aboutsummaryrefslogtreecommitdiff
path: root/fpu/softfloat.c
diff options
context:
space:
mode:
authorAlex Bennée <alex.bennee@linaro.org>2017-11-28 17:04:44 +0000
committerAlex Bennée <alex.bennee@linaro.org>2018-02-21 10:21:11 +0000
commitd446830a3aac33e7221e361dad3ab1e1892646cb (patch)
treef6509371b17497156c9ab08f47c36d79125e4b33 /fpu/softfloat.c
parentcf07323d494f4bc225e405688c2e455c3423cc40 (diff)
fpu/softfloat: re-factor muladd
We can now add float16_muladd and use the common decompose and canonicalize functions to have a single implementation for float16/32/64 muladd functions. Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Diffstat (limited to 'fpu/softfloat.c')
-rw-r--r--fpu/softfloat.c742
1 files changed, 271 insertions, 471 deletions
diff --git a/fpu/softfloat.c b/fpu/softfloat.c
index 4a859b2721..ae4ba6de51 100644
--- a/fpu/softfloat.c
+++ b/fpu/softfloat.c
@@ -580,6 +580,40 @@ static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s)
return a;
}
+static FloatParts pick_nan_muladd(FloatParts a, FloatParts b, FloatParts c,
+ bool inf_zero, float_status *s)
+{
+ if (is_snan(a.cls) || is_snan(b.cls) || is_snan(c.cls)) {
+ s->float_exception_flags |= float_flag_invalid;
+ }
+
+ if (s->default_nan_mode) {
+ a.cls = float_class_dnan;
+ } else {
+ switch (pickNaNMulAdd(is_qnan(a.cls), is_snan(a.cls),
+ is_qnan(b.cls), is_snan(b.cls),
+ is_qnan(c.cls), is_snan(c.cls),
+ inf_zero, s)) {
+ case 0:
+ break;
+ case 1:
+ a = b;
+ break;
+ case 2:
+ a = c;
+ break;
+ case 3:
+ a.cls = float_class_dnan;
+ return a;
+ default:
+ g_assert_not_reached();
+ }
+
+ a.cls = float_class_msnan;
+ }
+ return a;
+}
+
/*
* Returns the result of adding or subtracting the values of the
* floating-point values `a' and `b'. The operation is performed
@@ -817,6 +851,243 @@ float64 __attribute__((flatten)) float64_mul(float64 a, float64 b,
}
/*
+ * Returns the result of multiplying the floating-point values `a' and
+ * `b' then adding 'c', with no intermediate rounding step after the
+ * multiplication. The operation is performed according to the
+ * IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008.
+ * The flags argument allows the caller to select negation of the
+ * addend, the intermediate product, or the final result. (The
+ * difference between this and having the caller do a separate
+ * negation is that negating externally will flip the sign bit on
+ * NaNs.)
+ */
+
+static FloatParts muladd_floats(FloatParts a, FloatParts b, FloatParts c,
+ int flags, float_status *s)
+{
+ bool inf_zero = ((1 << a.cls) | (1 << b.cls)) ==
+ ((1 << float_class_inf) | (1 << float_class_zero));
+ bool p_sign;
+ bool sign_flip = flags & float_muladd_negate_result;
+ FloatClass p_class;
+ uint64_t hi, lo;
+ int p_exp;
+
+ /* It is implementation-defined whether the cases of (0,inf,qnan)
+ * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
+ * they return if they do), so we have to hand this information
+ * off to the target-specific pick-a-NaN routine.
+ */
+ if (is_nan(a.cls) || is_nan(b.cls) || is_nan(c.cls)) {
+ return pick_nan_muladd(a, b, c, inf_zero, s);
+ }
+
+ if (inf_zero) {
+ s->float_exception_flags |= float_flag_invalid;
+ a.cls = float_class_dnan;
+ return a;
+ }
+
+ if (flags & float_muladd_negate_c) {
+ c.sign ^= 1;
+ }
+
+ p_sign = a.sign ^ b.sign;
+
+ if (flags & float_muladd_negate_product) {
+ p_sign ^= 1;
+ }
+
+ if (a.cls == float_class_inf || b.cls == float_class_inf) {
+ p_class = float_class_inf;
+ } else if (a.cls == float_class_zero || b.cls == float_class_zero) {
+ p_class = float_class_zero;
+ } else {
+ p_class = float_class_normal;
+ }
+
+ if (c.cls == float_class_inf) {
+ if (p_class == float_class_inf && p_sign != c.sign) {
+ s->float_exception_flags |= float_flag_invalid;
+ a.cls = float_class_dnan;
+ } else {
+ a.cls = float_class_inf;
+ a.sign = c.sign ^ sign_flip;
+ }
+ return a;
+ }
+
+ if (p_class == float_class_inf) {
+ a.cls = float_class_inf;
+ a.sign = p_sign ^ sign_flip;
+ return a;
+ }
+
+ if (p_class == float_class_zero) {
+ if (c.cls == float_class_zero) {
+ if (p_sign != c.sign) {
+ p_sign = s->float_rounding_mode == float_round_down;
+ }
+ c.sign = p_sign;
+ } else if (flags & float_muladd_halve_result) {
+ c.exp -= 1;
+ }
+ c.sign ^= sign_flip;
+ return c;
+ }
+
+ /* a & b should be normals now... */
+ assert(a.cls == float_class_normal &&
+ b.cls == float_class_normal);
+
+ p_exp = a.exp + b.exp;
+
+ /* Multiply of 2 62-bit numbers produces a (2*62) == 124-bit
+ * result.
+ */
+ mul64To128(a.frac, b.frac, &hi, &lo);
+ /* binary point now at bit 124 */
+
+ /* check for overflow */
+ if (hi & (1ULL << (DECOMPOSED_BINARY_POINT * 2 + 1 - 64))) {
+ shift128RightJamming(hi, lo, 1, &hi, &lo);
+ p_exp += 1;
+ }
+
+ /* + add/sub */
+ if (c.cls == float_class_zero) {
+ /* move binary point back to 62 */
+ shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
+ } else {
+ int exp_diff = p_exp - c.exp;
+ if (p_sign == c.sign) {
+ /* Addition */
+ if (exp_diff <= 0) {
+ shift128RightJamming(hi, lo,
+ DECOMPOSED_BINARY_POINT - exp_diff,
+ &hi, &lo);
+ lo += c.frac;
+ p_exp = c.exp;
+ } else {
+ uint64_t c_hi, c_lo;
+ /* shift c to the same binary point as the product (124) */
+ c_hi = c.frac >> 2;
+ c_lo = 0;
+ shift128RightJamming(c_hi, c_lo,
+ exp_diff,
+ &c_hi, &c_lo);
+ add128(hi, lo, c_hi, c_lo, &hi, &lo);
+ /* move binary point back to 62 */
+ shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
+ }
+
+ if (lo & DECOMPOSED_OVERFLOW_BIT) {
+ shift64RightJamming(lo, 1, &lo);
+ p_exp += 1;
+ }
+
+ } else {
+ /* Subtraction */
+ uint64_t c_hi, c_lo;
+ /* make C binary point match product at bit 124 */
+ c_hi = c.frac >> 2;
+ c_lo = 0;
+
+ if (exp_diff <= 0) {
+ shift128RightJamming(hi, lo, -exp_diff, &hi, &lo);
+ if (exp_diff == 0
+ &&
+ (hi > c_hi || (hi == c_hi && lo >= c_lo))) {
+ sub128(hi, lo, c_hi, c_lo, &hi, &lo);
+ } else {
+ sub128(c_hi, c_lo, hi, lo, &hi, &lo);
+ p_sign ^= 1;
+ p_exp = c.exp;
+ }
+ } else {
+ shift128RightJamming(c_hi, c_lo,
+ exp_diff,
+ &c_hi, &c_lo);
+ sub128(hi, lo, c_hi, c_lo, &hi, &lo);
+ }
+
+ if (hi == 0 && lo == 0) {
+ a.cls = float_class_zero;
+ a.sign = s->float_rounding_mode == float_round_down;
+ a.sign ^= sign_flip;
+ return a;
+ } else {
+ int shift;
+ if (hi != 0) {
+ shift = clz64(hi);
+ } else {
+ shift = clz64(lo) + 64;
+ }
+ /* Normalizing to a binary point of 124 is the
+ correct adjust for the exponent. However since we're
+ shifting, we might as well put the binary point back
+ at 62 where we really want it. Therefore shift as
+ if we're leaving 1 bit at the top of the word, but
+ adjust the exponent as if we're leaving 3 bits. */
+ shift -= 1;
+ if (shift >= 64) {
+ lo = lo << (shift - 64);
+ } else {
+ hi = (hi << shift) | (lo >> (64 - shift));
+ lo = hi | ((lo << shift) != 0);
+ }
+ p_exp -= shift - 2;
+ }
+ }
+ }
+
+ if (flags & float_muladd_halve_result) {
+ p_exp -= 1;
+ }
+
+ /* finally prepare our result */
+ a.cls = float_class_normal;
+ a.sign = p_sign ^ sign_flip;
+ a.exp = p_exp;
+ a.frac = lo;
+
+ return a;
+}
+
+float16 __attribute__((flatten)) float16_muladd(float16 a, float16 b, float16 c,
+ int flags, float_status *status)
+{
+ FloatParts pa = float16_unpack_canonical(a, status);
+ FloatParts pb = float16_unpack_canonical(b, status);
+ FloatParts pc = float16_unpack_canonical(c, status);
+ FloatParts pr = muladd_floats(pa, pb, pc, flags, status);
+
+ return float16_round_pack_canonical(pr, status);
+}
+
+float32 __attribute__((flatten)) float32_muladd(float32 a, float32 b, float32 c,
+ int flags, float_status *status)
+{
+ FloatParts pa = float32_unpack_canonical(a, status);
+ FloatParts pb = float32_unpack_canonical(b, status);
+ FloatParts pc = float32_unpack_canonical(c, status);
+ FloatParts pr = muladd_floats(pa, pb, pc, flags, status);
+
+ return float32_round_pack_canonical(pr, status);
+}
+
+float64 __attribute__((flatten)) float64_muladd(float64 a, float64 b, float64 c,
+ int flags, float_status *status)
+{
+ FloatParts pa = float64_unpack_canonical(a, status);
+ FloatParts pb = float64_unpack_canonical(b, status);
+ FloatParts pc = float64_unpack_canonical(c, status);
+ FloatParts pr = muladd_floats(pa, pb, pc, flags, status);
+
+ return float64_round_pack_canonical(pr, status);
+}
+
+/*
* Returns the result of dividing the floating-point value `a' by the
* corresponding value `b'. The operation is performed according to
* the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
@@ -2817,231 +3088,6 @@ float32 float32_rem(float32 a, float32 b, float_status *status)
return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status);
}
-/*----------------------------------------------------------------------------
-| Returns the result of multiplying the single-precision floating-point values
-| `a' and `b' then adding 'c', with no intermediate rounding step after the
-| multiplication. The operation is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic 754-2008.
-| The flags argument allows the caller to select negation of the
-| addend, the intermediate product, or the final result. (The difference
-| between this and having the caller do a separate negation is that negating
-| externally will flip the sign bit on NaNs.)
-*----------------------------------------------------------------------------*/
-
-float32 float32_muladd(float32 a, float32 b, float32 c, int flags,
- float_status *status)
-{
- flag aSign, bSign, cSign, zSign;
- int aExp, bExp, cExp, pExp, zExp, expDiff;
- uint32_t aSig, bSig, cSig;
- flag pInf, pZero, pSign;
- uint64_t pSig64, cSig64, zSig64;
- uint32_t pSig;
- int shiftcount;
- flag signflip, infzero;
-
- a = float32_squash_input_denormal(a, status);
- b = float32_squash_input_denormal(b, status);
- c = float32_squash_input_denormal(c, status);
- aSig = extractFloat32Frac(a);
- aExp = extractFloat32Exp(a);
- aSign = extractFloat32Sign(a);
- bSig = extractFloat32Frac(b);
- bExp = extractFloat32Exp(b);
- bSign = extractFloat32Sign(b);
- cSig = extractFloat32Frac(c);
- cExp = extractFloat32Exp(c);
- cSign = extractFloat32Sign(c);
-
- infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) ||
- (aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0));
-
- /* It is implementation-defined whether the cases of (0,inf,qnan)
- * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
- * they return if they do), so we have to hand this information
- * off to the target-specific pick-a-NaN routine.
- */
- if (((aExp == 0xff) && aSig) ||
- ((bExp == 0xff) && bSig) ||
- ((cExp == 0xff) && cSig)) {
- return propagateFloat32MulAddNaN(a, b, c, infzero, status);
- }
-
- if (infzero) {
- float_raise(float_flag_invalid, status);
- return float32_default_nan(status);
- }
-
- if (flags & float_muladd_negate_c) {
- cSign ^= 1;
- }
-
- signflip = (flags & float_muladd_negate_result) ? 1 : 0;
-
- /* Work out the sign and type of the product */
- pSign = aSign ^ bSign;
- if (flags & float_muladd_negate_product) {
- pSign ^= 1;
- }
- pInf = (aExp == 0xff) || (bExp == 0xff);
- pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);
-
- if (cExp == 0xff) {
- if (pInf && (pSign ^ cSign)) {
- /* addition of opposite-signed infinities => InvalidOperation */
- float_raise(float_flag_invalid, status);
- return float32_default_nan(status);
- }
- /* Otherwise generate an infinity of the same sign */
- return packFloat32(cSign ^ signflip, 0xff, 0);
- }
-
- if (pInf) {
- return packFloat32(pSign ^ signflip, 0xff, 0);
- }
-
- if (pZero) {
- if (cExp == 0) {
- if (cSig == 0) {
- /* Adding two exact zeroes */
- if (pSign == cSign) {
- zSign = pSign;
- } else if (status->float_rounding_mode == float_round_down) {
- zSign = 1;
- } else {
- zSign = 0;
- }
- return packFloat32(zSign ^ signflip, 0, 0);
- }
- /* Exact zero plus a denorm */
- if (status->flush_to_zero) {
- float_raise(float_flag_output_denormal, status);
- return packFloat32(cSign ^ signflip, 0, 0);
- }
- }
- /* Zero plus something non-zero : just return the something */
- if (flags & float_muladd_halve_result) {
- if (cExp == 0) {
- normalizeFloat32Subnormal(cSig, &cExp, &cSig);
- }
- /* Subtract one to halve, and one again because roundAndPackFloat32
- * wants one less than the true exponent.
- */
- cExp -= 2;
- cSig = (cSig | 0x00800000) << 7;
- return roundAndPackFloat32(cSign ^ signflip, cExp, cSig, status);
- }
- return packFloat32(cSign ^ signflip, cExp, cSig);
- }
-
- if (aExp == 0) {
- normalizeFloat32Subnormal(aSig, &aExp, &aSig);
- }
- if (bExp == 0) {
- normalizeFloat32Subnormal(bSig, &bExp, &bSig);
- }
-
- /* Calculate the actual result a * b + c */
-
- /* Multiply first; this is easy. */
- /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f
- * because we want the true exponent, not the "one-less-than"
- * flavour that roundAndPackFloat32() takes.
- */
- pExp = aExp + bExp - 0x7e;
- aSig = (aSig | 0x00800000) << 7;
- bSig = (bSig | 0x00800000) << 8;
- pSig64 = (uint64_t)aSig * bSig;
- if ((int64_t)(pSig64 << 1) >= 0) {
- pSig64 <<= 1;
- pExp--;
- }
-
- zSign = pSign ^ signflip;
-
- /* Now pSig64 is the significand of the multiply, with the explicit bit in
- * position 62.
- */
- if (cExp == 0) {
- if (!cSig) {
- /* Throw out the special case of c being an exact zero now */
- shift64RightJamming(pSig64, 32, &pSig64);
- pSig = pSig64;
- if (flags & float_muladd_halve_result) {
- pExp--;
- }
- return roundAndPackFloat32(zSign, pExp - 1,
- pSig, status);
- }
- normalizeFloat32Subnormal(cSig, &cExp, &cSig);
- }
-
- cSig64 = (uint64_t)cSig << (62 - 23);
- cSig64 |= LIT64(0x4000000000000000);
- expDiff = pExp - cExp;
-
- if (pSign == cSign) {
- /* Addition */
- if (expDiff > 0) {
- /* scale c to match p */
- shift64RightJamming(cSig64, expDiff, &cSig64);
- zExp = pExp;
- } else if (expDiff < 0) {
- /* scale p to match c */
- shift64RightJamming(pSig64, -expDiff, &pSig64);
- zExp = cExp;
- } else {
- /* no scaling needed */
- zExp = cExp;
- }
- /* Add significands and make sure explicit bit ends up in posn 62 */
- zSig64 = pSig64 + cSig64;
- if ((int64_t)zSig64 < 0) {
- shift64RightJamming(zSig64, 1, &zSig64);
- } else {
- zExp--;
- }
- } else {
- /* Subtraction */
- if (expDiff > 0) {
- shift64RightJamming(cSig64, expDiff, &cSig64);
- zSig64 = pSig64 - cSig64;
- zExp = pExp;
- } else if (expDiff < 0) {
- shift64RightJamming(pSig64, -expDiff, &pSig64);
- zSig64 = cSig64 - pSig64;
- zExp = cExp;
- zSign ^= 1;
- } else {
- zExp = pExp;
- if (cSig64 < pSig64) {
- zSig64 = pSig64 - cSig64;
- } else if (pSig64 < cSig64) {
- zSig64 = cSig64 - pSig64;
- zSign ^= 1;
- } else {
- /* Exact zero */
- zSign = signflip;
- if (status->float_rounding_mode == float_round_down) {
- zSign ^= 1;
- }
- return packFloat32(zSign, 0, 0);
- }
- }
- --zExp;
- /* Normalize to put the explicit bit back into bit 62. */
- shiftcount = countLeadingZeros64(zSig64) - 1;
- zSig64 <<= shiftcount;
- zExp -= shiftcount;
- }
- if (flags & float_muladd_halve_result) {
- zExp--;
- }
-
- shift64RightJamming(zSig64, 32, &zSig64);
- return roundAndPackFloat32(zSign, zExp, zSig64, status);
-}
-
/*----------------------------------------------------------------------------
| Returns the square root of the single-precision floating-point value `a'.
@@ -4265,252 +4311,6 @@ float64 float64_rem(float64 a, float64 b, float_status *status)
}
-/*----------------------------------------------------------------------------
-| Returns the result of multiplying the double-precision floating-point values
-| `a' and `b' then adding 'c', with no intermediate rounding step after the
-| multiplication. The operation is performed according to the IEC/IEEE
-| Standard for Binary Floating-Point Arithmetic 754-2008.
-| The flags argument allows the caller to select negation of the
-| addend, the intermediate product, or the final result. (The difference
-| between this and having the caller do a separate negation is that negating
-| externally will flip the sign bit on NaNs.)
-*----------------------------------------------------------------------------*/
-
-float64 float64_muladd(float64 a, float64 b, float64 c, int flags,
- float_status *status)
-{
- flag aSign, bSign, cSign, zSign;
- int aExp, bExp, cExp, pExp, zExp, expDiff;
- uint64_t aSig, bSig, cSig;
- flag pInf, pZero, pSign;
- uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1;
- int shiftcount;
- flag signflip, infzero;
-
- a = float64_squash_input_denormal(a, status);
- b = float64_squash_input_denormal(b, status);
- c = float64_squash_input_denormal(c, status);
- aSig = extractFloat64Frac(a);
- aExp = extractFloat64Exp(a);
- aSign = extractFloat64Sign(a);
- bSig = extractFloat64Frac(b);
- bExp = extractFloat64Exp(b);
- bSign = extractFloat64Sign(b);
- cSig = extractFloat64Frac(c);
- cExp = extractFloat64Exp(c);
- cSign = extractFloat64Sign(c);
-
- infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) ||
- (aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0));
-
- /* It is implementation-defined whether the cases of (0,inf,qnan)
- * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
- * they return if they do), so we have to hand this information
- * off to the target-specific pick-a-NaN routine.
- */
- if (((aExp == 0x7ff) && aSig) ||
- ((bExp == 0x7ff) && bSig) ||
- ((cExp == 0x7ff) && cSig)) {
- return propagateFloat64MulAddNaN(a, b, c, infzero, status);
- }
-
- if (infzero) {
- float_raise(float_flag_invalid, status);
- return float64_default_nan(status);
- }
-
- if (flags & float_muladd_negate_c) {
- cSign ^= 1;
- }
-
- signflip = (flags & float_muladd_negate_result) ? 1 : 0;
-
- /* Work out the sign and type of the product */
- pSign = aSign ^ bSign;
- if (flags & float_muladd_negate_product) {
- pSign ^= 1;
- }
- pInf = (aExp == 0x7ff) || (bExp == 0x7ff);
- pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);
-
- if (cExp == 0x7ff) {
- if (pInf && (pSign ^ cSign)) {
- /* addition of opposite-signed infinities => InvalidOperation */
- float_raise(float_flag_invalid, status);
- return float64_default_nan(status);
- }
- /* Otherwise generate an infinity of the same sign */
- return packFloat64(cSign ^ signflip, 0x7ff, 0);
- }
-
- if (pInf) {
- return packFloat64(pSign ^ signflip, 0x7ff, 0);
- }
-
- if (pZero) {
- if (cExp == 0) {
- if (cSig == 0) {
- /* Adding two exact zeroes */
- if (pSign == cSign) {
- zSign = pSign;
- } else if (status->float_rounding_mode == float_round_down) {
- zSign = 1;
- } else {
- zSign = 0;
- }
- return packFloat64(zSign ^ signflip, 0, 0);
- }
- /* Exact zero plus a denorm */
- if (status->flush_to_zero) {
- float_raise(float_flag_output_denormal, status);
- return packFloat64(cSign ^ signflip, 0, 0);
- }
- }
- /* Zero plus something non-zero : just return the something */
- if (flags & float_muladd_halve_result) {
- if (cExp == 0) {
- normalizeFloat64Subnormal(cSig, &cExp, &cSig);
- }
- /* Subtract one to halve, and one again because roundAndPackFloat64
- * wants one less than the true exponent.
- */
- cExp -= 2;
- cSig = (cSig | 0x0010000000000000ULL) << 10;
- return roundAndPackFloat64(cSign ^ signflip, cExp, cSig, status);
- }
- return packFloat64(cSign ^ signflip, cExp, cSig);
- }
-
- if (aExp == 0) {
- normalizeFloat64Subnormal(aSig, &aExp, &aSig);
- }
- if (bExp == 0) {
- normalizeFloat64Subnormal(bSig, &bExp, &bSig);
- }
-
- /* Calculate the actual result a * b + c */
-
- /* Multiply first; this is easy. */
- /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff
- * because we want the true exponent, not the "one-less-than"
- * flavour that roundAndPackFloat64() takes.
- */
- pExp = aExp + bExp - 0x3fe;
- aSig = (aSig | LIT64(0x0010000000000000))<<10;
- bSig = (bSig | LIT64(0x0010000000000000))<<11;
- mul64To128(aSig, bSig, &pSig0, &pSig1);
- if ((int64_t)(pSig0 << 1) >= 0) {
- shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1);
- pExp--;
- }
-
- zSign = pSign ^ signflip;
-
- /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit
- * bit in position 126.
- */
- if (cExp == 0) {
- if (!cSig) {
- /* Throw out the special case of c being an exact zero now */
- shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1);
- if (flags & float_muladd_halve_result) {
- pExp--;
- }
- return roundAndPackFloat64(zSign, pExp - 1,
- pSig1, status);
- }
- normalizeFloat64Subnormal(cSig, &cExp, &cSig);
- }
-
- /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the
- * significand of the addend, with the explicit bit in position 126.
- */
- cSig0 = cSig << (126 - 64 - 52);
- cSig1 = 0;
- cSig0 |= LIT64(0x4000000000000000);
- expDiff = pExp - cExp;
-
- if (pSign == cSign) {
- /* Addition */
- if (expDiff > 0) {
- /* scale c to match p */
- shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
- zExp = pExp;
- } else if (expDiff < 0) {
- /* scale p to match c */
- shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
- zExp = cExp;
- } else {
- /* no scaling needed */
- zExp = cExp;
- }
- /* Add significands and make sure explicit bit ends up in posn 126 */
- add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
- if ((int64_t)zSig0 < 0) {
- shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1);
- } else {
- zExp--;
- }
- shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1);
- if (flags & float_muladd_halve_result) {
- zExp--;
- }
- return roundAndPackFloat64(zSign, zExp, zSig1, status);
- } else {
- /* Subtraction */
- if (expDiff > 0) {
- shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
- sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
- zExp = pExp;
- } else if (expDiff < 0) {
- shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
- sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
- zExp = cExp;
- zSign ^= 1;
- } else {
- zExp = pExp;
- if (lt128(cSig0, cSig1, pSig0, pSig1)) {
- sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
- } else if (lt128(pSig0, pSig1, cSig0, cSig1)) {
- sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
- zSign ^= 1;
- } else {
- /* Exact zero */
- zSign = signflip;
- if (status->float_rounding_mode == float_round_down) {
- zSign ^= 1;
- }
- return packFloat64(zSign, 0, 0);
- }
- }
- --zExp;
- /* Do the equivalent of normalizeRoundAndPackFloat64() but
- * starting with the significand in a pair of uint64_t.
- */
- if (zSig0) {
- shiftcount = countLeadingZeros64(zSig0) - 1;
- shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1);
- if (zSig1) {
- zSig0 |= 1;
- }
- zExp -= shiftcount;
- } else {
- shiftcount = countLeadingZeros64(zSig1);
- if (shiftcount == 0) {
- zSig0 = (zSig1 >> 1) | (zSig1 & 1);
- zExp -= 63;
- } else {
- shiftcount--;
- zSig0 = zSig1 << shiftcount;
- zExp -= (shiftcount + 64);
- }
- }
- if (flags & float_muladd_halve_result) {
- zExp--;
- }
- return roundAndPackFloat64(zSign, zExp, zSig0, status);
- }
-}
/*----------------------------------------------------------------------------
| Returns the square root of the double-precision floating-point value `a'.