diff options
author | Alex Bennée <alex.bennee@linaro.org> | 2017-11-27 14:15:17 +0000 |
---|---|---|
committer | Alex Bennée <alex.bennee@linaro.org> | 2018-02-21 10:20:53 +0000 |
commit | 6fff216769cf7eaa3961c85dee7a72838696d365 (patch) | |
tree | 1d0dbc2ee3e15e5257029c84bb47e4b9c1adb366 /fpu/softfloat.c | |
parent | a90119b5a2c174250601be6503b91e5c9df6e83b (diff) |
fpu/softfloat: re-factor add/sub
We can now add float16_add/sub and use the common decompose and
canonicalize functions to have a single implementation for
float16/32/64 add and sub functions.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Diffstat (limited to 'fpu/softfloat.c')
-rw-r--r-- | fpu/softfloat.c | 892 |
1 files changed, 465 insertions, 427 deletions
diff --git a/fpu/softfloat.c b/fpu/softfloat.c index 568d555595..2190e7de56 100644 --- a/fpu/softfloat.c +++ b/fpu/softfloat.c @@ -83,6 +83,7 @@ this code that are retained. * target-dependent and needs the TARGET_* macros. */ #include "qemu/osdep.h" +#include "qemu/bitops.h" #include "fpu/softfloat.h" /* We only need stdlib for abort() */ @@ -270,6 +271,470 @@ static const FloatFmt float64_params = { FLOAT_PARAMS(11, 52) }; +/* Unpack a float to parts, but do not canonicalize. */ +static inline FloatParts unpack_raw(FloatFmt fmt, uint64_t raw) +{ + const int sign_pos = fmt.frac_size + fmt.exp_size; + + return (FloatParts) { + .cls = float_class_unclassified, + .sign = extract64(raw, sign_pos, 1), + .exp = extract64(raw, fmt.frac_size, fmt.exp_size), + .frac = extract64(raw, 0, fmt.frac_size), + }; +} + +static inline FloatParts float16_unpack_raw(float16 f) +{ + return unpack_raw(float16_params, f); +} + +static inline FloatParts float32_unpack_raw(float32 f) +{ + return unpack_raw(float32_params, f); +} + +static inline FloatParts float64_unpack_raw(float64 f) +{ + return unpack_raw(float64_params, f); +} + +/* Pack a float from parts, but do not canonicalize. */ +static inline uint64_t pack_raw(FloatFmt fmt, FloatParts p) +{ + const int sign_pos = fmt.frac_size + fmt.exp_size; + uint64_t ret = deposit64(p.frac, fmt.frac_size, fmt.exp_size, p.exp); + return deposit64(ret, sign_pos, 1, p.sign); +} + +static inline float16 float16_pack_raw(FloatParts p) +{ + return make_float16(pack_raw(float16_params, p)); +} + +static inline float32 float32_pack_raw(FloatParts p) +{ + return make_float32(pack_raw(float32_params, p)); +} + +static inline float64 float64_pack_raw(FloatParts p) +{ + return make_float64(pack_raw(float64_params, p)); +} + +/* Canonicalize EXP and FRAC, setting CLS. */ +static FloatParts canonicalize(FloatParts part, const FloatFmt *parm, + float_status *status) +{ + if (part.exp == parm->exp_max) { + if (part.frac == 0) { + part.cls = float_class_inf; + } else { +#ifdef NO_SIGNALING_NANS + part.cls = float_class_qnan; +#else + int64_t msb = part.frac << (parm->frac_shift + 2); + if ((msb < 0) == status->snan_bit_is_one) { + part.cls = float_class_snan; + } else { + part.cls = float_class_qnan; + } +#endif + } + } else if (part.exp == 0) { + if (likely(part.frac == 0)) { + part.cls = float_class_zero; + } else if (status->flush_inputs_to_zero) { + float_raise(float_flag_input_denormal, status); + part.cls = float_class_zero; + part.frac = 0; + } else { + int shift = clz64(part.frac) - 1; + part.cls = float_class_normal; + part.exp = parm->frac_shift - parm->exp_bias - shift + 1; + part.frac <<= shift; + } + } else { + part.cls = float_class_normal; + part.exp -= parm->exp_bias; + part.frac = DECOMPOSED_IMPLICIT_BIT + (part.frac << parm->frac_shift); + } + return part; +} + +/* Round and uncanonicalize a floating-point number by parts. There + * are FRAC_SHIFT bits that may require rounding at the bottom of the + * fraction; these bits will be removed. The exponent will be biased + * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0]. + */ + +static FloatParts round_canonical(FloatParts p, float_status *s, + const FloatFmt *parm) +{ + const uint64_t frac_lsbm1 = parm->frac_lsbm1; + const uint64_t round_mask = parm->round_mask; + const uint64_t roundeven_mask = parm->roundeven_mask; + const int exp_max = parm->exp_max; + const int frac_shift = parm->frac_shift; + uint64_t frac, inc; + int exp, flags = 0; + bool overflow_norm; + + frac = p.frac; + exp = p.exp; + + switch (p.cls) { + case float_class_normal: + switch (s->float_rounding_mode) { + case float_round_nearest_even: + overflow_norm = false; + inc = ((frac & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0); + break; + case float_round_ties_away: + overflow_norm = false; + inc = frac_lsbm1; + break; + case float_round_to_zero: + overflow_norm = true; + inc = 0; + break; + case float_round_up: + inc = p.sign ? 0 : round_mask; + overflow_norm = p.sign; + break; + case float_round_down: + inc = p.sign ? round_mask : 0; + overflow_norm = !p.sign; + break; + default: + g_assert_not_reached(); + } + + exp += parm->exp_bias; + if (likely(exp > 0)) { + if (frac & round_mask) { + flags |= float_flag_inexact; + frac += inc; + if (frac & DECOMPOSED_OVERFLOW_BIT) { + frac >>= 1; + exp++; + } + } + frac >>= frac_shift; + + if (unlikely(exp >= exp_max)) { + flags |= float_flag_overflow | float_flag_inexact; + if (overflow_norm) { + exp = exp_max - 1; + frac = -1; + } else { + p.cls = float_class_inf; + goto do_inf; + } + } + } else if (s->flush_to_zero) { + flags |= float_flag_output_denormal; + p.cls = float_class_zero; + goto do_zero; + } else { + bool is_tiny = (s->float_detect_tininess + == float_tininess_before_rounding) + || (exp < 0) + || !((frac + inc) & DECOMPOSED_OVERFLOW_BIT); + + shift64RightJamming(frac, 1 - exp, &frac); + if (frac & round_mask) { + /* Need to recompute round-to-even. */ + if (s->float_rounding_mode == float_round_nearest_even) { + inc = ((frac & roundeven_mask) != frac_lsbm1 + ? frac_lsbm1 : 0); + } + flags |= float_flag_inexact; + frac += inc; + } + + exp = (frac & DECOMPOSED_IMPLICIT_BIT ? 1 : 0); + frac >>= frac_shift; + + if (is_tiny && (flags & float_flag_inexact)) { + flags |= float_flag_underflow; + } + if (exp == 0 && frac == 0) { + p.cls = float_class_zero; + } + } + break; + + case float_class_zero: + do_zero: + exp = 0; + frac = 0; + break; + + case float_class_inf: + do_inf: + exp = exp_max; + frac = 0; + break; + + case float_class_qnan: + case float_class_snan: + exp = exp_max; + break; + + default: + g_assert_not_reached(); + } + + float_raise(flags, s); + p.exp = exp; + p.frac = frac; + return p; +} + +static FloatParts float16_unpack_canonical(float16 f, float_status *s) +{ + return canonicalize(float16_unpack_raw(f), &float16_params, s); +} + +static float16 float16_round_pack_canonical(FloatParts p, float_status *s) +{ + switch (p.cls) { + case float_class_dnan: + return float16_default_nan(s); + case float_class_msnan: + return float16_maybe_silence_nan(float16_pack_raw(p), s); + default: + p = round_canonical(p, s, &float16_params); + return float16_pack_raw(p); + } +} + +static FloatParts float32_unpack_canonical(float32 f, float_status *s) +{ + return canonicalize(float32_unpack_raw(f), &float32_params, s); +} + +static float32 float32_round_pack_canonical(FloatParts p, float_status *s) +{ + switch (p.cls) { + case float_class_dnan: + return float32_default_nan(s); + case float_class_msnan: + return float32_maybe_silence_nan(float32_pack_raw(p), s); + default: + p = round_canonical(p, s, &float32_params); + return float32_pack_raw(p); + } +} + +static FloatParts float64_unpack_canonical(float64 f, float_status *s) +{ + return canonicalize(float64_unpack_raw(f), &float64_params, s); +} + +static float64 float64_round_pack_canonical(FloatParts p, float_status *s) +{ + switch (p.cls) { + case float_class_dnan: + return float64_default_nan(s); + case float_class_msnan: + return float64_maybe_silence_nan(float64_pack_raw(p), s); + default: + p = round_canonical(p, s, &float64_params); + return float64_pack_raw(p); + } +} + +/* Simple helpers for checking if what NaN we have */ +static bool is_nan(FloatClass c) +{ + return unlikely(c >= float_class_qnan); +} +static bool is_snan(FloatClass c) +{ + return c == float_class_snan; +} +static bool is_qnan(FloatClass c) +{ + return c == float_class_qnan; +} + +static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s) +{ + if (is_snan(a.cls) || is_snan(b.cls)) { + s->float_exception_flags |= float_flag_invalid; + } + + if (s->default_nan_mode) { + a.cls = float_class_dnan; + } else { + if (pickNaN(is_qnan(a.cls), is_snan(a.cls), + is_qnan(b.cls), is_snan(b.cls), + a.frac > b.frac || + (a.frac == b.frac && a.sign < b.sign))) { + a = b; + } + a.cls = float_class_msnan; + } + return a; +} + +/* + * Returns the result of adding or subtracting the values of the + * floating-point values `a' and `b'. The operation is performed + * according to the IEC/IEEE Standard for Binary Floating-Point + * Arithmetic. + */ + +static FloatParts addsub_floats(FloatParts a, FloatParts b, bool subtract, + float_status *s) +{ + bool a_sign = a.sign; + bool b_sign = b.sign ^ subtract; + + if (a_sign != b_sign) { + /* Subtraction */ + + if (a.cls == float_class_normal && b.cls == float_class_normal) { + if (a.exp > b.exp || (a.exp == b.exp && a.frac >= b.frac)) { + shift64RightJamming(b.frac, a.exp - b.exp, &b.frac); + a.frac = a.frac - b.frac; + } else { + shift64RightJamming(a.frac, b.exp - a.exp, &a.frac); + a.frac = b.frac - a.frac; + a.exp = b.exp; + a_sign ^= 1; + } + + if (a.frac == 0) { + a.cls = float_class_zero; + a.sign = s->float_rounding_mode == float_round_down; + } else { + int shift = clz64(a.frac) - 1; + a.frac = a.frac << shift; + a.exp = a.exp - shift; + a.sign = a_sign; + } + return a; + } + if (is_nan(a.cls) || is_nan(b.cls)) { + return pick_nan(a, b, s); + } + if (a.cls == float_class_inf) { + if (b.cls == float_class_inf) { + float_raise(float_flag_invalid, s); + a.cls = float_class_dnan; + } + return a; + } + if (a.cls == float_class_zero && b.cls == float_class_zero) { + a.sign = s->float_rounding_mode == float_round_down; + return a; + } + if (a.cls == float_class_zero || b.cls == float_class_inf) { + b.sign = a_sign ^ 1; + return b; + } + if (b.cls == float_class_zero) { + return a; + } + } else { + /* Addition */ + if (a.cls == float_class_normal && b.cls == float_class_normal) { + if (a.exp > b.exp) { + shift64RightJamming(b.frac, a.exp - b.exp, &b.frac); + } else if (a.exp < b.exp) { + shift64RightJamming(a.frac, b.exp - a.exp, &a.frac); + a.exp = b.exp; + } + a.frac += b.frac; + if (a.frac & DECOMPOSED_OVERFLOW_BIT) { + a.frac >>= 1; + a.exp += 1; + } + return a; + } + if (is_nan(a.cls) || is_nan(b.cls)) { + return pick_nan(a, b, s); + } + if (a.cls == float_class_inf || b.cls == float_class_zero) { + return a; + } + if (b.cls == float_class_inf || a.cls == float_class_zero) { + b.sign = b_sign; + return b; + } + } + g_assert_not_reached(); +} + +/* + * Returns the result of adding or subtracting the floating-point + * values `a' and `b'. The operation is performed according to the + * IEC/IEEE Standard for Binary Floating-Point Arithmetic. + */ + +float16 __attribute__((flatten)) float16_add(float16 a, float16 b, + float_status *status) +{ + FloatParts pa = float16_unpack_canonical(a, status); + FloatParts pb = float16_unpack_canonical(b, status); + FloatParts pr = addsub_floats(pa, pb, false, status); + + return float16_round_pack_canonical(pr, status); +} + +float32 __attribute__((flatten)) float32_add(float32 a, float32 b, + float_status *status) +{ + FloatParts pa = float32_unpack_canonical(a, status); + FloatParts pb = float32_unpack_canonical(b, status); + FloatParts pr = addsub_floats(pa, pb, false, status); + + return float32_round_pack_canonical(pr, status); +} + +float64 __attribute__((flatten)) float64_add(float64 a, float64 b, + float_status *status) +{ + FloatParts pa = float64_unpack_canonical(a, status); + FloatParts pb = float64_unpack_canonical(b, status); + FloatParts pr = addsub_floats(pa, pb, false, status); + + return float64_round_pack_canonical(pr, status); +} + +float16 __attribute__((flatten)) float16_sub(float16 a, float16 b, + float_status *status) +{ + FloatParts pa = float16_unpack_canonical(a, status); + FloatParts pb = float16_unpack_canonical(b, status); + FloatParts pr = addsub_floats(pa, pb, true, status); + + return float16_round_pack_canonical(pr, status); +} + +float32 __attribute__((flatten)) float32_sub(float32 a, float32 b, + float_status *status) +{ + FloatParts pa = float32_unpack_canonical(a, status); + FloatParts pb = float32_unpack_canonical(b, status); + FloatParts pr = addsub_floats(pa, pb, true, status); + + return float32_round_pack_canonical(pr, status); +} + +float64 __attribute__((flatten)) float64_sub(float64 a, float64 b, + float_status *status) +{ + FloatParts pa = float64_unpack_canonical(a, status); + FloatParts pb = float64_unpack_canonical(b, status); + FloatParts pr = addsub_floats(pa, pb, true, status); + + return float64_round_pack_canonical(pr, status); +} + /*---------------------------------------------------------------------------- | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 | and 7, and returns the properly rounded 32-bit integer corresponding to the @@ -2082,220 +2547,6 @@ float32 float32_round_to_int(float32 a, float_status *status) } /*---------------------------------------------------------------------------- -| Returns the result of adding the absolute values of the single-precision -| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated -| before being returned. `zSign' is ignored if the result is a NaN. -| The addition is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -static float32 addFloat32Sigs(float32 a, float32 b, flag zSign, - float_status *status) -{ - int aExp, bExp, zExp; - uint32_t aSig, bSig, zSig; - int expDiff; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - expDiff = aExp - bExp; - aSig <<= 6; - bSig <<= 6; - if ( 0 < expDiff ) { - if ( aExp == 0xFF ) { - if (aSig) { - return propagateFloat32NaN(a, b, status); - } - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig |= 0x20000000; - } - shift32RightJamming( bSig, expDiff, &bSig ); - zExp = aExp; - } - else if ( expDiff < 0 ) { - if ( bExp == 0xFF ) { - if (bSig) { - return propagateFloat32NaN(a, b, status); - } - return packFloat32( zSign, 0xFF, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig |= 0x20000000; - } - shift32RightJamming( aSig, - expDiff, &aSig ); - zExp = bExp; - } - else { - if ( aExp == 0xFF ) { - if (aSig | bSig) { - return propagateFloat32NaN(a, b, status); - } - return a; - } - if ( aExp == 0 ) { - if (status->flush_to_zero) { - if (aSig | bSig) { - float_raise(float_flag_output_denormal, status); - } - return packFloat32(zSign, 0, 0); - } - return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); - } - zSig = 0x40000000 + aSig + bSig; - zExp = aExp; - goto roundAndPack; - } - aSig |= 0x20000000; - zSig = ( aSig + bSig )<<1; - --zExp; - if ( (int32_t) zSig < 0 ) { - zSig = aSig + bSig; - ++zExp; - } - roundAndPack: - return roundAndPackFloat32(zSign, zExp, zSig, status); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the absolute values of the single- -| precision floating-point values `a' and `b'. If `zSign' is 1, the -| difference is negated before being returned. `zSign' is ignored if the -| result is a NaN. The subtraction is performed according to the IEC/IEEE -| Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -static float32 subFloat32Sigs(float32 a, float32 b, flag zSign, - float_status *status) -{ - int aExp, bExp, zExp; - uint32_t aSig, bSig, zSig; - int expDiff; - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - expDiff = aExp - bExp; - aSig <<= 7; - bSig <<= 7; - if ( 0 < expDiff ) goto aExpBigger; - if ( expDiff < 0 ) goto bExpBigger; - if ( aExp == 0xFF ) { - if (aSig | bSig) { - return propagateFloat32NaN(a, b, status); - } - float_raise(float_flag_invalid, status); - return float32_default_nan(status); - } - if ( aExp == 0 ) { - aExp = 1; - bExp = 1; - } - if ( bSig < aSig ) goto aBigger; - if ( aSig < bSig ) goto bBigger; - return packFloat32(status->float_rounding_mode == float_round_down, 0, 0); - bExpBigger: - if ( bExp == 0xFF ) { - if (bSig) { - return propagateFloat32NaN(a, b, status); - } - return packFloat32( zSign ^ 1, 0xFF, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig |= 0x40000000; - } - shift32RightJamming( aSig, - expDiff, &aSig ); - bSig |= 0x40000000; - bBigger: - zSig = bSig - aSig; - zExp = bExp; - zSign ^= 1; - goto normalizeRoundAndPack; - aExpBigger: - if ( aExp == 0xFF ) { - if (aSig) { - return propagateFloat32NaN(a, b, status); - } - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig |= 0x40000000; - } - shift32RightJamming( bSig, expDiff, &bSig ); - aSig |= 0x40000000; - aBigger: - zSig = aSig - bSig; - zExp = aExp; - normalizeRoundAndPack: - --zExp; - return normalizeRoundAndPackFloat32(zSign, zExp, zSig, status); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of adding the single-precision floating-point values `a' -| and `b'. The operation is performed according to the IEC/IEEE Standard for -| Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float32_add(float32 a, float32 b, float_status *status) -{ - flag aSign, bSign; - a = float32_squash_input_denormal(a, status); - b = float32_squash_input_denormal(b, status); - - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign == bSign ) { - return addFloat32Sigs(a, b, aSign, status); - } - else { - return subFloat32Sigs(a, b, aSign, status); - } - -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the single-precision floating-point values -| `a' and `b'. The operation is performed according to the IEC/IEEE Standard -| for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float32_sub(float32 a, float32 b, float_status *status) -{ - flag aSign, bSign; - a = float32_squash_input_denormal(a, status); - b = float32_squash_input_denormal(b, status); - - aSign = extractFloat32Sign( a ); - bSign = extractFloat32Sign( b ); - if ( aSign == bSign ) { - return subFloat32Sigs(a, b, aSign, status); - } - else { - return addFloat32Sigs(a, b, aSign, status); - } - -} - -/*---------------------------------------------------------------------------- | Returns the result of multiplying the single-precision floating-point values | `a' and `b'. The operation is performed according to the IEC/IEEE Standard | for Binary Floating-Point Arithmetic. @@ -3891,219 +4142,6 @@ float64 float64_trunc_to_int(float64 a, float_status *status) return res; } -/*---------------------------------------------------------------------------- -| Returns the result of adding the absolute values of the double-precision -| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated -| before being returned. `zSign' is ignored if the result is a NaN. -| The addition is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -static float64 addFloat64Sigs(float64 a, float64 b, flag zSign, - float_status *status) -{ - int aExp, bExp, zExp; - uint64_t aSig, bSig, zSig; - int expDiff; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - bSig = extractFloat64Frac( b ); - bExp = extractFloat64Exp( b ); - expDiff = aExp - bExp; - aSig <<= 9; - bSig <<= 9; - if ( 0 < expDiff ) { - if ( aExp == 0x7FF ) { - if (aSig) { - return propagateFloat64NaN(a, b, status); - } - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig |= LIT64( 0x2000000000000000 ); - } - shift64RightJamming( bSig, expDiff, &bSig ); - zExp = aExp; - } - else if ( expDiff < 0 ) { - if ( bExp == 0x7FF ) { - if (bSig) { - return propagateFloat64NaN(a, b, status); - } - return packFloat64( zSign, 0x7FF, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig |= LIT64( 0x2000000000000000 ); - } - shift64RightJamming( aSig, - expDiff, &aSig ); - zExp = bExp; - } - else { - if ( aExp == 0x7FF ) { - if (aSig | bSig) { - return propagateFloat64NaN(a, b, status); - } - return a; - } - if ( aExp == 0 ) { - if (status->flush_to_zero) { - if (aSig | bSig) { - float_raise(float_flag_output_denormal, status); - } - return packFloat64(zSign, 0, 0); - } - return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); - } - zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; - zExp = aExp; - goto roundAndPack; - } - aSig |= LIT64( 0x2000000000000000 ); - zSig = ( aSig + bSig )<<1; - --zExp; - if ( (int64_t) zSig < 0 ) { - zSig = aSig + bSig; - ++zExp; - } - roundAndPack: - return roundAndPackFloat64(zSign, zExp, zSig, status); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the absolute values of the double- -| precision floating-point values `a' and `b'. If `zSign' is 1, the -| difference is negated before being returned. `zSign' is ignored if the -| result is a NaN. The subtraction is performed according to the IEC/IEEE -| Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -static float64 subFloat64Sigs(float64 a, float64 b, flag zSign, - float_status *status) -{ - int aExp, bExp, zExp; - uint64_t aSig, bSig, zSig; - int expDiff; - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - bSig = extractFloat64Frac( b ); - bExp = extractFloat64Exp( b ); - expDiff = aExp - bExp; - aSig <<= 10; - bSig <<= 10; - if ( 0 < expDiff ) goto aExpBigger; - if ( expDiff < 0 ) goto bExpBigger; - if ( aExp == 0x7FF ) { - if (aSig | bSig) { - return propagateFloat64NaN(a, b, status); - } - float_raise(float_flag_invalid, status); - return float64_default_nan(status); - } - if ( aExp == 0 ) { - aExp = 1; - bExp = 1; - } - if ( bSig < aSig ) goto aBigger; - if ( aSig < bSig ) goto bBigger; - return packFloat64(status->float_rounding_mode == float_round_down, 0, 0); - bExpBigger: - if ( bExp == 0x7FF ) { - if (bSig) { - return propagateFloat64NaN(a, b, status); - } - return packFloat64( zSign ^ 1, 0x7FF, 0 ); - } - if ( aExp == 0 ) { - ++expDiff; - } - else { - aSig |= LIT64( 0x4000000000000000 ); - } - shift64RightJamming( aSig, - expDiff, &aSig ); - bSig |= LIT64( 0x4000000000000000 ); - bBigger: - zSig = bSig - aSig; - zExp = bExp; - zSign ^= 1; - goto normalizeRoundAndPack; - aExpBigger: - if ( aExp == 0x7FF ) { - if (aSig) { - return propagateFloat64NaN(a, b, status); - } - return a; - } - if ( bExp == 0 ) { - --expDiff; - } - else { - bSig |= LIT64( 0x4000000000000000 ); - } - shift64RightJamming( bSig, expDiff, &bSig ); - aSig |= LIT64( 0x4000000000000000 ); - aBigger: - zSig = aSig - bSig; - zExp = aExp; - normalizeRoundAndPack: - --zExp; - return normalizeRoundAndPackFloat64(zSign, zExp, zSig, status); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of adding the double-precision floating-point values `a' -| and `b'. The operation is performed according to the IEC/IEEE Standard for -| Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float64_add(float64 a, float64 b, float_status *status) -{ - flag aSign, bSign; - a = float64_squash_input_denormal(a, status); - b = float64_squash_input_denormal(b, status); - - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign == bSign ) { - return addFloat64Sigs(a, b, aSign, status); - } - else { - return subFloat64Sigs(a, b, aSign, status); - } - -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the double-precision floating-point values -| `a' and `b'. The operation is performed according to the IEC/IEEE Standard -| for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float64_sub(float64 a, float64 b, float_status *status) -{ - flag aSign, bSign; - a = float64_squash_input_denormal(a, status); - b = float64_squash_input_denormal(b, status); - - aSign = extractFloat64Sign( a ); - bSign = extractFloat64Sign( b ); - if ( aSign == bSign ) { - return subFloat64Sigs(a, b, aSign, status); - } - else { - return addFloat64Sigs(a, b, aSign, status); - } - -} /*---------------------------------------------------------------------------- | Returns the result of multiplying the double-precision floating-point values |