGA that
+ * instantiates the IoT Kit. In QEMU we don't implement this wrinkle,
+ * and simply set the CPU's init-svtor to the IoT Kit default value.
+ */
+ qdev_prop_set_uint32(DEVICE(&s->armv7m), "init-svtor", 0x10000000);
+ object_property_set_link(OBJECT(&s->armv7m), OBJECT(&s->container),
+ "memory", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_link(OBJECT(&s->armv7m), OBJECT(s), "idau", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(OBJECT(&s->armv7m), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ /* Connect our EXP_IRQ GPIOs to the NVIC's lines 32 and up. */
+ s->exp_irqs = g_new(qemu_irq, s->exp_numirq);
+ for (i = 0; i < s->exp_numirq; i++) {
+ s->exp_irqs[i] = qdev_get_gpio_in(DEVICE(&s->armv7m), i + 32);
+ }
+ qdev_init_gpio_in_named(dev, iotkit_exp_irq, "EXP_IRQ", s->exp_numirq);
+
+ /* Set up the big aliases first */
+ make_alias(s, &s->alias1, "alias 1", 0x10000000, 0x10000000, 0x00000000);
+ make_alias(s, &s->alias2, "alias 2", 0x30000000, 0x10000000, 0x20000000);
+ /* The 0x50000000..0x5fffffff region is not a pure alias: it has
+ * a few extra devices that only appear there (generally the
+ * control interfaces for the protection controllers).
+ * We implement this by mapping those devices over the top of this
+ * alias MR at a higher priority.
+ */
+ make_alias(s, &s->alias3, "alias 3", 0x50000000, 0x10000000, 0x40000000);
+
+ /* This RAM should be behind a Memory Protection Controller, but we
+ * don't implement that yet.
+ */
+ memory_region_init_ram(&s->sram0, NULL, "iotkit.sram0", 0x00008000, &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ memory_region_add_subregion(&s->container, 0x20000000, &s->sram0);
+
+ /* Security controller */
+ object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
+ dev_secctl = DEVICE(&s->secctl);
+ sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
+ sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
+
+ s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
+ qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
+
+ /* The sec_resp_cfg output from the security controller must be split into
+ * multiple lines, one for each of the PPCs within the IoTKit and one
+ * that will be an output from the IoTKit to the system.
+ */
+ object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
+ "num-lines", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
+ "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ dev_splitter = DEVICE(&s->sec_resp_splitter);
+ qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
+ qdev_get_gpio_in(dev_splitter, 0));
+
+ /* Devices behind APB PPC0:
+ * 0x40000000: timer0
+ * 0x40001000: timer1
+ * 0x40002000: dual timer
+ * We must configure and realize each downstream device and connect
+ * it to the appropriate PPC port; then we can realize the PPC and
+ * map its upstream ends to the right place in the container.
+ */
+ qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
+ object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
+ qdev_get_gpio_in(DEVICE(&s->armv7m), 3));
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
+ object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
+ object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
+ qdev_get_gpio_in(DEVICE(&s->armv7m), 3));
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
+ object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ qdev_prop_set_string(DEVICE(&s->dualtimer), "name", "Dual timer");
+ qdev_prop_set_uint64(DEVICE(&s->dualtimer), "size", 0x1000);
+ object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
+ object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
+ dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
+
+ mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
+ memory_region_add_subregion(&s->container, 0x40000000, mr);
+ mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
+ memory_region_add_subregion(&s->container, 0x40001000, mr);
+ mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
+ memory_region_add_subregion(&s->container, 0x40002000, mr);
+ for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
+ qdev_get_gpio_in_named(dev_apb_ppc0,
+ "cfg_nonsec", i));
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
+ qdev_get_gpio_in_named(dev_apb_ppc0,
+ "cfg_ap", i));
+ }
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
+ qdev_get_gpio_in_named(dev_apb_ppc0,
+ "irq_enable", 0));
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
+ qdev_get_gpio_in_named(dev_apb_ppc0,
+ "irq_clear", 0));
+ qdev_connect_gpio_out(dev_splitter, 0,
+ qdev_get_gpio_in_named(dev_apb_ppc0,
+ "cfg_sec_resp", 0));
+
+ /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
+ * ones) are sent individually to the security controller, and also
+ * ORed together to give a single combined PPC interrupt to the NVIC.
+ */
+ object_property_set_int(OBJECT(&s->ppc_irq_orgate),
+ NUM_PPCS, "num-lines", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
+ "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
+ qdev_get_gpio_in(DEVICE(&s->armv7m), 10));
+
+ /* 0x40010000 .. 0x4001ffff: private CPU region: unused in IoTKit */
+
+ /* 0x40020000 .. 0x4002ffff : IoTKit system control peripheral region */
+ /* Devices behind APB PPC1:
+ * 0x4002f000: S32K timer
+ */
+ qdev_prop_set_string(DEVICE(&s->s32ktimer), "name", "S32KTIMER");
+ qdev_prop_set_uint64(DEVICE(&s->s32ktimer), "size", 0x1000);
+ object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
+ object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
+ memory_region_add_subregion(&s->container, 0x4002f000, mr);
+
+ dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
+ qdev_get_gpio_in_named(dev_apb_ppc1,
+ "cfg_nonsec", 0));
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
+ qdev_get_gpio_in_named(dev_apb_ppc1,
+ "cfg_ap", 0));
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
+ qdev_get_gpio_in_named(dev_apb_ppc1,
+ "irq_enable", 0));
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
+ qdev_get_gpio_in_named(dev_apb_ppc1,
+ "irq_clear", 0));
+ qdev_connect_gpio_out(dev_splitter, 1,
+ qdev_get_gpio_in_named(dev_apb_ppc1,
+ "cfg_sec_resp", 0));
+
+ /* Using create_unimplemented_device() maps the stub into the
+ * system address space rather than into our container, but the
+ * overall effect to the guest is the same.
+ */
+ create_unimplemented_device("SYSINFO", 0x40020000, 0x1000);
+
+ create_unimplemented_device("SYSCONTROL", 0x50021000, 0x1000);
+ create_unimplemented_device("S32KWATCHDOG", 0x5002e000, 0x1000);
+
+ /* 0x40080000 .. 0x4008ffff : IoTKit second Base peripheral region */
+
+ create_unimplemented_device("NS watchdog", 0x40081000, 0x1000);
+ create_unimplemented_device("S watchdog", 0x50081000, 0x1000);
+
+ create_unimplemented_device("SRAM0 MPC", 0x50083000, 0x1000);
+
+ for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
+ Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
+
+ object_property_set_int(splitter, 2, "num-lines", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(splitter, true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ }
+
+ for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
+ char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
+
+ iotkit_forward_ppc(s, ppcname, i);
+ g_free(ppcname);
+ }
+
+ for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
+ char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
+
+ iotkit_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
+ g_free(ppcname);
+ }
+
+ for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
+ /* Wire up IRQ splitter for internal PPCs */
+ DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
+ char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
+ i - NUM_EXTERNAL_PPCS);
+ TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
+
+ qdev_connect_gpio_out(devs, 0,
+ qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
+ qdev_connect_gpio_out(devs, 1,
+ qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
+ qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
+ qdev_get_gpio_in(devs, 0));
+ }
+
+ iotkit_forward_sec_resp_cfg(s);
+
+ system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
+}
+
+static void iotkit_idau_check(IDAUInterface *ii, uint32_t address,
+ int *iregion, bool *exempt, bool *ns, bool *nsc)
+{
+ /* For IoTKit systems the IDAU responses are simple logical functions
+ * of the address bits. The NSC attribute is guest-adjustable via the
+ * NSCCFG register in the security controller.
+ */
+ IoTKit *s = IOTKIT(ii);
+ int region = extract32(address, 28, 4);
+
+ *ns = !(region & 1);
+ *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
+ /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
+ *exempt = (address & 0xeff00000) == 0xe0000000;
+ *iregion = region;
+}
+
+static const VMStateDescription iotkit_vmstate = {
+ .name = "iotkit",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .fields = (VMStateField[]) {
+ VMSTATE_UINT32(nsccfg, IoTKit),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+static Property iotkit_properties[] = {
+ DEFINE_PROP_LINK("memory", IoTKit, board_memory, TYPE_MEMORY_REGION,
+ MemoryRegion *),
+ DEFINE_PROP_UINT32("EXP_NUMIRQ", IoTKit, exp_numirq, 64),
+ DEFINE_PROP_UINT32("MAINCLK", IoTKit, mainclk_frq, 0),
+ DEFINE_PROP_END_OF_LIST()
+};
+
+static void iotkit_reset(DeviceState *dev)
+{
+ IoTKit *s = IOTKIT(dev);
+
+ s->nsccfg = 0;
+}
+
+static void iotkit_class_init(ObjectClass *klass, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(klass);
+ IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
+
+ dc->realize = iotkit_realize;
+ dc->vmsd = &iotkit_vmstate;
+ dc->props = iotkit_properties;
+ dc->reset = iotkit_reset;
+ iic->check = iotkit_idau_check;
+}
+
+static const TypeInfo iotkit_info = {
+ .name = TYPE_IOTKIT,
+ .parent = TYPE_SYS_BUS_DEVICE,
+ .instance_size = sizeof(IoTKit),
+ .instance_init = iotkit_init,
+ .class_init = iotkit_class_init,
+ .interfaces = (InterfaceInfo[]) {
+ { TYPE_IDAU_INTERFACE },
+ { }
+ }
+};
+
+static void iotkit_register_types(void)
+{
+ type_register_static(&iotkit_info);
+}
+
+type_init(iotkit_register_types);