diff options
author | Peter Maydell <peter.maydell@linaro.org> | 2018-03-02 10:45:40 +0000 |
---|---|---|
committer | Peter Maydell <peter.maydell@linaro.org> | 2018-03-02 11:03:45 +0000 |
commit | 9e5e54d1af26c4b0a4a32259a465b77db21900a0 (patch) | |
tree | f6ee427697e6f13f32cdccec493be9d2fdb6e239 /hw/arm | |
parent | b1ce38e12baf64c9cbe6e71c5b165a87248451b2 (diff) |
hw/arm/iotkit: Model Arm IOT Kit
Model the Arm IoT Kit documented in
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
The Arm IoT Kit is a subsystem which includes a CPU and some devices,
and is intended be extended by adding extra devices to form a
complete system. It is used in the MPS2 board's AN505 image for the
Cortex-M33.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20180220180325.29818-19-peter.maydell@linaro.org
Diffstat (limited to 'hw/arm')
-rw-r--r-- | hw/arm/Makefile.objs | 1 | ||||
-rw-r--r-- | hw/arm/iotkit.c | 598 |
2 files changed, 599 insertions, 0 deletions
diff --git a/hw/arm/Makefile.objs b/hw/arm/Makefile.objs index 1c896bafb4..79cd30bb92 100644 --- a/hw/arm/Makefile.objs +++ b/hw/arm/Makefile.objs @@ -20,3 +20,4 @@ obj-$(CONFIG_FSL_IMX6) += fsl-imx6.o sabrelite.o obj-$(CONFIG_ASPEED_SOC) += aspeed_soc.o aspeed.o obj-$(CONFIG_MPS2) += mps2.o obj-$(CONFIG_MSF2) += msf2-soc.o msf2-som.o +obj-$(CONFIG_IOTKIT) += iotkit.o diff --git a/hw/arm/iotkit.c b/hw/arm/iotkit.c new file mode 100644 index 0000000000..c5f0a5b98a --- /dev/null +++ b/hw/arm/iotkit.c @@ -0,0 +1,598 @@ +/* + * Arm IoT Kit + * + * Copyright (c) 2018 Linaro Limited + * Written by Peter Maydell + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 or + * (at your option) any later version. + */ + +#include "qemu/osdep.h" +#include "qemu/log.h" +#include "qapi/error.h" +#include "trace.h" +#include "hw/sysbus.h" +#include "hw/registerfields.h" +#include "hw/arm/iotkit.h" +#include "hw/misc/unimp.h" +#include "hw/arm/arm.h" + +/* Create an alias region of @size bytes starting at @base + * which mirrors the memory starting at @orig. + */ +static void make_alias(IoTKit *s, MemoryRegion *mr, const char *name, + hwaddr base, hwaddr size, hwaddr orig) +{ + memory_region_init_alias(mr, NULL, name, &s->container, orig, size); + /* The alias is even lower priority than unimplemented_device regions */ + memory_region_add_subregion_overlap(&s->container, base, mr, -1500); +} + +static void init_sysbus_child(Object *parent, const char *childname, + void *child, size_t childsize, + const char *childtype) +{ + object_initialize(child, childsize, childtype); + object_property_add_child(parent, childname, OBJECT(child), &error_abort); + qdev_set_parent_bus(DEVICE(child), sysbus_get_default()); +} + +static void irq_status_forwarder(void *opaque, int n, int level) +{ + qemu_irq destirq = opaque; + + qemu_set_irq(destirq, level); +} + +static void nsccfg_handler(void *opaque, int n, int level) +{ + IoTKit *s = IOTKIT(opaque); + + s->nsccfg = level; +} + +static void iotkit_forward_ppc(IoTKit *s, const char *ppcname, int ppcnum) +{ + /* Each of the 4 AHB and 4 APB PPCs that might be present in a + * system using the IoTKit has a collection of control lines which + * are provided by the security controller and which we want to + * expose as control lines on the IoTKit device itself, so the + * code using the IoTKit can wire them up to the PPCs. + */ + SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum]; + DeviceState *iotkitdev = DEVICE(s); + DeviceState *dev_secctl = DEVICE(&s->secctl); + DeviceState *dev_splitter = DEVICE(splitter); + char *name; + + name = g_strdup_printf("%s_nonsec", ppcname); + qdev_pass_gpios(dev_secctl, iotkitdev, name); + g_free(name); + name = g_strdup_printf("%s_ap", ppcname); + qdev_pass_gpios(dev_secctl, iotkitdev, name); + g_free(name); + name = g_strdup_printf("%s_irq_enable", ppcname); + qdev_pass_gpios(dev_secctl, iotkitdev, name); + g_free(name); + name = g_strdup_printf("%s_irq_clear", ppcname); + qdev_pass_gpios(dev_secctl, iotkitdev, name); + g_free(name); + + /* irq_status is a little more tricky, because we need to + * split it so we can send it both to the security controller + * and to our OR gate for the NVIC interrupt line. + * Connect up the splitter's outputs, and create a GPIO input + * which will pass the line state to the input splitter. + */ + name = g_strdup_printf("%s_irq_status", ppcname); + qdev_connect_gpio_out(dev_splitter, 0, + qdev_get_gpio_in_named(dev_secctl, + name, 0)); + qdev_connect_gpio_out(dev_splitter, 1, + qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum)); + s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0); + qdev_init_gpio_in_named_with_opaque(iotkitdev, irq_status_forwarder, + s->irq_status_in[ppcnum], name, 1); + g_free(name); +} + +static void iotkit_forward_sec_resp_cfg(IoTKit *s) +{ + /* Forward the 3rd output from the splitter device as a + * named GPIO output of the iotkit object. + */ + DeviceState *dev = DEVICE(s); + DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter); + + qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1); + s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder, + s->sec_resp_cfg, 1); + qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in); +} + +static void iotkit_init(Object *obj) +{ + IoTKit *s = IOTKIT(obj); + int i; + + memory_region_init(&s->container, obj, "iotkit-container", UINT64_MAX); + + init_sysbus_child(obj, "armv7m", &s->armv7m, sizeof(s->armv7m), + TYPE_ARMV7M); + qdev_prop_set_string(DEVICE(&s->armv7m), "cpu-type", + ARM_CPU_TYPE_NAME("cortex-m33")); + + init_sysbus_child(obj, "secctl", &s->secctl, sizeof(s->secctl), + TYPE_IOTKIT_SECCTL); + init_sysbus_child(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0), + TYPE_TZ_PPC); + init_sysbus_child(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1), + TYPE_TZ_PPC); + init_sysbus_child(obj, "timer0", &s->timer0, sizeof(s->timer0), + TYPE_CMSDK_APB_TIMER); + init_sysbus_child(obj, "timer1", &s->timer1, sizeof(s->timer1), + TYPE_CMSDK_APB_TIMER); + init_sysbus_child(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer), + TYPE_UNIMPLEMENTED_DEVICE); + object_initialize(&s->ppc_irq_orgate, sizeof(s->ppc_irq_orgate), + TYPE_OR_IRQ); + object_property_add_child(obj, "ppc-irq-orgate", + OBJECT(&s->ppc_irq_orgate), &error_abort); + object_initialize(&s->sec_resp_splitter, sizeof(s->sec_resp_splitter), + TYPE_SPLIT_IRQ); + object_property_add_child(obj, "sec-resp-splitter", + OBJECT(&s->sec_resp_splitter), &error_abort); + for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { + char *name = g_strdup_printf("ppc-irq-splitter-%d", i); + SplitIRQ *splitter = &s->ppc_irq_splitter[i]; + + object_initialize(splitter, sizeof(*splitter), TYPE_SPLIT_IRQ); + object_property_add_child(obj, name, OBJECT(splitter), &error_abort); + } + init_sysbus_child(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer), + TYPE_UNIMPLEMENTED_DEVICE); +} + +static void iotkit_exp_irq(void *opaque, int n, int level) +{ + IoTKit *s = IOTKIT(opaque); + + qemu_set_irq(s->exp_irqs[n], level); +} + +static void iotkit_realize(DeviceState *dev, Error **errp) +{ + IoTKit *s = IOTKIT(dev); + int i; + MemoryRegion *mr; + Error *err = NULL; + SysBusDevice *sbd_apb_ppc0; + SysBusDevice *sbd_secctl; + DeviceState *dev_apb_ppc0; + DeviceState *dev_apb_ppc1; + DeviceState *dev_secctl; + DeviceState *dev_splitter; + + if (!s->board_memory) { + error_setg(errp, "memory property was not set"); + return; + } + + if (!s->mainclk_frq) { + error_setg(errp, "MAINCLK property was not set"); + return; + } + + /* Handling of which devices should be available only to secure + * code is usually done differently for M profile than for A profile. + * Instead of putting some devices only into the secure address space, + * devices exist in both address spaces but with hard-wired security + * permissions that will cause the CPU to fault for non-secure accesses. + * + * The IoTKit has an IDAU (Implementation Defined Access Unit), + * which specifies hard-wired security permissions for different + * areas of the physical address space. For the IoTKit IDAU, the + * top 4 bits of the physical address are the IDAU region ID, and + * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS + * region, otherwise it is an S region. + * + * The various devices and RAMs are generally all mapped twice, + * once into a region that the IDAU defines as secure and once + * into a non-secure region. They sit behind either a Memory + * Protection Controller (for RAM) or a Peripheral Protection + * Controller (for devices), which allow a more fine grained + * configuration of whether non-secure accesses are permitted. + * + * (The other place that guest software can configure security + * permissions is in the architected SAU (Security Attribution + * Unit), which is entirely inside the CPU. The IDAU can upgrade + * the security attributes for a region to more restrictive than + * the SAU specifies, but cannot downgrade them.) + * + * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff + * 0x20000000..0x2007ffff 32KB FPGA block RAM + * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff + * 0x40000000..0x4000ffff base peripheral region 1 + * 0x40010000..0x4001ffff CPU peripherals (none for IoTKit) + * 0x40020000..0x4002ffff system control element peripherals + * 0x40080000..0x400fffff base peripheral region 2 + * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff + */ + + memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1); + + qdev_prop_set_uint32(DEVICE(&s->armv7m), "num-irq", s->exp_numirq + 32); + /* In real hardware the initial Secure VTOR is set from the INITSVTOR0 + * register in the IoT Kit System Control Register block, and the + * initial value of that is in turn specifiable by the FPGA that + * instantiates the IoT Kit. In QEMU we don't implement this wrinkle, + * and simply set the CPU's init-svtor to the IoT Kit default value. + */ + qdev_prop_set_uint32(DEVICE(&s->armv7m), "init-svtor", 0x10000000); + object_property_set_link(OBJECT(&s->armv7m), OBJECT(&s->container), + "memory", &err); + if (err) { + error_propagate(errp, err); + return; + } + object_property_set_link(OBJECT(&s->armv7m), OBJECT(s), "idau", &err); + if (err) { + error_propagate(errp, err); + return; + } + object_property_set_bool(OBJECT(&s->armv7m), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + + /* Connect our EXP_IRQ GPIOs to the NVIC's lines 32 and up. */ + s->exp_irqs = g_new(qemu_irq, s->exp_numirq); + for (i = 0; i < s->exp_numirq; i++) { + s->exp_irqs[i] = qdev_get_gpio_in(DEVICE(&s->armv7m), i + 32); + } + qdev_init_gpio_in_named(dev, iotkit_exp_irq, "EXP_IRQ", s->exp_numirq); + + /* Set up the big aliases first */ + make_alias(s, &s->alias1, "alias 1", 0x10000000, 0x10000000, 0x00000000); + make_alias(s, &s->alias2, "alias 2", 0x30000000, 0x10000000, 0x20000000); + /* The 0x50000000..0x5fffffff region is not a pure alias: it has + * a few extra devices that only appear there (generally the + * control interfaces for the protection controllers). + * We implement this by mapping those devices over the top of this + * alias MR at a higher priority. + */ + make_alias(s, &s->alias3, "alias 3", 0x50000000, 0x10000000, 0x40000000); + + /* This RAM should be behind a Memory Protection Controller, but we + * don't implement that yet. + */ + memory_region_init_ram(&s->sram0, NULL, "iotkit.sram0", 0x00008000, &err); + if (err) { + error_propagate(errp, err); + return; + } + memory_region_add_subregion(&s->container, 0x20000000, &s->sram0); + + /* Security controller */ + object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + sbd_secctl = SYS_BUS_DEVICE(&s->secctl); + dev_secctl = DEVICE(&s->secctl); + sysbus_mmio_map(sbd_secctl, 0, 0x50080000); + sysbus_mmio_map(sbd_secctl, 1, 0x40080000); + + s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1); + qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in); + + /* The sec_resp_cfg output from the security controller must be split into + * multiple lines, one for each of the PPCs within the IoTKit and one + * that will be an output from the IoTKit to the system. + */ + object_property_set_int(OBJECT(&s->sec_resp_splitter), 3, + "num-lines", &err); + if (err) { + error_propagate(errp, err); + return; + } + object_property_set_bool(OBJECT(&s->sec_resp_splitter), true, + "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + dev_splitter = DEVICE(&s->sec_resp_splitter); + qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0, + qdev_get_gpio_in(dev_splitter, 0)); + + /* Devices behind APB PPC0: + * 0x40000000: timer0 + * 0x40001000: timer1 + * 0x40002000: dual timer + * We must configure and realize each downstream device and connect + * it to the appropriate PPC port; then we can realize the PPC and + * map its upstream ends to the right place in the container. + */ + qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq); + object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0, + qdev_get_gpio_in(DEVICE(&s->armv7m), 3)); + mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0); + object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err); + if (err) { + error_propagate(errp, err); + return; + } + + qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq); + object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0, + qdev_get_gpio_in(DEVICE(&s->armv7m), 3)); + mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0); + object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err); + if (err) { + error_propagate(errp, err); + return; + } + + qdev_prop_set_string(DEVICE(&s->dualtimer), "name", "Dual timer"); + qdev_prop_set_uint64(DEVICE(&s->dualtimer), "size", 0x1000); + object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0); + object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err); + if (err) { + error_propagate(errp, err); + return; + } + + object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + + sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0); + dev_apb_ppc0 = DEVICE(&s->apb_ppc0); + + mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0); + memory_region_add_subregion(&s->container, 0x40000000, mr); + mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1); + memory_region_add_subregion(&s->container, 0x40001000, mr); + mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2); + memory_region_add_subregion(&s->container, 0x40002000, mr); + for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) { + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i, + qdev_get_gpio_in_named(dev_apb_ppc0, + "cfg_nonsec", i)); + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i, + qdev_get_gpio_in_named(dev_apb_ppc0, + "cfg_ap", i)); + } + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0, + qdev_get_gpio_in_named(dev_apb_ppc0, + "irq_enable", 0)); + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0, + qdev_get_gpio_in_named(dev_apb_ppc0, + "irq_clear", 0)); + qdev_connect_gpio_out(dev_splitter, 0, + qdev_get_gpio_in_named(dev_apb_ppc0, + "cfg_sec_resp", 0)); + + /* All the PPC irq lines (from the 2 internal PPCs and the 8 external + * ones) are sent individually to the security controller, and also + * ORed together to give a single combined PPC interrupt to the NVIC. + */ + object_property_set_int(OBJECT(&s->ppc_irq_orgate), + NUM_PPCS, "num-lines", &err); + if (err) { + error_propagate(errp, err); + return; + } + object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true, + "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0, + qdev_get_gpio_in(DEVICE(&s->armv7m), 10)); + + /* 0x40010000 .. 0x4001ffff: private CPU region: unused in IoTKit */ + + /* 0x40020000 .. 0x4002ffff : IoTKit system control peripheral region */ + /* Devices behind APB PPC1: + * 0x4002f000: S32K timer + */ + qdev_prop_set_string(DEVICE(&s->s32ktimer), "name", "S32KTIMER"); + qdev_prop_set_uint64(DEVICE(&s->s32ktimer), "size", 0x1000); + object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0); + object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err); + if (err) { + error_propagate(errp, err); + return; + } + + object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0); + memory_region_add_subregion(&s->container, 0x4002f000, mr); + + dev_apb_ppc1 = DEVICE(&s->apb_ppc1); + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0, + qdev_get_gpio_in_named(dev_apb_ppc1, + "cfg_nonsec", 0)); + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0, + qdev_get_gpio_in_named(dev_apb_ppc1, + "cfg_ap", 0)); + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0, + qdev_get_gpio_in_named(dev_apb_ppc1, + "irq_enable", 0)); + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0, + qdev_get_gpio_in_named(dev_apb_ppc1, + "irq_clear", 0)); + qdev_connect_gpio_out(dev_splitter, 1, + qdev_get_gpio_in_named(dev_apb_ppc1, + "cfg_sec_resp", 0)); + + /* Using create_unimplemented_device() maps the stub into the + * system address space rather than into our container, but the + * overall effect to the guest is the same. + */ + create_unimplemented_device("SYSINFO", 0x40020000, 0x1000); + + create_unimplemented_device("SYSCONTROL", 0x50021000, 0x1000); + create_unimplemented_device("S32KWATCHDOG", 0x5002e000, 0x1000); + + /* 0x40080000 .. 0x4008ffff : IoTKit second Base peripheral region */ + + create_unimplemented_device("NS watchdog", 0x40081000, 0x1000); + create_unimplemented_device("S watchdog", 0x50081000, 0x1000); + + create_unimplemented_device("SRAM0 MPC", 0x50083000, 0x1000); + + for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { + Object *splitter = OBJECT(&s->ppc_irq_splitter[i]); + + object_property_set_int(splitter, 2, "num-lines", &err); + if (err) { + error_propagate(errp, err); + return; + } + object_property_set_bool(splitter, true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + } + + for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) { + char *ppcname = g_strdup_printf("ahb_ppcexp%d", i); + + iotkit_forward_ppc(s, ppcname, i); + g_free(ppcname); + } + + for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) { + char *ppcname = g_strdup_printf("apb_ppcexp%d", i); + + iotkit_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC); + g_free(ppcname); + } + + for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) { + /* Wire up IRQ splitter for internal PPCs */ + DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]); + char *gpioname = g_strdup_printf("apb_ppc%d_irq_status", + i - NUM_EXTERNAL_PPCS); + TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1; + + qdev_connect_gpio_out(devs, 0, + qdev_get_gpio_in_named(dev_secctl, gpioname, 0)); + qdev_connect_gpio_out(devs, 1, + qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i)); + qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0, + qdev_get_gpio_in(devs, 0)); + } + + iotkit_forward_sec_resp_cfg(s); + + system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq; +} + +static void iotkit_idau_check(IDAUInterface *ii, uint32_t address, + int *iregion, bool *exempt, bool *ns, bool *nsc) +{ + /* For IoTKit systems the IDAU responses are simple logical functions + * of the address bits. The NSC attribute is guest-adjustable via the + * NSCCFG register in the security controller. + */ + IoTKit *s = IOTKIT(ii); + int region = extract32(address, 28, 4); + + *ns = !(region & 1); + *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2)); + /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */ + *exempt = (address & 0xeff00000) == 0xe0000000; + *iregion = region; +} + +static const VMStateDescription iotkit_vmstate = { + .name = "iotkit", + .version_id = 1, + .minimum_version_id = 1, + .fields = (VMStateField[]) { + VMSTATE_UINT32(nsccfg, IoTKit), + VMSTATE_END_OF_LIST() + } +}; + +static Property iotkit_properties[] = { + DEFINE_PROP_LINK("memory", IoTKit, board_memory, TYPE_MEMORY_REGION, + MemoryRegion *), + DEFINE_PROP_UINT32("EXP_NUMIRQ", IoTKit, exp_numirq, 64), + DEFINE_PROP_UINT32("MAINCLK", IoTKit, mainclk_frq, 0), + DEFINE_PROP_END_OF_LIST() +}; + +static void iotkit_reset(DeviceState *dev) +{ + IoTKit *s = IOTKIT(dev); + + s->nsccfg = 0; +} + +static void iotkit_class_init(ObjectClass *klass, void *data) +{ + DeviceClass *dc = DEVICE_CLASS(klass); + IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass); + + dc->realize = iotkit_realize; + dc->vmsd = &iotkit_vmstate; + dc->props = iotkit_properties; + dc->reset = iotkit_reset; + iic->check = iotkit_idau_check; +} + +static const TypeInfo iotkit_info = { + .name = TYPE_IOTKIT, + .parent = TYPE_SYS_BUS_DEVICE, + .instance_size = sizeof(IoTKit), + .instance_init = iotkit_init, + .class_init = iotkit_class_init, + .interfaces = (InterfaceInfo[]) { + { TYPE_IDAU_INTERFACE }, + { } + } +}; + +static void iotkit_register_types(void) +{ + type_register_static(&iotkit_info); +} + +type_init(iotkit_register_types); |