diff options
author | Richard Henderson <richard.henderson@linaro.org> | 2020-11-11 20:44:57 -0800 |
---|---|---|
committer | Richard Henderson <richard.henderson@linaro.org> | 2021-05-16 07:13:51 -0500 |
commit | aca845275a62e79daee8ed5bf95ccb8ace4aeac9 (patch) | |
tree | 9b42d216e74508db4c673416b96a82a2595f85a7 /fpu | |
parent | 3ff49e56a7294e1b0d29ee62250a877838f4a1eb (diff) |
softfloat: Move mul_floats to softfloat-parts.c.inc
Rename to parts$N_mul.
Reimplement float128_mul with FloatParts128.
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Diffstat (limited to 'fpu')
-rw-r--r-- | fpu/softfloat-parts.c.inc | 51 | ||||
-rw-r--r-- | fpu/softfloat.c | 206 |
2 files changed, 128 insertions, 129 deletions
diff --git a/fpu/softfloat-parts.c.inc b/fpu/softfloat-parts.c.inc index cfce9f6421..9a67ab2bea 100644 --- a/fpu/softfloat-parts.c.inc +++ b/fpu/softfloat-parts.c.inc @@ -362,3 +362,54 @@ static FloatPartsN *partsN(addsub)(FloatPartsN *a, FloatPartsN *b, p_nan: return parts_pick_nan(a, b, s); } + +/* + * Returns the result of multiplying the floating-point values `a' and + * `b'. The operation is performed according to the IEC/IEEE Standard + * for Binary Floating-Point Arithmetic. + */ +static FloatPartsN *partsN(mul)(FloatPartsN *a, FloatPartsN *b, + float_status *s) +{ + int ab_mask = float_cmask(a->cls) | float_cmask(b->cls); + bool sign = a->sign ^ b->sign; + + if (likely(ab_mask == float_cmask_normal)) { + FloatPartsW tmp; + + frac_mulw(&tmp, a, b); + frac_truncjam(a, &tmp); + + a->exp += b->exp + 1; + if (!(a->frac_hi & DECOMPOSED_IMPLICIT_BIT)) { + frac_add(a, a, a); + a->exp -= 1; + } + + a->sign = sign; + return a; + } + + /* Inf * Zero == NaN */ + if (unlikely(ab_mask == float_cmask_infzero)) { + float_raise(float_flag_invalid, s); + parts_default_nan(a, s); + return a; + } + + if (unlikely(ab_mask & float_cmask_anynan)) { + return parts_pick_nan(a, b, s); + } + + /* Multiply by 0 or Inf */ + if (ab_mask & float_cmask_inf) { + a->cls = float_class_inf; + a->sign = sign; + return a; + } + + g_assert(ab_mask & float_cmask_zero); + a->cls = float_class_zero; + a->sign = sign; + return a; +} diff --git a/fpu/softfloat.c b/fpu/softfloat.c index 8f734f6020..ac7959557c 100644 --- a/fpu/softfloat.c +++ b/fpu/softfloat.c @@ -533,6 +533,16 @@ typedef struct { uint64_t frac_lo; } FloatParts128; +typedef struct { + FloatClass cls; + bool sign; + int32_t exp; + uint64_t frac_hi; + uint64_t frac_hm; /* high-middle */ + uint64_t frac_lm; /* low-middle */ + uint64_t frac_lo; +} FloatParts256; + /* These apply to the most significant word of each FloatPartsN. */ #define DECOMPOSED_BINARY_POINT 63 #define DECOMPOSED_IMPLICIT_BIT (1ull << DECOMPOSED_BINARY_POINT) @@ -769,6 +779,14 @@ static FloatParts128 *parts128_addsub(FloatParts128 *a, FloatParts128 *b, #define parts_addsub(A, B, S, Z) \ PARTS_GENERIC_64_128(addsub, A)(A, B, S, Z) +static FloatParts64 *parts64_mul(FloatParts64 *a, FloatParts64 *b, + float_status *s); +static FloatParts128 *parts128_mul(FloatParts128 *a, FloatParts128 *b, + float_status *s); + +#define parts_mul(A, B, S) \ + PARTS_GENERIC_64_128(mul, A)(A, B, S) + /* * Helper functions for softfloat-parts.c.inc, per-size operations. */ @@ -859,6 +877,19 @@ static bool frac128_eqz(FloatParts128 *a) #define frac_eqz(A) FRAC_GENERIC_64_128(eqz, A)(A) +static void frac64_mulw(FloatParts128 *r, FloatParts64 *a, FloatParts64 *b) +{ + mulu64(&r->frac_lo, &r->frac_hi, a->frac, b->frac); +} + +static void frac128_mulw(FloatParts256 *r, FloatParts128 *a, FloatParts128 *b) +{ + mul128To256(a->frac_hi, a->frac_lo, b->frac_hi, b->frac_lo, + &r->frac_hi, &r->frac_hm, &r->frac_lm, &r->frac_lo); +} + +#define frac_mulw(R, A, B) FRAC_GENERIC_64_128(mulw, A)(R, A, B) + static void frac64_neg(FloatParts64 *a) { a->frac = -a->frac; @@ -955,23 +986,42 @@ static bool frac128_sub(FloatParts128 *r, FloatParts128 *a, FloatParts128 *b) #define frac_sub(R, A, B) FRAC_GENERIC_64_128(sub, R)(R, A, B) +static void frac64_truncjam(FloatParts64 *r, FloatParts128 *a) +{ + r->frac = a->frac_hi | (a->frac_lo != 0); +} + +static void frac128_truncjam(FloatParts128 *r, FloatParts256 *a) +{ + r->frac_hi = a->frac_hi; + r->frac_lo = a->frac_hm | ((a->frac_lm | a->frac_lo) != 0); +} + +#define frac_truncjam(R, A) FRAC_GENERIC_64_128(truncjam, R)(R, A) + #define partsN(NAME) glue(glue(glue(parts,N),_),NAME) #define FloatPartsN glue(FloatParts,N) +#define FloatPartsW glue(FloatParts,W) #define N 64 +#define W 128 #include "softfloat-parts-addsub.c.inc" #include "softfloat-parts.c.inc" #undef N +#undef W #define N 128 +#define W 256 #include "softfloat-parts-addsub.c.inc" #include "softfloat-parts.c.inc" #undef N +#undef W #undef partsN #undef FloatPartsN +#undef FloatPartsW /* * Pack/unpack routines with a specific FloatFmt. @@ -1250,89 +1300,42 @@ float128 float128_sub(float128 a, float128 b, float_status *status) } /* - * Returns the result of multiplying the floating-point values `a' and - * `b'. The operation is performed according to the IEC/IEEE Standard - * for Binary Floating-Point Arithmetic. + * Multiplication */ -static FloatParts64 mul_floats(FloatParts64 a, FloatParts64 b, float_status *s) -{ - bool sign = a.sign ^ b.sign; - - if (a.cls == float_class_normal && b.cls == float_class_normal) { - uint64_t hi, lo; - int exp = a.exp + b.exp; - - mul64To128(a.frac, b.frac, &hi, &lo); - if (hi & DECOMPOSED_IMPLICIT_BIT) { - exp += 1; - } else { - hi <<= 1; - } - hi |= (lo != 0); - - /* Re-use a */ - a.exp = exp; - a.sign = sign; - a.frac = hi; - return a; - } - /* handle all the NaN cases */ - if (is_nan(a.cls) || is_nan(b.cls)) { - return *parts_pick_nan(&a, &b, s); - } - /* Inf * Zero == NaN */ - if ((a.cls == float_class_inf && b.cls == float_class_zero) || - (a.cls == float_class_zero && b.cls == float_class_inf)) { - float_raise(float_flag_invalid, s); - parts_default_nan(&a, s); - return a; - } - /* Multiply by 0 or Inf */ - if (a.cls == float_class_inf || a.cls == float_class_zero) { - a.sign = sign; - return a; - } - if (b.cls == float_class_inf || b.cls == float_class_zero) { - b.sign = sign; - return b; - } - g_assert_not_reached(); -} - float16 QEMU_FLATTEN float16_mul(float16 a, float16 b, float_status *status) { - FloatParts64 pa, pb, pr; + FloatParts64 pa, pb, *pr; float16_unpack_canonical(&pa, a, status); float16_unpack_canonical(&pb, b, status); - pr = mul_floats(pa, pb, status); + pr = parts_mul(&pa, &pb, status); - return float16_round_pack_canonical(&pr, status); + return float16_round_pack_canonical(pr, status); } static float32 QEMU_SOFTFLOAT_ATTR soft_f32_mul(float32 a, float32 b, float_status *status) { - FloatParts64 pa, pb, pr; + FloatParts64 pa, pb, *pr; float32_unpack_canonical(&pa, a, status); float32_unpack_canonical(&pb, b, status); - pr = mul_floats(pa, pb, status); + pr = parts_mul(&pa, &pb, status); - return float32_round_pack_canonical(&pr, status); + return float32_round_pack_canonical(pr, status); } static float64 QEMU_SOFTFLOAT_ATTR soft_f64_mul(float64 a, float64 b, float_status *status) { - FloatParts64 pa, pb, pr; + FloatParts64 pa, pb, *pr; float64_unpack_canonical(&pa, a, status); float64_unpack_canonical(&pb, b, status); - pr = mul_floats(pa, pb, status); + pr = parts_mul(&pa, &pb, status); - return float64_round_pack_canonical(&pr, status); + return float64_round_pack_canonical(pr, status); } static float hard_f32_mul(float a, float b) @@ -1359,20 +1362,28 @@ float64_mul(float64 a, float64 b, float_status *s) f64_is_zon2, f64_addsubmul_post); } -/* - * Returns the result of multiplying the bfloat16 - * values `a' and `b'. - */ - -bfloat16 QEMU_FLATTEN bfloat16_mul(bfloat16 a, bfloat16 b, float_status *status) +bfloat16 QEMU_FLATTEN +bfloat16_mul(bfloat16 a, bfloat16 b, float_status *status) { - FloatParts64 pa, pb, pr; + FloatParts64 pa, pb, *pr; bfloat16_unpack_canonical(&pa, a, status); bfloat16_unpack_canonical(&pb, b, status); - pr = mul_floats(pa, pb, status); + pr = parts_mul(&pa, &pb, status); - return bfloat16_round_pack_canonical(&pr, status); + return bfloat16_round_pack_canonical(pr, status); +} + +float128 QEMU_FLATTEN +float128_mul(float128 a, float128 b, float_status *status) +{ + FloatParts128 pa, pb, *pr; + + float128_unpack_canonical(&pa, a, status); + float128_unpack_canonical(&pb, b, status); + pr = parts_mul(&pa, &pb, status); + + return float128_round_pack_canonical(pr, status); } /* @@ -7069,69 +7080,6 @@ float128 float128_round_to_int(float128 a, float_status *status) } /*---------------------------------------------------------------------------- -| Returns the result of multiplying the quadruple-precision floating-point -| values `a' and `b'. The operation is performed according to the IEC/IEEE -| Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float128_mul(float128 a, float128 b, float_status *status) -{ - bool aSign, bSign, zSign; - int32_t aExp, bExp, zExp; - uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - bSig1 = extractFloat128Frac1( b ); - bSig0 = extractFloat128Frac0( b ); - bExp = extractFloat128Exp( b ); - bSign = extractFloat128Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FFF ) { - if ( ( aSig0 | aSig1 ) - || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { - return propagateFloat128NaN(a, b, status); - } - if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid; - return packFloat128( zSign, 0x7FFF, 0, 0 ); - } - if ( bExp == 0x7FFF ) { - if (bSig0 | bSig1) { - return propagateFloat128NaN(a, b, status); - } - if ( ( aExp | aSig0 | aSig1 ) == 0 ) { - invalid: - float_raise(float_flag_invalid, status); - return float128_default_nan(status); - } - return packFloat128( zSign, 0x7FFF, 0, 0 ); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); - normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - if ( bExp == 0 ) { - if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 ); - normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); - } - zExp = aExp + bExp - 0x4000; - aSig0 |= UINT64_C(0x0001000000000000); - shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 ); - mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 ); - add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 ); - zSig2 |= ( zSig3 != 0 ); - if (UINT64_C( 0x0002000000000000) <= zSig0 ) { - shift128ExtraRightJamming( - zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 ); - ++zExp; - } - return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); - -} - -/*---------------------------------------------------------------------------- | Returns the result of dividing the quadruple-precision floating-point value | `a' by the corresponding value `b'. The operation is performed according to | the IEC/IEEE Standard for Binary Floating-Point Arithmetic. |