aboutsummaryrefslogtreecommitdiff
path: root/exec.c
diff options
context:
space:
mode:
authorPaolo Bonzini <pbonzini@redhat.com>2020-10-06 09:05:29 +0200
committerPaolo Bonzini <pbonzini@redhat.com>2020-10-12 11:50:22 -0400
commitd9f24bf57241453e078dba28d16fe3a430f06da1 (patch)
tree7fde45ae523f07d26f76c8c1711628fd6ac3dae2 /exec.c
parent800d4deda04be016a95fbbf397c830a2d14ff9f6 (diff)
exec: split out non-softmmu-specific parts
Over the years, most parts of exec.c that were not specific to softmmu have been moved to accel/tcg; what's left is mostly the low-level part of the memory API, which includes RAMBlock and AddressSpaceDispatch. However exec.c also hosts 4-500 lines of code for the target specific parts of the CPU QOM object, plus a few functions for user-mode emulation that do not have a better place (they are not TCG-specific so accel/tcg/user-exec.c is not a good place either). Move these parts to a new file, so that exec.c can be moved to softmmu/physmem.c. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'exec.c')
-rw-r--r--exec.c4151
1 files changed, 0 insertions, 4151 deletions
diff --git a/exec.c b/exec.c
deleted file mode 100644
index bca441f7fd..0000000000
--- a/exec.c
+++ /dev/null
@@ -1,4151 +0,0 @@
-/*
- * Virtual page mapping
- *
- * Copyright (c) 2003 Fabrice Bellard
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, see <http://www.gnu.org/licenses/>.
- */
-
-#include "qemu/osdep.h"
-#include "qemu-common.h"
-#include "qapi/error.h"
-
-#include "qemu/cutils.h"
-#include "cpu.h"
-#include "exec/exec-all.h"
-#include "exec/target_page.h"
-#include "tcg/tcg.h"
-#include "hw/qdev-core.h"
-#include "hw/qdev-properties.h"
-#if !defined(CONFIG_USER_ONLY)
-#include "hw/boards.h"
-#include "hw/xen/xen.h"
-#endif
-#include "sysemu/kvm.h"
-#include "sysemu/sysemu.h"
-#include "sysemu/tcg.h"
-#include "sysemu/qtest.h"
-#include "qemu/timer.h"
-#include "qemu/config-file.h"
-#include "qemu/error-report.h"
-#include "qemu/qemu-print.h"
-#if defined(CONFIG_USER_ONLY)
-#include "qemu.h"
-#else /* !CONFIG_USER_ONLY */
-#include "exec/memory.h"
-#include "exec/ioport.h"
-#include "sysemu/dma.h"
-#include "sysemu/hostmem.h"
-#include "sysemu/hw_accel.h"
-#include "exec/address-spaces.h"
-#include "sysemu/xen-mapcache.h"
-#include "trace/trace-root.h"
-
-#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
-#include <linux/falloc.h>
-#endif
-
-#endif
-#include "qemu/rcu_queue.h"
-#include "qemu/main-loop.h"
-#include "translate-all.h"
-#include "sysemu/replay.h"
-
-#include "exec/memory-internal.h"
-#include "exec/ram_addr.h"
-#include "exec/log.h"
-
-#include "qemu/pmem.h"
-
-#include "migration/vmstate.h"
-
-#include "qemu/range.h"
-#ifndef _WIN32
-#include "qemu/mmap-alloc.h"
-#endif
-
-#include "monitor/monitor.h"
-
-#ifdef CONFIG_LIBDAXCTL
-#include <daxctl/libdaxctl.h>
-#endif
-
-//#define DEBUG_SUBPAGE
-
-#if !defined(CONFIG_USER_ONLY)
-/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
- * are protected by the ramlist lock.
- */
-RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
-
-static MemoryRegion *system_memory;
-static MemoryRegion *system_io;
-
-AddressSpace address_space_io;
-AddressSpace address_space_memory;
-
-static MemoryRegion io_mem_unassigned;
-#endif
-
-uintptr_t qemu_host_page_size;
-intptr_t qemu_host_page_mask;
-
-#if !defined(CONFIG_USER_ONLY)
-
-typedef struct PhysPageEntry PhysPageEntry;
-
-struct PhysPageEntry {
- /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
- uint32_t skip : 6;
- /* index into phys_sections (!skip) or phys_map_nodes (skip) */
- uint32_t ptr : 26;
-};
-
-#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
-
-/* Size of the L2 (and L3, etc) page tables. */
-#define ADDR_SPACE_BITS 64
-
-#define P_L2_BITS 9
-#define P_L2_SIZE (1 << P_L2_BITS)
-
-#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
-
-typedef PhysPageEntry Node[P_L2_SIZE];
-
-typedef struct PhysPageMap {
- struct rcu_head rcu;
-
- unsigned sections_nb;
- unsigned sections_nb_alloc;
- unsigned nodes_nb;
- unsigned nodes_nb_alloc;
- Node *nodes;
- MemoryRegionSection *sections;
-} PhysPageMap;
-
-struct AddressSpaceDispatch {
- MemoryRegionSection *mru_section;
- /* This is a multi-level map on the physical address space.
- * The bottom level has pointers to MemoryRegionSections.
- */
- PhysPageEntry phys_map;
- PhysPageMap map;
-};
-
-#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
-typedef struct subpage_t {
- MemoryRegion iomem;
- FlatView *fv;
- hwaddr base;
- uint16_t sub_section[];
-} subpage_t;
-
-#define PHYS_SECTION_UNASSIGNED 0
-
-static void io_mem_init(void);
-static void memory_map_init(void);
-static void tcg_log_global_after_sync(MemoryListener *listener);
-static void tcg_commit(MemoryListener *listener);
-
-/**
- * CPUAddressSpace: all the information a CPU needs about an AddressSpace
- * @cpu: the CPU whose AddressSpace this is
- * @as: the AddressSpace itself
- * @memory_dispatch: its dispatch pointer (cached, RCU protected)
- * @tcg_as_listener: listener for tracking changes to the AddressSpace
- */
-struct CPUAddressSpace {
- CPUState *cpu;
- AddressSpace *as;
- struct AddressSpaceDispatch *memory_dispatch;
- MemoryListener tcg_as_listener;
-};
-
-struct DirtyBitmapSnapshot {
- ram_addr_t start;
- ram_addr_t end;
- unsigned long dirty[];
-};
-
-#endif
-
-#if !defined(CONFIG_USER_ONLY)
-
-static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
-{
- static unsigned alloc_hint = 16;
- if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
- map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
- map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
- alloc_hint = map->nodes_nb_alloc;
- }
-}
-
-static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
-{
- unsigned i;
- uint32_t ret;
- PhysPageEntry e;
- PhysPageEntry *p;
-
- ret = map->nodes_nb++;
- p = map->nodes[ret];
- assert(ret != PHYS_MAP_NODE_NIL);
- assert(ret != map->nodes_nb_alloc);
-
- e.skip = leaf ? 0 : 1;
- e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
- for (i = 0; i < P_L2_SIZE; ++i) {
- memcpy(&p[i], &e, sizeof(e));
- }
- return ret;
-}
-
-static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
- hwaddr *index, uint64_t *nb, uint16_t leaf,
- int level)
-{
- PhysPageEntry *p;
- hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
-
- if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
- lp->ptr = phys_map_node_alloc(map, level == 0);
- }
- p = map->nodes[lp->ptr];
- lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
-
- while (*nb && lp < &p[P_L2_SIZE]) {
- if ((*index & (step - 1)) == 0 && *nb >= step) {
- lp->skip = 0;
- lp->ptr = leaf;
- *index += step;
- *nb -= step;
- } else {
- phys_page_set_level(map, lp, index, nb, leaf, level - 1);
- }
- ++lp;
- }
-}
-
-static void phys_page_set(AddressSpaceDispatch *d,
- hwaddr index, uint64_t nb,
- uint16_t leaf)
-{
- /* Wildly overreserve - it doesn't matter much. */
- phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
-
- phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
-}
-
-/* Compact a non leaf page entry. Simply detect that the entry has a single child,
- * and update our entry so we can skip it and go directly to the destination.
- */
-static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
-{
- unsigned valid_ptr = P_L2_SIZE;
- int valid = 0;
- PhysPageEntry *p;
- int i;
-
- if (lp->ptr == PHYS_MAP_NODE_NIL) {
- return;
- }
-
- p = nodes[lp->ptr];
- for (i = 0; i < P_L2_SIZE; i++) {
- if (p[i].ptr == PHYS_MAP_NODE_NIL) {
- continue;
- }
-
- valid_ptr = i;
- valid++;
- if (p[i].skip) {
- phys_page_compact(&p[i], nodes);
- }
- }
-
- /* We can only compress if there's only one child. */
- if (valid != 1) {
- return;
- }
-
- assert(valid_ptr < P_L2_SIZE);
-
- /* Don't compress if it won't fit in the # of bits we have. */
- if (P_L2_LEVELS >= (1 << 6) &&
- lp->skip + p[valid_ptr].skip >= (1 << 6)) {
- return;
- }
-
- lp->ptr = p[valid_ptr].ptr;
- if (!p[valid_ptr].skip) {
- /* If our only child is a leaf, make this a leaf. */
- /* By design, we should have made this node a leaf to begin with so we
- * should never reach here.
- * But since it's so simple to handle this, let's do it just in case we
- * change this rule.
- */
- lp->skip = 0;
- } else {
- lp->skip += p[valid_ptr].skip;
- }
-}
-
-void address_space_dispatch_compact(AddressSpaceDispatch *d)
-{
- if (d->phys_map.skip) {
- phys_page_compact(&d->phys_map, d->map.nodes);
- }
-}
-
-static inline bool section_covers_addr(const MemoryRegionSection *section,
- hwaddr addr)
-{
- /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
- * the section must cover the entire address space.
- */
- return int128_gethi(section->size) ||
- range_covers_byte(section->offset_within_address_space,
- int128_getlo(section->size), addr);
-}
-
-static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
-{
- PhysPageEntry lp = d->phys_map, *p;
- Node *nodes = d->map.nodes;
- MemoryRegionSection *sections = d->map.sections;
- hwaddr index = addr >> TARGET_PAGE_BITS;
- int i;
-
- for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
- if (lp.ptr == PHYS_MAP_NODE_NIL) {
- return &sections[PHYS_SECTION_UNASSIGNED];
- }
- p = nodes[lp.ptr];
- lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
- }
-
- if (section_covers_addr(&sections[lp.ptr], addr)) {
- return &sections[lp.ptr];
- } else {
- return &sections[PHYS_SECTION_UNASSIGNED];
- }
-}
-
-/* Called from RCU critical section */
-static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
- hwaddr addr,
- bool resolve_subpage)
-{
- MemoryRegionSection *section = qatomic_read(&d->mru_section);
- subpage_t *subpage;
-
- if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
- !section_covers_addr(section, addr)) {
- section = phys_page_find(d, addr);
- qatomic_set(&d->mru_section, section);
- }
- if (resolve_subpage && section->mr->subpage) {
- subpage = container_of(section->mr, subpage_t, iomem);
- section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
- }
- return section;
-}
-
-/* Called from RCU critical section */
-static MemoryRegionSection *
-address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
- hwaddr *plen, bool resolve_subpage)
-{
- MemoryRegionSection *section;
- MemoryRegion *mr;
- Int128 diff;
-
- section = address_space_lookup_region(d, addr, resolve_subpage);
- /* Compute offset within MemoryRegionSection */
- addr -= section->offset_within_address_space;
-
- /* Compute offset within MemoryRegion */
- *xlat = addr + section->offset_within_region;
-
- mr = section->mr;
-
- /* MMIO registers can be expected to perform full-width accesses based only
- * on their address, without considering adjacent registers that could
- * decode to completely different MemoryRegions. When such registers
- * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
- * regions overlap wildly. For this reason we cannot clamp the accesses
- * here.
- *
- * If the length is small (as is the case for address_space_ldl/stl),
- * everything works fine. If the incoming length is large, however,
- * the caller really has to do the clamping through memory_access_size.
- */
- if (memory_region_is_ram(mr)) {
- diff = int128_sub(section->size, int128_make64(addr));
- *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
- }
- return section;
-}
-
-/**
- * address_space_translate_iommu - translate an address through an IOMMU
- * memory region and then through the target address space.
- *
- * @iommu_mr: the IOMMU memory region that we start the translation from
- * @addr: the address to be translated through the MMU
- * @xlat: the translated address offset within the destination memory region.
- * It cannot be %NULL.
- * @plen_out: valid read/write length of the translated address. It
- * cannot be %NULL.
- * @page_mask_out: page mask for the translated address. This
- * should only be meaningful for IOMMU translated
- * addresses, since there may be huge pages that this bit
- * would tell. It can be %NULL if we don't care about it.
- * @is_write: whether the translation operation is for write
- * @is_mmio: whether this can be MMIO, set true if it can
- * @target_as: the address space targeted by the IOMMU
- * @attrs: transaction attributes
- *
- * This function is called from RCU critical section. It is the common
- * part of flatview_do_translate and address_space_translate_cached.
- */
-static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
- hwaddr *xlat,
- hwaddr *plen_out,
- hwaddr *page_mask_out,
- bool is_write,
- bool is_mmio,
- AddressSpace **target_as,
- MemTxAttrs attrs)
-{
- MemoryRegionSection *section;
- hwaddr page_mask = (hwaddr)-1;
-
- do {
- hwaddr addr = *xlat;
- IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
- int iommu_idx = 0;
- IOMMUTLBEntry iotlb;
-
- if (imrc->attrs_to_index) {
- iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
- }
-
- iotlb = imrc->translate(iommu_mr, addr, is_write ?
- IOMMU_WO : IOMMU_RO, iommu_idx);
-
- if (!(iotlb.perm & (1 << is_write))) {
- goto unassigned;
- }
-
- addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
- | (addr & iotlb.addr_mask));
- page_mask &= iotlb.addr_mask;
- *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
- *target_as = iotlb.target_as;
-
- section = address_space_translate_internal(
- address_space_to_dispatch(iotlb.target_as), addr, xlat,
- plen_out, is_mmio);
-
- iommu_mr = memory_region_get_iommu(section->mr);
- } while (unlikely(iommu_mr));
-
- if (page_mask_out) {
- *page_mask_out = page_mask;
- }
- return *section;
-
-unassigned:
- return (MemoryRegionSection) { .mr = &io_mem_unassigned };
-}
-
-/**
- * flatview_do_translate - translate an address in FlatView
- *
- * @fv: the flat view that we want to translate on
- * @addr: the address to be translated in above address space
- * @xlat: the translated address offset within memory region. It
- * cannot be @NULL.
- * @plen_out: valid read/write length of the translated address. It
- * can be @NULL when we don't care about it.
- * @page_mask_out: page mask for the translated address. This
- * should only be meaningful for IOMMU translated
- * addresses, since there may be huge pages that this bit
- * would tell. It can be @NULL if we don't care about it.
- * @is_write: whether the translation operation is for write
- * @is_mmio: whether this can be MMIO, set true if it can
- * @target_as: the address space targeted by the IOMMU
- * @attrs: memory transaction attributes
- *
- * This function is called from RCU critical section
- */
-static MemoryRegionSection flatview_do_translate(FlatView *fv,
- hwaddr addr,
- hwaddr *xlat,
- hwaddr *plen_out,
- hwaddr *page_mask_out,
- bool is_write,
- bool is_mmio,
- AddressSpace **target_as,
- MemTxAttrs attrs)
-{
- MemoryRegionSection *section;
- IOMMUMemoryRegion *iommu_mr;
- hwaddr plen = (hwaddr)(-1);
-
- if (!plen_out) {
- plen_out = &plen;
- }
-
- section = address_space_translate_internal(
- flatview_to_dispatch(fv), addr, xlat,
- plen_out, is_mmio);
-
- iommu_mr = memory_region_get_iommu(section->mr);
- if (unlikely(iommu_mr)) {
- return address_space_translate_iommu(iommu_mr, xlat,
- plen_out, page_mask_out,
- is_write, is_mmio,
- target_as, attrs);
- }
- if (page_mask_out) {
- /* Not behind an IOMMU, use default page size. */
- *page_mask_out = ~TARGET_PAGE_MASK;
- }
-
- return *section;
-}
-
-/* Called from RCU critical section */
-IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
- bool is_write, MemTxAttrs attrs)
-{
- MemoryRegionSection section;
- hwaddr xlat, page_mask;
-
- /*
- * This can never be MMIO, and we don't really care about plen,
- * but page mask.
- */
- section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
- NULL, &page_mask, is_write, false, &as,
- attrs);
-
- /* Illegal translation */
- if (section.mr == &io_mem_unassigned) {
- goto iotlb_fail;
- }
-
- /* Convert memory region offset into address space offset */
- xlat += section.offset_within_address_space -
- section.offset_within_region;
-
- return (IOMMUTLBEntry) {
- .target_as = as,
- .iova = addr & ~page_mask,
- .translated_addr = xlat & ~page_mask,
- .addr_mask = page_mask,
- /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
- .perm = IOMMU_RW,
- };
-
-iotlb_fail:
- return (IOMMUTLBEntry) {0};
-}
-
-/* Called from RCU critical section */
-MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
- hwaddr *plen, bool is_write,
- MemTxAttrs attrs)
-{
- MemoryRegion *mr;
- MemoryRegionSection section;
- AddressSpace *as = NULL;
-
- /* This can be MMIO, so setup MMIO bit. */
- section = flatview_do_translate(fv, addr, xlat, plen, NULL,
- is_write, true, &as, attrs);
- mr = section.mr;
-
- if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
- hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
- *plen = MIN(page, *plen);
- }
-
- return mr;
-}
-
-typedef struct TCGIOMMUNotifier {
- IOMMUNotifier n;
- MemoryRegion *mr;
- CPUState *cpu;
- int iommu_idx;
- bool active;
-} TCGIOMMUNotifier;
-
-static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
-{
- TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
-
- if (!notifier->active) {
- return;
- }
- tlb_flush(notifier->cpu);
- notifier->active = false;
- /* We leave the notifier struct on the list to avoid reallocating it later.
- * Generally the number of IOMMUs a CPU deals with will be small.
- * In any case we can't unregister the iommu notifier from a notify
- * callback.
- */
-}
-
-static void tcg_register_iommu_notifier(CPUState *cpu,
- IOMMUMemoryRegion *iommu_mr,
- int iommu_idx)
-{
- /* Make sure this CPU has an IOMMU notifier registered for this
- * IOMMU/IOMMU index combination, so that we can flush its TLB
- * when the IOMMU tells us the mappings we've cached have changed.
- */
- MemoryRegion *mr = MEMORY_REGION(iommu_mr);
- TCGIOMMUNotifier *notifier;
- int i;
-
- for (i = 0; i < cpu->iommu_notifiers->len; i++) {
- notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
- if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
- break;
- }
- }
- if (i == cpu->iommu_notifiers->len) {
- /* Not found, add a new entry at the end of the array */
- cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
- notifier = g_new0(TCGIOMMUNotifier, 1);
- g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
-
- notifier->mr = mr;
- notifier->iommu_idx = iommu_idx;
- notifier->cpu = cpu;
- /* Rather than trying to register interest in the specific part
- * of the iommu's address space that we've accessed and then
- * expand it later as subsequent accesses touch more of it, we
- * just register interest in the whole thing, on the assumption
- * that iommu reconfiguration will be rare.
- */
- iommu_notifier_init(&notifier->n,
- tcg_iommu_unmap_notify,
- IOMMU_NOTIFIER_UNMAP,
- 0,
- HWADDR_MAX,
- iommu_idx);
- memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
- &error_fatal);
- }
-
- if (!notifier->active) {
- notifier->active = true;
- }
-}
-
-static void tcg_iommu_free_notifier_list(CPUState *cpu)
-{
- /* Destroy the CPU's notifier list */
- int i;
- TCGIOMMUNotifier *notifier;
-
- for (i = 0; i < cpu->iommu_notifiers->len; i++) {
- notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
- memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
- g_free(notifier);
- }
- g_array_free(cpu->iommu_notifiers, true);
-}
-
-/* Called from RCU critical section */
-MemoryRegionSection *
-address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
- hwaddr *xlat, hwaddr *plen,
- MemTxAttrs attrs, int *prot)
-{
- MemoryRegionSection *section;
- IOMMUMemoryRegion *iommu_mr;
- IOMMUMemoryRegionClass *imrc;
- IOMMUTLBEntry iotlb;
- int iommu_idx;
- AddressSpaceDispatch *d =
- qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
-
- for (;;) {
- section = address_space_translate_internal(d, addr, &addr, plen, false);
-
- iommu_mr = memory_region_get_iommu(section->mr);
- if (!iommu_mr) {
- break;
- }
-
- imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
-
- iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
- tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
- /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
- * doesn't short-cut its translation table walk.
- */
- iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
- addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
- | (addr & iotlb.addr_mask));
- /* Update the caller's prot bits to remove permissions the IOMMU
- * is giving us a failure response for. If we get down to no
- * permissions left at all we can give up now.
- */
- if (!(iotlb.perm & IOMMU_RO)) {
- *prot &= ~(PAGE_READ | PAGE_EXEC);
- }
- if (!(iotlb.perm & IOMMU_WO)) {
- *prot &= ~PAGE_WRITE;
- }
-
- if (!*prot) {
- goto translate_fail;
- }
-
- d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
- }
-
- assert(!memory_region_is_iommu(section->mr));
- *xlat = addr;
- return section;
-
-translate_fail:
- return &d->map.sections[PHYS_SECTION_UNASSIGNED];
-}
-#endif
-
-#if !defined(CONFIG_USER_ONLY)
-
-static int cpu_common_post_load(void *opaque, int version_id)
-{
- CPUState *cpu = opaque;
-
- /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
- version_id is increased. */
- cpu->interrupt_request &= ~0x01;
- tlb_flush(cpu);
-
- /* loadvm has just updated the content of RAM, bypassing the
- * usual mechanisms that ensure we flush TBs for writes to
- * memory we've translated code from. So we must flush all TBs,
- * which will now be stale.
- */
- tb_flush(cpu);
-
- return 0;
-}
-
-static int cpu_common_pre_load(void *opaque)
-{
- CPUState *cpu = opaque;
-
- cpu->exception_index = -1;
-
- return 0;
-}
-
-static bool cpu_common_exception_index_needed(void *opaque)
-{
- CPUState *cpu = opaque;
-
- return tcg_enabled() && cpu->exception_index != -1;
-}
-
-static const VMStateDescription vmstate_cpu_common_exception_index = {
- .name = "cpu_common/exception_index",
- .version_id = 1,
- .minimum_version_id = 1,
- .needed = cpu_common_exception_index_needed,
- .fields = (VMStateField[]) {
- VMSTATE_INT32(exception_index, CPUState),
- VMSTATE_END_OF_LIST()
- }
-};
-
-static bool cpu_common_crash_occurred_needed(void *opaque)
-{
- CPUState *cpu = opaque;
-
- return cpu->crash_occurred;
-}
-
-static const VMStateDescription vmstate_cpu_common_crash_occurred = {
- .name = "cpu_common/crash_occurred",
- .version_id = 1,
- .minimum_version_id = 1,
- .needed = cpu_common_crash_occurred_needed,
- .fields = (VMStateField[]) {
- VMSTATE_BOOL(crash_occurred, CPUState),
- VMSTATE_END_OF_LIST()
- }
-};
-
-const VMStateDescription vmstate_cpu_common = {
- .name = "cpu_common",
- .version_id = 1,
- .minimum_version_id = 1,
- .pre_load = cpu_common_pre_load,
- .post_load = cpu_common_post_load,
- .fields = (VMStateField[]) {
- VMSTATE_UINT32(halted, CPUState),
- VMSTATE_UINT32(interrupt_request, CPUState),
- VMSTATE_END_OF_LIST()
- },
- .subsections = (const VMStateDescription*[]) {
- &vmstate_cpu_common_exception_index,
- &vmstate_cpu_common_crash_occurred,
- NULL
- }
-};
-
-void cpu_address_space_init(CPUState *cpu, int asidx,
- const char *prefix, MemoryRegion *mr)
-{
- CPUAddressSpace *newas;
- AddressSpace *as = g_new0(AddressSpace, 1);
- char *as_name;
-
- assert(mr);
- as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
- address_space_init(as, mr, as_name);
- g_free(as_name);
-
- /* Target code should have set num_ases before calling us */
- assert(asidx < cpu->num_ases);
-
- if (asidx == 0) {
- /* address space 0 gets the convenience alias */
- cpu->as = as;
- }
-
- /* KVM cannot currently support multiple address spaces. */
- assert(asidx == 0 || !kvm_enabled());
-
- if (!cpu->cpu_ases) {
- cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
- }
-
- newas = &cpu->cpu_ases[asidx];
- newas->cpu = cpu;
- newas->as = as;
- if (tcg_enabled()) {
- newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
- newas->tcg_as_listener.commit = tcg_commit;
- memory_listener_register(&newas->tcg_as_listener, as);
- }
-}
-
-AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
-{
- /* Return the AddressSpace corresponding to the specified index */
- return cpu->cpu_ases[asidx].as;
-}
-#endif
-
-void cpu_exec_unrealizefn(CPUState *cpu)
-{
- CPUClass *cc = CPU_GET_CLASS(cpu);
-
- tlb_destroy(cpu);
- cpu_list_remove(cpu);
-
- if (cc->vmsd != NULL) {
- vmstate_unregister(NULL, cc->vmsd, cpu);
- }
- if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
- vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
- }
-#ifndef CONFIG_USER_ONLY
- tcg_iommu_free_notifier_list(cpu);
-#endif
-}
-
-Property cpu_common_props[] = {
-#ifndef CONFIG_USER_ONLY
- /* Create a memory property for softmmu CPU object,
- * so users can wire up its memory. (This can't go in hw/core/cpu.c
- * because that file is compiled only once for both user-mode
- * and system builds.) The default if no link is set up is to use
- * the system address space.
- */
- DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
- MemoryRegion *),
-#endif
- DEFINE_PROP_BOOL("start-powered-off", CPUState, start_powered_off, false),
- DEFINE_PROP_END_OF_LIST(),
-};
-
-void cpu_exec_initfn(CPUState *cpu)
-{
- cpu->as = NULL;
- cpu->num_ases = 0;
-
-#ifndef CONFIG_USER_ONLY
- cpu->thread_id = qemu_get_thread_id();
- cpu->memory = system_memory;
- object_ref(OBJECT(cpu->memory));
-#endif
-}
-
-void cpu_exec_realizefn(CPUState *cpu, Error **errp)
-{
- CPUClass *cc = CPU_GET_CLASS(cpu);
- static bool tcg_target_initialized;
-
- cpu_list_add(cpu);
-
- if (tcg_enabled() && !tcg_target_initialized) {
- tcg_target_initialized = true;
- cc->tcg_initialize();
- }
- tlb_init(cpu);
-
- qemu_plugin_vcpu_init_hook(cpu);
-
-#ifdef CONFIG_USER_ONLY
- assert(cc->vmsd == NULL);
-#else /* !CONFIG_USER_ONLY */
- if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
- vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
- }
- if (cc->vmsd != NULL) {
- vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
- }
-
- cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
-#endif
-}
-
-const char *parse_cpu_option(const char *cpu_option)
-{
- ObjectClass *oc;
- CPUClass *cc;
- gchar **model_pieces;
- const char *cpu_type;
-
- model_pieces = g_strsplit(cpu_option, ",", 2);
- if (!model_pieces[0]) {
- error_report("-cpu option cannot be empty");
- exit(1);
- }
-
- oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
- if (oc == NULL) {
- error_report("unable to find CPU model '%s'", model_pieces[0]);
- g_strfreev(model_pieces);
- exit(EXIT_FAILURE);
- }
-
- cpu_type = object_class_get_name(oc);
- cc = CPU_CLASS(oc);
- cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
- g_strfreev(model_pieces);
- return cpu_type;
-}
-
-#if defined(CONFIG_USER_ONLY)
-void tb_invalidate_phys_addr(target_ulong addr)
-{
- mmap_lock();
- tb_invalidate_phys_page_range(addr, addr + 1);
- mmap_unlock();
-}
-
-static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
-{
- tb_invalidate_phys_addr(pc);
-}
-#else
-void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
-{
- ram_addr_t ram_addr;
- MemoryRegion *mr;
- hwaddr l = 1;
-
- if (!tcg_enabled()) {
- return;
- }
-
- RCU_READ_LOCK_GUARD();
- mr = address_space_translate(as, addr, &addr, &l, false, attrs);
- if (!(memory_region_is_ram(mr)
- || memory_region_is_romd(mr))) {
- return;
- }
- ram_addr = memory_region_get_ram_addr(mr) + addr;
- tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
-}
-
-static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
-{
- /*
- * There may not be a virtual to physical translation for the pc
- * right now, but there may exist cached TB for this pc.
- * Flush the whole TB cache to force re-translation of such TBs.
- * This is heavyweight, but we're debugging anyway.
- */
- tb_flush(cpu);
-}
-#endif
-
-#ifndef CONFIG_USER_ONLY
-/* Add a watchpoint. */
-int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
- int flags, CPUWatchpoint **watchpoint)
-{
- CPUWatchpoint *wp;
- vaddr in_page;
-
- /* forbid ranges which are empty or run off the end of the address space */
- if (len == 0 || (addr + len - 1) < addr) {
- error_report("tried to set invalid watchpoint at %"
- VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
- return -EINVAL;
- }
- wp = g_malloc(sizeof(*wp));
-
- wp->vaddr = addr;
- wp->len = len;
- wp->flags = flags;
-
- /* keep all GDB-injected watchpoints in front */
- if (flags & BP_GDB) {
- QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
- } else {
- QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
- }
-
- in_page = -(addr | TARGET_PAGE_MASK);
- if (len <= in_page) {
- tlb_flush_page(cpu, addr);
- } else {
- tlb_flush(cpu);
- }
-
- if (watchpoint)
- *watchpoint = wp;
- return 0;
-}
-
-/* Remove a specific watchpoint. */
-int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
- int flags)
-{
- CPUWatchpoint *wp;
-
- QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
- if (addr == wp->vaddr && len == wp->len
- && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
- cpu_watchpoint_remove_by_ref(cpu, wp);
- return 0;
- }
- }
- return -ENOENT;
-}
-
-/* Remove a specific watchpoint by reference. */
-void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
-{
- QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
-
- tlb_flush_page(cpu, watchpoint->vaddr);
-
- g_free(watchpoint);
-}
-
-/* Remove all matching watchpoints. */
-void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
-{
- CPUWatchpoint *wp, *next;
-
- QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
- if (wp->flags & mask) {
- cpu_watchpoint_remove_by_ref(cpu, wp);
- }
- }
-}
-
-/* Return true if this watchpoint address matches the specified
- * access (ie the address range covered by the watchpoint overlaps
- * partially or completely with the address range covered by the
- * access).
- */
-static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
- vaddr addr, vaddr len)
-{
- /* We know the lengths are non-zero, but a little caution is
- * required to avoid errors in the case where the range ends
- * exactly at the top of the address space and so addr + len
- * wraps round to zero.
- */
- vaddr wpend = wp->vaddr + wp->len - 1;
- vaddr addrend = addr + len - 1;
-
- return !(addr > wpend || wp->vaddr > addrend);
-}
-
-/* Return flags for watchpoints that match addr + prot. */
-int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
-{
- CPUWatchpoint *wp;
- int ret = 0;
-
- QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
- if (watchpoint_address_matches(wp, addr, len)) {
- ret |= wp->flags;
- }
- }
- return ret;
-}
-#endif /* !CONFIG_USER_ONLY */
-
-/* Add a breakpoint. */
-int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
- CPUBreakpoint **breakpoint)
-{
- CPUBreakpoint *bp;
-
- bp = g_malloc(sizeof(*bp));
-
- bp->pc = pc;
- bp->flags = flags;
-
- /* keep all GDB-injected breakpoints in front */
- if (flags & BP_GDB) {
- QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
- } else {
- QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
- }
-
- breakpoint_invalidate(cpu, pc);
-
- if (breakpoint) {
- *breakpoint = bp;
- }
- return 0;
-}
-
-/* Remove a specific breakpoint. */
-int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
-{
- CPUBreakpoint *bp;
-
- QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
- if (bp->pc == pc && bp->flags == flags) {
- cpu_breakpoint_remove_by_ref(cpu, bp);
- return 0;
- }
- }
- return -ENOENT;
-}
-
-/* Remove a specific breakpoint by reference. */
-void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
-{
- QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
-
- breakpoint_invalidate(cpu, breakpoint->pc);
-
- g_free(breakpoint);
-}
-
-/* Remove all matching breakpoints. */
-void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
-{
- CPUBreakpoint *bp, *next;
-
- QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
- if (bp->flags & mask) {
- cpu_breakpoint_remove_by_ref(cpu, bp);
- }
- }
-}
-
-/* enable or disable single step mode. EXCP_DEBUG is returned by the
- CPU loop after each instruction */
-void cpu_single_step(CPUState *cpu, int enabled)
-{
- if (cpu->singlestep_enabled != enabled) {
- cpu->singlestep_enabled = enabled;
- if (kvm_enabled()) {
- kvm_update_guest_debug(cpu, 0);
- } else {
- /* must flush all the translated code to avoid inconsistencies */
- /* XXX: only flush what is necessary */
- tb_flush(cpu);
- }
- }
-}
-
-void cpu_abort(CPUState *cpu, const char *fmt, ...)
-{
- va_list ap;
- va_list ap2;
-
- va_start(ap, fmt);
- va_copy(ap2, ap);
- fprintf(stderr, "qemu: fatal: ");
- vfprintf(stderr, fmt, ap);
- fprintf(stderr, "\n");
- cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
- if (qemu_log_separate()) {
- FILE *logfile = qemu_log_lock();
- qemu_log("qemu: fatal: ");
- qemu_log_vprintf(fmt, ap2);
- qemu_log("\n");
- log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
- qemu_log_flush();
- qemu_log_unlock(logfile);
- qemu_log_close();
- }
- va_end(ap2);
- va_end(ap);
- replay_finish();
-#if defined(CONFIG_USER_ONLY)
- {
- struct sigaction act;
- sigfillset(&act.sa_mask);
- act.sa_handler = SIG_DFL;
- act.sa_flags = 0;
- sigaction(SIGABRT, &act, NULL);
- }
-#endif
- abort();
-}
-
-#if !defined(CONFIG_USER_ONLY)
-/* Called from RCU critical section */
-static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
-{
- RAMBlock *block;
-
- block = qatomic_rcu_read(&ram_list.mru_block);
- if (block && addr - block->offset < block->max_length) {
- return block;
- }
- RAMBLOCK_FOREACH(block) {
- if (addr - block->offset < block->max_length) {
- goto found;
- }
- }
-
- fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
- abort();
-
-found:
- /* It is safe to write mru_block outside the iothread lock. This
- * is what happens:
- *
- * mru_block = xxx
- * rcu_read_unlock()
- * xxx removed from list
- * rcu_read_lock()
- * read mru_block
- * mru_block = NULL;
- * call_rcu(reclaim_ramblock, xxx);
- * rcu_read_unlock()
- *
- * qatomic_rcu_set is not needed here. The block was already published
- * when it was placed into the list. Here we're just making an extra
- * copy of the pointer.
- */
- ram_list.mru_block = block;
- return block;
-}
-
-static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
-{
- CPUState *cpu;
- ram_addr_t start1;
- RAMBlock *block;
- ram_addr_t end;
-
- assert(tcg_enabled());
- end = TARGET_PAGE_ALIGN(start + length);
- start &= TARGET_PAGE_MASK;
-
- RCU_READ_LOCK_GUARD();
- block = qemu_get_ram_block(start);
- assert(block == qemu_get_ram_block(end - 1));
- start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
- CPU_FOREACH(cpu) {
- tlb_reset_dirty(cpu, start1, length);
- }
-}
-
-/* Note: start and end must be within the same ram block. */
-bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
- ram_addr_t length,
- unsigned client)
-{
- DirtyMemoryBlocks *blocks;
- unsigned long end, page, start_page;
- bool dirty = false;
- RAMBlock *ramblock;
- uint64_t mr_offset, mr_size;
-
- if (length == 0) {
- return false;
- }
-
- end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
- start_page = start >> TARGET_PAGE_BITS;
- page = start_page;
-
- WITH_RCU_READ_LOCK_GUARD() {
- blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
- ramblock = qemu_get_ram_block(start);
- /* Range sanity check on the ramblock */
- assert(start >= ramblock->offset &&
- start + length <= ramblock->offset + ramblock->used_length);
-
- while (page < end) {
- unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
- unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
- unsigned long num = MIN(end - page,
- DIRTY_MEMORY_BLOCK_SIZE - offset);
-
- dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
- offset, num);
- page += num;
- }
-
- mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
- mr_size = (end - start_page) << TARGET_PAGE_BITS;
- memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
- }
-
- if (dirty && tcg_enabled()) {
- tlb_reset_dirty_range_all(start, length);
- }
-
- return dirty;
-}
-
-DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
- (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
-{
- DirtyMemoryBlocks *blocks;
- ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
- unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
- ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
- ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
- DirtyBitmapSnapshot *snap;
- unsigned long page, end, dest;
-
- snap = g_malloc0(sizeof(*snap) +
- ((last - first) >> (TARGET_PAGE_BITS + 3)));
- snap->start = first;
- snap->end = last;
-
- page = first >> TARGET_PAGE_BITS;
- end = last >> TARGET_PAGE_BITS;
- dest = 0;
-
- WITH_RCU_READ_LOCK_GUARD() {
- blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
-
- while (page < end) {
- unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
- unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
- unsigned long num = MIN(end - page,
- DIRTY_MEMORY_BLOCK_SIZE - offset);
-
- assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
- assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
- offset >>= BITS_PER_LEVEL;
-
- bitmap_copy_and_clear_atomic(snap->dirty + dest,
- blocks->blocks[idx] + offset,
- num);
- page += num;
- dest += num >> BITS_PER_LEVEL;
- }
- }
-
- if (tcg_enabled()) {
- tlb_reset_dirty_range_all(start, length);
- }
-
- memory_region_clear_dirty_bitmap(mr, offset, length);
-
- return snap;
-}
-
-bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
- ram_addr_t start,
- ram_addr_t length)
-{
- unsigned long page, end;
-
- assert(start >= snap->start);
- assert(start + length <= snap->end);
-
- end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
- page = (start - snap->start) >> TARGET_PAGE_BITS;
-
- while (page < end) {
- if (test_bit(page, snap->dirty)) {
- return true;
- }
- page++;
- }
- return false;
-}
-
-/* Called from RCU critical section */
-hwaddr memory_region_section_get_iotlb(CPUState *cpu,
- MemoryRegionSection *section)
-{
- AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
- return section - d->map.sections;
-}
-#endif /* defined(CONFIG_USER_ONLY) */
-
-#if !defined(CONFIG_USER_ONLY)
-
-static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
- uint16_t section);
-static subpage_t *subpage_init(FlatView *fv, hwaddr base);
-
-static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
- qemu_anon_ram_alloc;
-
-/*
- * Set a custom physical guest memory alloator.
- * Accelerators with unusual needs may need this. Hopefully, we can
- * get rid of it eventually.
- */
-void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
-{
- phys_mem_alloc = alloc;
-}
-
-static uint16_t phys_section_add(PhysPageMap *map,
- MemoryRegionSection *section)
-{
- /* The physical section number is ORed with a page-aligned
- * pointer to produce the iotlb entries. Thus it should
- * never overflow into the page-aligned value.
- */
- assert(map->sections_nb < TARGET_PAGE_SIZE);
-
- if (map->sections_nb == map->sections_nb_alloc) {
- map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
- map->sections = g_renew(MemoryRegionSection, map->sections,
- map->sections_nb_alloc);
- }
- map->sections[map->sections_nb] = *section;
- memory_region_ref(section->mr);
- return map->sections_nb++;
-}
-
-static void phys_section_destroy(MemoryRegion *mr)
-{
- bool have_sub_page = mr->subpage;
-
- memory_region_unref(mr);
-
- if (have_sub_page) {
- subpage_t *subpage = container_of(mr, subpage_t, iomem);
- object_unref(OBJECT(&subpage->iomem));
- g_free(subpage);
- }
-}
-
-static void phys_sections_free(PhysPageMap *map)
-{
- while (map->sections_nb > 0) {
- MemoryRegionSection *section = &map->sections[--map->sections_nb];
- phys_section_destroy(section->mr);
- }
- g_free(map->sections);
- g_free(map->nodes);
-}
-
-static void register_subpage(FlatView *fv, MemoryRegionSection *section)
-{
- AddressSpaceDispatch *d = flatview_to_dispatch(fv);
- subpage_t *subpage;
- hwaddr base = section->offset_within_address_space
- & TARGET_PAGE_MASK;
- MemoryRegionSection *existing = phys_page_find(d, base);
- MemoryRegionSection subsection = {
- .offset_within_address_space = base,
- .size = int128_make64(TARGET_PAGE_SIZE),
- };
- hwaddr start, end;
-
- assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
-
- if (!(existing->mr->subpage)) {
- subpage = subpage_init(fv, base);
- subsection.fv = fv;
- subsection.mr = &subpage->iomem;
- phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
- phys_section_add(&d->map, &subsection));
- } else {
- subpage = container_of(existing->mr, subpage_t, iomem);
- }
- start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
- end = start + int128_get64(section->size) - 1;
- subpage_register(subpage, start, end,
- phys_section_add(&d->map, section));
-}
-
-
-static void register_multipage(FlatView *fv,
- MemoryRegionSection *section)
-{
- AddressSpaceDispatch *d = flatview_to_dispatch(fv);
- hwaddr start_addr = section->offset_within_address_space;
- uint16_t section_index = phys_section_add(&d->map, section);
- uint64_t num_pages = int128_get64(int128_rshift(section->size,
- TARGET_PAGE_BITS));
-
- assert(num_pages);
- phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
-}
-
-/*
- * The range in *section* may look like this:
- *
- * |s|PPPPPPP|s|
- *
- * where s stands for subpage and P for page.
- */
-void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
-{
- MemoryRegionSection remain = *section;
- Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
-
- /* register first subpage */
- if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
- uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
- - remain.offset_within_address_space;
-
- MemoryRegionSection now = remain;
- now.size = int128_min(int128_make64(left), now.size);
- register_subpage(fv, &now);
- if (int128_eq(remain.size, now.size)) {
- return;
- }
- remain.size = int128_sub(remain.size, now.size);
- remain.offset_within_address_space += int128_get64(now.size);
- remain.offset_within_region += int128_get64(now.size);
- }
-
- /* register whole pages */
- if (int128_ge(remain.size, page_size)) {
- MemoryRegionSection now = remain;
- now.size = int128_and(now.size, int128_neg(page_size));
- register_multipage(fv, &now);
- if (int128_eq(remain.size, now.size)) {
- return;
- }
- remain.size = int128_sub(remain.size, now.size);
- remain.offset_within_address_space += int128_get64(now.size);
- remain.offset_within_region += int128_get64(now.size);
- }
-
- /* register last subpage */
- register_subpage(fv, &remain);
-}
-
-void qemu_flush_coalesced_mmio_buffer(void)
-{
- if (kvm_enabled())
- kvm_flush_coalesced_mmio_buffer();
-}
-
-void qemu_mutex_lock_ramlist(void)
-{
- qemu_mutex_lock(&ram_list.mutex);
-}
-
-void qemu_mutex_unlock_ramlist(void)
-{
- qemu_mutex_unlock(&ram_list.mutex);
-}
-
-void ram_block_dump(Monitor *mon)
-{
- RAMBlock *block;
- char *psize;
-
- RCU_READ_LOCK_GUARD();
- monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
- "Block Name", "PSize", "Offset", "Used", "Total");
- RAMBLOCK_FOREACH(block) {
- psize = size_to_str(block->page_size);
- monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
- " 0x%016" PRIx64 "\n", block->idstr, psize,
- (uint64_t)block->offset,
- (uint64_t)block->used_length,
- (uint64_t)block->max_length);
- g_free(psize);
- }
-}
-
-#ifdef __linux__
-/*
- * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
- * may or may not name the same files / on the same filesystem now as
- * when we actually open and map them. Iterate over the file
- * descriptors instead, and use qemu_fd_getpagesize().
- */
-static int find_min_backend_pagesize(Object *obj, void *opaque)
-{
- long *hpsize_min = opaque;
-
- if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
- HostMemoryBackend *backend = MEMORY_BACKEND(obj);
- long hpsize = host_memory_backend_pagesize(backend);
-
- if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
- *hpsize_min = hpsize;
- }
- }
-
- return 0;
-}
-
-static int find_max_backend_pagesize(Object *obj, void *opaque)
-{
- long *hpsize_max = opaque;
-
- if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
- HostMemoryBackend *backend = MEMORY_BACKEND(obj);
- long hpsize = host_memory_backend_pagesize(backend);
-
- if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
- *hpsize_max = hpsize;
- }
- }
-
- return 0;
-}
-
-/*
- * TODO: We assume right now that all mapped host memory backends are
- * used as RAM, however some might be used for different purposes.
- */
-long qemu_minrampagesize(void)
-{
- long hpsize = LONG_MAX;
- Object *memdev_root = object_resolve_path("/objects", NULL);
-
- object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
- return hpsize;
-}
-
-long qemu_maxrampagesize(void)
-{
- long pagesize = 0;
- Object *memdev_root = object_resolve_path("/objects", NULL);
-
- object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
- return pagesize;
-}
-#else
-long qemu_minrampagesize(void)
-{
- return qemu_real_host_page_size;
-}
-long qemu_maxrampagesize(void)
-{
- return qemu_real_host_page_size;
-}
-#endif
-
-#ifdef CONFIG_POSIX
-static int64_t get_file_size(int fd)
-{
- int64_t size;
-#if defined(__linux__)
- struct stat st;
-
- if (fstat(fd, &st) < 0) {
- return -errno;
- }
-
- /* Special handling for devdax character devices */
- if (S_ISCHR(st.st_mode)) {
- g_autofree char *subsystem_path = NULL;
- g_autofree char *subsystem = NULL;
-
- subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
- major(st.st_rdev), minor(st.st_rdev));
- subsystem = g_file_read_link(subsystem_path, NULL);
-
- if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
- g_autofree char *size_path = NULL;
- g_autofree char *size_str = NULL;
-
- size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
- major(st.st_rdev), minor(st.st_rdev));
-
- if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
- return g_ascii_strtoll(size_str, NULL, 0);
- }
- }
- }
-#endif /* defined(__linux__) */
-
- /* st.st_size may be zero for special files yet lseek(2) works */
- size = lseek(fd, 0, SEEK_END);
- if (size < 0) {
- return -errno;
- }
- return size;
-}
-
-static int64_t get_file_align(int fd)
-{
- int64_t align = -1;
-#if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
- struct stat st;
-
- if (fstat(fd, &st) < 0) {
- return -errno;
- }
-
- /* Special handling for devdax character devices */
- if (S_ISCHR(st.st_mode)) {
- g_autofree char *path = NULL;
- g_autofree char *rpath = NULL;
- struct daxctl_ctx *ctx;
- struct daxctl_region *region;
- int rc = 0;
-
- path = g_strdup_printf("/sys/dev/char/%d:%d",
- major(st.st_rdev), minor(st.st_rdev));
- rpath = realpath(path, NULL);
-
- rc = daxctl_new(&ctx);
- if (rc) {
- return -1;
- }
-
- daxctl_region_foreach(ctx, region) {
- if (strstr(rpath, daxctl_region_get_path(region))) {
- align = daxctl_region_get_align(region);
- break;
- }
- }
- daxctl_unref(ctx);
- }
-#endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
-
- return align;
-}
-
-static int file_ram_open(const char *path,
- const char *region_name,
- bool *created,
- Error **errp)
-{
- char *filename;
- char *sanitized_name;
- char *c;
- int fd = -1;
-
- *created = false;
- for (;;) {
- fd = open(path, O_RDWR);
- if (fd >= 0) {
- /* @path names an existing file, use it */
- break;
- }
- if (errno == ENOENT) {
- /* @path names a file that doesn't exist, create it */
- fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
- if (fd >= 0) {
- *created = true;
- break;
- }
- } else if (errno == EISDIR) {
- /* @path names a directory, create a file there */
- /* Make name safe to use with mkstemp by replacing '/' with '_'. */
- sanitized_name = g_strdup(region_name);
- for (c = sanitized_name; *c != '\0'; c++) {
- if (*c == '/') {
- *c = '_';
- }
- }
-
- filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
- sanitized_name);
- g_free(sanitized_name);
-
- fd = mkstemp(filename);
- if (fd >= 0) {
- unlink(filename);
- g_free(filename);
- break;
- }
- g_free(filename);
- }
- if (errno != EEXIST && errno != EINTR) {
- error_setg_errno(errp, errno,
- "can't open backing store %s for guest RAM",
- path);
- return -1;
- }
- /*
- * Try again on EINTR and EEXIST. The latter happens when
- * something else creates the file between our two open().
- */
- }
-
- return fd;
-}
-
-static void *file_ram_alloc(RAMBlock *block,
- ram_addr_t memory,
- int fd,
- bool truncate,
- Error **errp)
-{
- void *area;
-
- block->page_size = qemu_fd_getpagesize(fd);
- if (block->mr->align % block->page_size) {
- error_setg(errp, "alignment 0x%" PRIx64
- " must be multiples of page size 0x%zx",
- block->mr->align, block->page_size);
- return NULL;
- } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
- error_setg(errp, "alignment 0x%" PRIx64
- " must be a power of two", block->mr->align);
- return NULL;
- }
- block->mr->align = MAX(block->page_size, block->mr->align);
-#if defined(__s390x__)
- if (kvm_enabled()) {
- block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
- }
-#endif
-
- if (memory < block->page_size) {
- error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
- "or larger than page size 0x%zx",
- memory, block->page_size);
- return NULL;
- }
-
- memory = ROUND_UP(memory, block->page_size);
-
- /*
- * ftruncate is not supported by hugetlbfs in older
- * hosts, so don't bother bailing out on errors.
- * If anything goes wrong with it under other filesystems,
- * mmap will fail.
- *
- * Do not truncate the non-empty backend file to avoid corrupting
- * the existing data in the file. Disabling shrinking is not
- * enough. For example, the current vNVDIMM implementation stores
- * the guest NVDIMM labels at the end of the backend file. If the
- * backend file is later extended, QEMU will not be able to find
- * those labels. Therefore, extending the non-empty backend file
- * is disabled as well.
- */
- if (truncate && ftruncate(fd, memory)) {
- perror("ftruncate");
- }
-
- area = qemu_ram_mmap(fd, memory, block->mr->align,
- block->flags & RAM_SHARED, block->flags & RAM_PMEM);
- if (area == MAP_FAILED) {
- error_setg_errno(errp, errno,
- "unable to map backing store for guest RAM");
- return NULL;
- }
-
- block->fd = fd;
- return area;
-}
-#endif
-
-/* Allocate space within the ram_addr_t space that governs the
- * dirty bitmaps.
- * Called with the ramlist lock held.
- */
-static ram_addr_t find_ram_offset(ram_addr_t size)
-{
- RAMBlock *block, *next_block;
- ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
-
- assert(size != 0); /* it would hand out same offset multiple times */
-
- if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
- return 0;
- }
-
- RAMBLOCK_FOREACH(block) {
- ram_addr_t candidate, next = RAM_ADDR_MAX;
-
- /* Align blocks to start on a 'long' in the bitmap
- * which makes the bitmap sync'ing take the fast path.
- */
- candidate = block->offset + block->max_length;
- candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
-
- /* Search for the closest following block
- * and find the gap.
- */
- RAMBLOCK_FOREACH(next_block) {
- if (next_block->offset >= candidate) {
- next = MIN(next, next_block->offset);
- }
- }
-
- /* If it fits remember our place and remember the size
- * of gap, but keep going so that we might find a smaller
- * gap to fill so avoiding fragmentation.
- */
- if (next - candidate >= size && next - candidate < mingap) {
- offset = candidate;
- mingap = next - candidate;
- }
-
- trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
- }
-
- if (offset == RAM_ADDR_MAX) {
- fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
- (uint64_t)size);
- abort();
- }
-
- trace_find_ram_offset(size, offset);
-
- return offset;
-}
-
-static unsigned long last_ram_page(void)
-{
- RAMBlock *block;
- ram_addr_t last = 0;
-
- RCU_READ_LOCK_GUARD();
- RAMBLOCK_FOREACH(block) {
- last = MAX(last, block->offset + block->max_length);
- }
- return last >> TARGET_PAGE_BITS;
-}
-
-static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
-{
- int ret;
-
- /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
- if (!machine_dump_guest_core(current_machine)) {
- ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
- if (ret) {
- perror("qemu_madvise");
- fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
- "but dump_guest_core=off specified\n");
- }
- }
-}
-
-const char *qemu_ram_get_idstr(RAMBlock *rb)
-{
- return rb->idstr;
-}
-
-void *qemu_ram_get_host_addr(RAMBlock *rb)
-{
- return rb->host;
-}
-
-ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
-{
- return rb->offset;
-}
-
-ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
-{
- return rb->used_length;
-}
-
-bool qemu_ram_is_shared(RAMBlock *rb)
-{
- return rb->flags & RAM_SHARED;
-}
-
-/* Note: Only set at the start of postcopy */
-bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
-{
- return rb->flags & RAM_UF_ZEROPAGE;
-}
-
-void qemu_ram_set_uf_zeroable(RAMBlock *rb)
-{
- rb->flags |= RAM_UF_ZEROPAGE;
-}
-
-bool qemu_ram_is_migratable(RAMBlock *rb)
-{
- return rb->flags & RAM_MIGRATABLE;
-}
-
-void qemu_ram_set_migratable(RAMBlock *rb)
-{
- rb->flags |= RAM_MIGRATABLE;
-}
-
-void qemu_ram_unset_migratable(RAMBlock *rb)
-{
- rb->flags &= ~RAM_MIGRATABLE;
-}
-
-/* Called with iothread lock held. */
-void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
-{
- RAMBlock *block;
-
- assert(new_block);
- assert(!new_block->idstr[0]);
-
- if (dev) {
- char *id = qdev_get_dev_path(dev);
- if (id) {
- snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
- g_free(id);
- }
- }
- pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
-
- RCU_READ_LOCK_GUARD();
- RAMBLOCK_FOREACH(block) {
- if (block != new_block &&
- !strcmp(block->idstr, new_block->idstr)) {
- fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
- new_block->idstr);
- abort();
- }
- }
-}
-
-/* Called with iothread lock held. */
-void qemu_ram_unset_idstr(RAMBlock *block)
-{
- /* FIXME: arch_init.c assumes that this is not called throughout
- * migration. Ignore the problem since hot-unplug during migration
- * does not work anyway.
- */
- if (block) {
- memset(block->idstr, 0, sizeof(block->idstr));
- }
-}
-
-size_t qemu_ram_pagesize(RAMBlock *rb)
-{
- return rb->page_size;
-}
-
-/* Returns the largest size of page in use */
-size_t qemu_ram_pagesize_largest(void)
-{
- RAMBlock *block;
- size_t largest = 0;
-
- RAMBLOCK_FOREACH(block) {
- largest = MAX(largest, qemu_ram_pagesize(block));
- }
-
- return largest;
-}
-
-static int memory_try_enable_merging(void *addr, size_t len)
-{
- if (!machine_mem_merge(current_machine)) {
- /* disabled by the user */
- return 0;
- }
-
- return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
-}
-
-/* Only legal before guest might have detected the memory size: e.g. on
- * incoming migration, or right after reset.
- *
- * As memory core doesn't know how is memory accessed, it is up to
- * resize callback to update device state and/or add assertions to detect
- * misuse, if necessary.
- */
-int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
-{
- const ram_addr_t unaligned_size = newsize;
-
- assert(block);
-
- newsize = HOST_PAGE_ALIGN(newsize);
-
- if (block->used_length == newsize) {
- /*
- * We don't have to resize the ram block (which only knows aligned
- * sizes), however, we have to notify if the unaligned size changed.
- */
- if (unaligned_size != memory_region_size(block->mr)) {
- memory_region_set_size(block->mr, unaligned_size);
- if (block->resized) {
- block->resized(block->idstr, unaligned_size, block->host);
- }
- }
- return 0;
- }
-
- if (!(block->flags & RAM_RESIZEABLE)) {
- error_setg_errno(errp, EINVAL,
- "Length mismatch: %s: 0x" RAM_ADDR_FMT
- " in != 0x" RAM_ADDR_FMT, block->idstr,
- newsize, block->used_length);
- return -EINVAL;
- }
-
- if (block->max_length < newsize) {
- error_setg_errno(errp, EINVAL,
- "Length too large: %s: 0x" RAM_ADDR_FMT
- " > 0x" RAM_ADDR_FMT, block->idstr,
- newsize, block->max_length);
- return -EINVAL;
- }
-
- cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
- block->used_length = newsize;
- cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
- DIRTY_CLIENTS_ALL);
- memory_region_set_size(block->mr, unaligned_size);
- if (block->resized) {
- block->resized(block->idstr, unaligned_size, block->host);
- }
- return 0;
-}
-
-/*
- * Trigger sync on the given ram block for range [start, start + length]
- * with the backing store if one is available.
- * Otherwise no-op.
- * @Note: this is supposed to be a synchronous op.
- */
-void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
-{
- /* The requested range should fit in within the block range */
- g_assert((start + length) <= block->used_length);
-
-#ifdef CONFIG_LIBPMEM
- /* The lack of support for pmem should not block the sync */
- if (ramblock_is_pmem(block)) {
- void *addr = ramblock_ptr(block, start);
- pmem_persist(addr, length);
- return;
- }
-#endif
- if (block->fd >= 0) {
- /**
- * Case there is no support for PMEM or the memory has not been
- * specified as persistent (or is not one) - use the msync.
- * Less optimal but still achieves the same goal
- */
- void *addr = ramblock_ptr(block, start);
- if (qemu_msync(addr, length, block->fd)) {
- warn_report("%s: failed to sync memory range: start: "
- RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
- __func__, start, length);
- }
- }
-}
-
-/* Called with ram_list.mutex held */
-static void dirty_memory_extend(ram_addr_t old_ram_size,
- ram_addr_t new_ram_size)
-{
- ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
- DIRTY_MEMORY_BLOCK_SIZE);
- ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
- DIRTY_MEMORY_BLOCK_SIZE);
- int i;
-
- /* Only need to extend if block count increased */
- if (new_num_blocks <= old_num_blocks) {
- return;
- }
-
- for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
- DirtyMemoryBlocks *old_blocks;
- DirtyMemoryBlocks *new_blocks;
- int j;
-
- old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
- new_blocks = g_malloc(sizeof(*new_blocks) +
- sizeof(new_blocks->blocks[0]) * new_num_blocks);
-
- if (old_num_blocks) {
- memcpy(new_blocks->blocks, old_blocks->blocks,
- old_num_blocks * sizeof(old_blocks->blocks[0]));
- }
-
- for (j = old_num_blocks; j < new_num_blocks; j++) {
- new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
- }
-
- qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
-
- if (old_blocks) {
- g_free_rcu(old_blocks, rcu);
- }
- }
-}
-
-static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
-{
- RAMBlock *block;
- RAMBlock *last_block = NULL;
- ram_addr_t old_ram_size, new_ram_size;
- Error *err = NULL;
-
- old_ram_size = last_ram_page();
-
- qemu_mutex_lock_ramlist();
- new_block->offset = find_ram_offset(new_block->max_length);
-
- if (!new_block->host) {
- if (xen_enabled()) {
- xen_ram_alloc(new_block->offset, new_block->max_length,
- new_block->mr, &err);
- if (err) {
- error_propagate(errp, err);
- qemu_mutex_unlock_ramlist();
- return;
- }
- } else {
- new_block->host = phys_mem_alloc(new_block->max_length,
- &new_block->mr->align, shared);
- if (!new_block->host) {
- error_setg_errno(errp, errno,
- "cannot set up guest memory '%s'",
- memory_region_name(new_block->mr));
- qemu_mutex_unlock_ramlist();
- return;
- }
- memory_try_enable_merging(new_block->host, new_block->max_length);
- }
- }
-
- new_ram_size = MAX(old_ram_size,
- (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
- if (new_ram_size > old_ram_size) {
- dirty_memory_extend(old_ram_size, new_ram_size);
- }
- /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
- * QLIST (which has an RCU-friendly variant) does not have insertion at
- * tail, so save the last element in last_block.
- */
- RAMBLOCK_FOREACH(block) {
- last_block = block;
- if (block->max_length < new_block->max_length) {
- break;
- }
- }
- if (block) {
- QLIST_INSERT_BEFORE_RCU(block, new_block, next);
- } else if (last_block) {
- QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
- } else { /* list is empty */
- QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
- }
- ram_list.mru_block = NULL;
-
- /* Write list before version */
- smp_wmb();
- ram_list.version++;
- qemu_mutex_unlock_ramlist();
-
- cpu_physical_memory_set_dirty_range(new_block->offset,
- new_block->used_length,
- DIRTY_CLIENTS_ALL);
-
- if (new_block->host) {
- qemu_ram_setup_dump(new_block->host, new_block->max_length);
- qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
- /*
- * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
- * Configure it unless the machine is a qtest server, in which case
- * KVM is not used and it may be forked (eg for fuzzing purposes).
- */
- if (!qtest_enabled()) {
- qemu_madvise(new_block->host, new_block->max_length,
- QEMU_MADV_DONTFORK);
- }
- ram_block_notify_add(new_block->host, new_block->max_length);
- }
-}
-
-#ifdef CONFIG_POSIX
-RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
- uint32_t ram_flags, int fd,
- Error **errp)
-{
- RAMBlock *new_block;
- Error *local_err = NULL;
- int64_t file_size, file_align;
-
- /* Just support these ram flags by now. */
- assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
-
- if (xen_enabled()) {
- error_setg(errp, "-mem-path not supported with Xen");
- return NULL;
- }
-
- if (kvm_enabled() && !kvm_has_sync_mmu()) {
- error_setg(errp,
- "host lacks kvm mmu notifiers, -mem-path unsupported");
- return NULL;
- }
-
- if (phys_mem_alloc != qemu_anon_ram_alloc) {
- /*
- * file_ram_alloc() needs to allocate just like
- * phys_mem_alloc, but we haven't bothered to provide
- * a hook there.
- */
- error_setg(errp,
- "-mem-path not supported with this accelerator");
- return NULL;
- }
-
- size = HOST_PAGE_ALIGN(size);
- file_size = get_file_size(fd);
- if (file_size > 0 && file_size < size) {
- error_setg(errp, "backing store size 0x%" PRIx64
- " does not match 'size' option 0x" RAM_ADDR_FMT,
- file_size, size);
- return NULL;
- }
-
- file_align = get_file_align(fd);
- if (file_align > 0 && mr && file_align > mr->align) {
- error_setg(errp, "backing store align 0x%" PRIx64
- " is larger than 'align' option 0x%" PRIx64,
- file_align, mr->align);
- return NULL;
- }
-
- new_block = g_malloc0(sizeof(*new_block));
- new_block->mr = mr;
- new_block->used_length = size;
- new_block->max_length = size;
- new_block->flags = ram_flags;
- new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
- if (!new_block->host) {
- g_free(new_block);
- return NULL;
- }
-
- ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
- if (local_err) {
- g_free(new_block);
- error_propagate(errp, local_err);
- return NULL;
- }
- return new_block;
-
-}
-
-
-RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
- uint32_t ram_flags, const char *mem_path,
- Error **errp)
-{
- int fd;
- bool created;
- RAMBlock *block;
-
- fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
- if (fd < 0) {
- return NULL;
- }
-
- block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
- if (!block) {
- if (created) {
- unlink(mem_path);
- }
- close(fd);
- return NULL;
- }
-
- return block;
-}
-#endif
-
-static
-RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
- void (*resized)(const char*,
- uint64_t length,
- void *host),
- void *host, bool resizeable, bool share,
- MemoryRegion *mr, Error **errp)
-{
- RAMBlock *new_block;
- Error *local_err = NULL;
-
- size = HOST_PAGE_ALIGN(size);
- max_size = HOST_PAGE_ALIGN(max_size);
- new_block = g_malloc0(sizeof(*new_block));
- new_block->mr = mr;
- new_block->resized = resized;
- new_block->used_length = size;
- new_block->max_length = max_size;
- assert(max_size >= size);
- new_block->fd = -1;
- new_block->page_size = qemu_real_host_page_size;
- new_block->host = host;
- if (host) {
- new_block->flags |= RAM_PREALLOC;
- }
- if (resizeable) {
- new_block->flags |= RAM_RESIZEABLE;
- }
- ram_block_add(new_block, &local_err, share);
- if (local_err) {
- g_free(new_block);
- error_propagate(errp, local_err);
- return NULL;
- }
- return new_block;
-}
-
-RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
- MemoryRegion *mr, Error **errp)
-{
- return qemu_ram_alloc_internal(size, size, NULL, host, false,
- false, mr, errp);
-}
-
-RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
- MemoryRegion *mr, Error **errp)
-{
- return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
- share, mr, errp);
-}
-
-RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
- void (*resized)(const char*,
- uint64_t length,
- void *host),
- MemoryRegion *mr, Error **errp)
-{
- return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
- false, mr, errp);
-}
-
-static void reclaim_ramblock(RAMBlock *block)
-{
- if (block->flags & RAM_PREALLOC) {
- ;
- } else if (xen_enabled()) {
- xen_invalidate_map_cache_entry(block->host);
-#ifndef _WIN32
- } else if (block->fd >= 0) {
- qemu_ram_munmap(block->fd, block->host, block->max_length);
- close(block->fd);
-#endif
- } else {
- qemu_anon_ram_free(block->host, block->max_length);
- }
- g_free(block);
-}
-
-void qemu_ram_free(RAMBlock *block)
-{
- if (!block) {
- return;
- }
-
- if (block->host) {
- ram_block_notify_remove(block->host, block->max_length);
- }
-
- qemu_mutex_lock_ramlist();
- QLIST_REMOVE_RCU(block, next);
- ram_list.mru_block = NULL;
- /* Write list before version */
- smp_wmb();
- ram_list.version++;
- call_rcu(block, reclaim_ramblock, rcu);
- qemu_mutex_unlock_ramlist();
-}
-
-#ifndef _WIN32
-void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
-{
- RAMBlock *block;
- ram_addr_t offset;
- int flags;
- void *area, *vaddr;
-
- RAMBLOCK_FOREACH(block) {
- offset = addr - block->offset;
- if (offset < block->max_length) {
- vaddr = ramblock_ptr(block, offset);
- if (block->flags & RAM_PREALLOC) {
- ;
- } else if (xen_enabled()) {
- abort();
- } else {
- flags = MAP_FIXED;
- if (block->fd >= 0) {
- flags |= (block->flags & RAM_SHARED ?
- MAP_SHARED : MAP_PRIVATE);
- area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
- flags, block->fd, offset);
- } else {
- /*
- * Remap needs to match alloc. Accelerators that
- * set phys_mem_alloc never remap. If they did,
- * we'd need a remap hook here.
- */
- assert(phys_mem_alloc == qemu_anon_ram_alloc);
-
- flags |= MAP_PRIVATE | MAP_ANONYMOUS;
- area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
- flags, -1, 0);
- }
- if (area != vaddr) {
- error_report("Could not remap addr: "
- RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
- length, addr);
- exit(1);
- }
- memory_try_enable_merging(vaddr, length);
- qemu_ram_setup_dump(vaddr, length);
- }
- }
- }
-}
-#endif /* !_WIN32 */
-
-/* Return a host pointer to ram allocated with qemu_ram_alloc.
- * This should not be used for general purpose DMA. Use address_space_map
- * or address_space_rw instead. For local memory (e.g. video ram) that the
- * device owns, use memory_region_get_ram_ptr.
- *
- * Called within RCU critical section.
- */
-void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
-{
- RAMBlock *block = ram_block;
-
- if (block == NULL) {
- block = qemu_get_ram_block(addr);
- addr -= block->offset;
- }
-
- if (xen_enabled() && block->host == NULL) {
- /* We need to check if the requested address is in the RAM
- * because we don't want to map the entire memory in QEMU.
- * In that case just map until the end of the page.
- */
- if (block->offset == 0) {
- return xen_map_cache(addr, 0, 0, false);
- }
-
- block->host = xen_map_cache(block->offset, block->max_length, 1, false);
- }
- return ramblock_ptr(block, addr);
-}
-
-/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
- * but takes a size argument.
- *
- * Called within RCU critical section.
- */
-static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
- hwaddr *size, bool lock)
-{
- RAMBlock *block = ram_block;
- if (*size == 0) {
- return NULL;
- }
-
- if (block == NULL) {
- block = qemu_get_ram_block(addr);
- addr -= block->offset;
- }
- *size = MIN(*size, block->max_length - addr);
-
- if (xen_enabled() && block->host == NULL) {
- /* We need to check if the requested address is in the RAM
- * because we don't want to map the entire memory in QEMU.
- * In that case just map the requested area.
- */
- if (block->offset == 0) {
- return xen_map_cache(addr, *size, lock, lock);
- }
-
- block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
- }
-
- return ramblock_ptr(block, addr);
-}
-
-/* Return the offset of a hostpointer within a ramblock */
-ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
-{
- ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
- assert((uintptr_t)host >= (uintptr_t)rb->host);
- assert(res < rb->max_length);
-
- return res;
-}
-
-/*
- * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
- * in that RAMBlock.
- *
- * ptr: Host pointer to look up
- * round_offset: If true round the result offset down to a page boundary
- * *ram_addr: set to result ram_addr
- * *offset: set to result offset within the RAMBlock
- *
- * Returns: RAMBlock (or NULL if not found)
- *
- * By the time this function returns, the returned pointer is not protected
- * by RCU anymore. If the caller is not within an RCU critical section and
- * does not hold the iothread lock, it must have other means of protecting the
- * pointer, such as a reference to the region that includes the incoming
- * ram_addr_t.
- */
-RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
- ram_addr_t *offset)
-{
- RAMBlock *block;
- uint8_t *host = ptr;
-
- if (xen_enabled()) {
- ram_addr_t ram_addr;
- RCU_READ_LOCK_GUARD();
- ram_addr = xen_ram_addr_from_mapcache(ptr);
- block = qemu_get_ram_block(ram_addr);
- if (block) {
- *offset = ram_addr - block->offset;
- }
- return block;
- }
-
- RCU_READ_LOCK_GUARD();
- block = qatomic_rcu_read(&ram_list.mru_block);
- if (block && block->host && host - block->host < block->max_length) {
- goto found;
- }
-
- RAMBLOCK_FOREACH(block) {
- /* This case append when the block is not mapped. */
- if (block->host == NULL) {
- continue;
- }
- if (host - block->host < block->max_length) {
- goto found;
- }
- }
-
- return NULL;
-
-found:
- *offset = (host - block->host);
- if (round_offset) {
- *offset &= TARGET_PAGE_MASK;
- }
- return block;
-}
-
-/*
- * Finds the named RAMBlock
- *
- * name: The name of RAMBlock to find
- *
- * Returns: RAMBlock (or NULL if not found)
- */
-RAMBlock *qemu_ram_block_by_name(const char *name)
-{
- RAMBlock *block;
-
- RAMBLOCK_FOREACH(block) {
- if (!strcmp(name, block->idstr)) {
- return block;
- }
- }
-
- return NULL;
-}
-
-/* Some of the softmmu routines need to translate from a host pointer
- (typically a TLB entry) back to a ram offset. */
-ram_addr_t qemu_ram_addr_from_host(void *ptr)
-{
- RAMBlock *block;
- ram_addr_t offset;
-
- block = qemu_ram_block_from_host(ptr, false, &offset);
- if (!block) {
- return RAM_ADDR_INVALID;
- }
-
- return block->offset + offset;
-}
-
-/* Generate a debug exception if a watchpoint has been hit. */
-void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
- MemTxAttrs attrs, int flags, uintptr_t ra)
-{
- CPUClass *cc = CPU_GET_CLASS(cpu);
- CPUWatchpoint *wp;
-
- assert(tcg_enabled());
- if (cpu->watchpoint_hit) {
- /*
- * We re-entered the check after replacing the TB.
- * Now raise the debug interrupt so that it will
- * trigger after the current instruction.
- */
- qemu_mutex_lock_iothread();
- cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
- qemu_mutex_unlock_iothread();
- return;
- }
-
- addr = cc->adjust_watchpoint_address(cpu, addr, len);
- QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
- if (watchpoint_address_matches(wp, addr, len)
- && (wp->flags & flags)) {
- if (replay_running_debug()) {
- /*
- * Don't process the watchpoints when we are
- * in a reverse debugging operation.
- */
- replay_breakpoint();
- return;
- }
- if (flags == BP_MEM_READ) {
- wp->flags |= BP_WATCHPOINT_HIT_READ;
- } else {
- wp->flags |= BP_WATCHPOINT_HIT_WRITE;
- }
- wp->hitaddr = MAX(addr, wp->vaddr);
- wp->hitattrs = attrs;
- if (!cpu->watchpoint_hit) {
- if (wp->flags & BP_CPU &&
- !cc->debug_check_watchpoint(cpu, wp)) {
- wp->flags &= ~BP_WATCHPOINT_HIT;
- continue;
- }
- cpu->watchpoint_hit = wp;
-
- mmap_lock();
- tb_check_watchpoint(cpu, ra);
- if (wp->flags & BP_STOP_BEFORE_ACCESS) {
- cpu->exception_index = EXCP_DEBUG;
- mmap_unlock();
- cpu_loop_exit_restore(cpu, ra);
- } else {
- /* Force execution of one insn next time. */
- cpu->cflags_next_tb = 1 | curr_cflags();
- mmap_unlock();
- if (ra) {
- cpu_restore_state(cpu, ra, true);
- }
- cpu_loop_exit_noexc(cpu);
- }
- }
- } else {
- wp->flags &= ~BP_WATCHPOINT_HIT;
- }
- }
-}
-
-static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
- MemTxAttrs attrs, void *buf, hwaddr len);
-static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
- const void *buf, hwaddr len);
-static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
- bool is_write, MemTxAttrs attrs);
-
-static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
- unsigned len, MemTxAttrs attrs)
-{
- subpage_t *subpage = opaque;
- uint8_t buf[8];
- MemTxResult res;
-
-#if defined(DEBUG_SUBPAGE)
- printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
- subpage, len, addr);
-#endif
- res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
- if (res) {
- return res;
- }
- *data = ldn_p(buf, len);
- return MEMTX_OK;
-}
-
-static MemTxResult subpage_write(void *opaque, hwaddr addr,
- uint64_t value, unsigned len, MemTxAttrs attrs)
-{
- subpage_t *subpage = opaque;
- uint8_t buf[8];
-
-#if defined(DEBUG_SUBPAGE)
- printf("%s: subpage %p len %u addr " TARGET_FMT_plx
- " value %"PRIx64"\n",
- __func__, subpage, len, addr, value);
-#endif
- stn_p(buf, len, value);
- return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
-}
-
-static bool subpage_accepts(void *opaque, hwaddr addr,
- unsigned len, bool is_write,
- MemTxAttrs attrs)
-{
- subpage_t *subpage = opaque;
-#if defined(DEBUG_SUBPAGE)
- printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
- __func__, subpage, is_write ? 'w' : 'r', len, addr);
-#endif
-
- return flatview_access_valid(subpage->fv, addr + subpage->base,
- len, is_write, attrs);
-}
-
-static const MemoryRegionOps subpage_ops = {
- .read_with_attrs = subpage_read,
- .write_with_attrs = subpage_write,
- .impl.min_access_size = 1,
- .impl.max_access_size = 8,
- .valid.min_access_size = 1,
- .valid.max_access_size = 8,
- .valid.accepts = subpage_accepts,
- .endianness = DEVICE_NATIVE_ENDIAN,
-};
-
-static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
- uint16_t section)
-{
- int idx, eidx;
-
- if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
- return -1;
- idx = SUBPAGE_IDX(start);
- eidx = SUBPAGE_IDX(end);
-#if defined(DEBUG_SUBPAGE)
- printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
- __func__, mmio, start, end, idx, eidx, section);
-#endif
- for (; idx <= eidx; idx++) {
- mmio->sub_section[idx] = section;
- }
-
- return 0;
-}
-
-static subpage_t *subpage_init(FlatView *fv, hwaddr base)
-{
- subpage_t *mmio;
-
- /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
- mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
- mmio->fv = fv;
- mmio->base = base;
- memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
- NULL, TARGET_PAGE_SIZE);
- mmio->iomem.subpage = true;
-#if defined(DEBUG_SUBPAGE)
- printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
- mmio, base, TARGET_PAGE_SIZE);
-#endif
-
- return mmio;
-}
-
-static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
-{
- assert(fv);
- MemoryRegionSection section = {
- .fv = fv,
- .mr = mr,
- .offset_within_address_space = 0,
- .offset_within_region = 0,
- .size = int128_2_64(),
- };
-
- return phys_section_add(map, &section);
-}
-
-MemoryRegionSection *iotlb_to_section(CPUState *cpu,
- hwaddr index, MemTxAttrs attrs)
-{
- int asidx = cpu_asidx_from_attrs(cpu, attrs);
- CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
- AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
- MemoryRegionSection *sections = d->map.sections;
-
- return &sections[index & ~TARGET_PAGE_MASK];
-}
-
-static void io_mem_init(void)
-{
- memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
- NULL, UINT64_MAX);
-}
-
-AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
-{
- AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
- uint16_t n;
-
- n = dummy_section(&d->map, fv, &io_mem_unassigned);
- assert(n == PHYS_SECTION_UNASSIGNED);
-
- d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
-
- return d;
-}
-
-void address_space_dispatch_free(AddressSpaceDispatch *d)
-{
- phys_sections_free(&d->map);
- g_free(d);
-}
-
-static void do_nothing(CPUState *cpu, run_on_cpu_data d)
-{
-}
-
-static void tcg_log_global_after_sync(MemoryListener *listener)
-{
- CPUAddressSpace *cpuas;
-
- /* Wait for the CPU to end the current TB. This avoids the following
- * incorrect race:
- *
- * vCPU migration
- * ---------------------- -------------------------
- * TLB check -> slow path
- * notdirty_mem_write
- * write to RAM
- * mark dirty
- * clear dirty flag
- * TLB check -> fast path
- * read memory
- * write to RAM
- *
- * by pushing the migration thread's memory read after the vCPU thread has
- * written the memory.
- */
- if (replay_mode == REPLAY_MODE_NONE) {
- /*
- * VGA can make calls to this function while updating the screen.
- * In record/replay mode this causes a deadlock, because
- * run_on_cpu waits for rr mutex. Therefore no races are possible
- * in this case and no need for making run_on_cpu when
- * record/replay is not enabled.
- */
- cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
- run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
- }
-}
-
-static void tcg_commit(MemoryListener *listener)
-{
- CPUAddressSpace *cpuas;
- AddressSpaceDispatch *d;
-
- assert(tcg_enabled());
- /* since each CPU stores ram addresses in its TLB cache, we must
- reset the modified entries */
- cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
- cpu_reloading_memory_map();
- /* The CPU and TLB are protected by the iothread lock.
- * We reload the dispatch pointer now because cpu_reloading_memory_map()
- * may have split the RCU critical section.
- */
- d = address_space_to_dispatch(cpuas->as);
- qatomic_rcu_set(&cpuas->memory_dispatch, d);
- tlb_flush(cpuas->cpu);
-}
-
-static void memory_map_init(void)
-{
- system_memory = g_malloc(sizeof(*system_memory));
-
- memory_region_init(system_memory, NULL, "system", UINT64_MAX);
- address_space_init(&address_space_memory, system_memory, "memory");
-
- system_io = g_malloc(sizeof(*system_io));
- memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
- 65536);
- address_space_init(&address_space_io, system_io, "I/O");
-}
-
-MemoryRegion *get_system_memory(void)
-{
- return system_memory;
-}
-
-MemoryRegion *get_system_io(void)
-{
- return system_io;
-}
-
-#endif /* !defined(CONFIG_USER_ONLY) */
-
-/* physical memory access (slow version, mainly for debug) */
-#if defined(CONFIG_USER_ONLY)
-int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
- void *ptr, target_ulong len, bool is_write)
-{
- int flags;
- target_ulong l, page;
- void * p;
- uint8_t *buf = ptr;
-
- while (len > 0) {
- page = addr & TARGET_PAGE_MASK;
- l = (page + TARGET_PAGE_SIZE) - addr;
- if (l > len)
- l = len;
- flags = page_get_flags(page);
- if (!(flags & PAGE_VALID))
- return -1;
- if (is_write) {
- if (!(flags & PAGE_WRITE))
- return -1;
- /* XXX: this code should not depend on lock_user */
- if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
- return -1;
- memcpy(p, buf, l);
- unlock_user(p, addr, l);
- } else {
- if (!(flags & PAGE_READ))
- return -1;
- /* XXX: this code should not depend on lock_user */
- if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
- return -1;
- memcpy(buf, p, l);
- unlock_user(p, addr, 0);
- }
- len -= l;
- buf += l;
- addr += l;
- }
- return 0;
-}
-
-#else
-
-static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
- hwaddr length)
-{
- uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
- addr += memory_region_get_ram_addr(mr);
-
- /* No early return if dirty_log_mask is or becomes 0, because
- * cpu_physical_memory_set_dirty_range will still call
- * xen_modified_memory.
- */
- if (dirty_log_mask) {
- dirty_log_mask =
- cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
- }
- if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
- assert(tcg_enabled());
- tb_invalidate_phys_range(addr, addr + length);
- dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
- }
- cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
-}
-
-void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
-{
- /*
- * In principle this function would work on other memory region types too,
- * but the ROM device use case is the only one where this operation is
- * necessary. Other memory regions should use the
- * address_space_read/write() APIs.
- */
- assert(memory_region_is_romd(mr));
-
- invalidate_and_set_dirty(mr, addr, size);
-}
-
-static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
-{
- unsigned access_size_max = mr->ops->valid.max_access_size;
-
- /* Regions are assumed to support 1-4 byte accesses unless
- otherwise specified. */
- if (access_size_max == 0) {
- access_size_max = 4;
- }
-
- /* Bound the maximum access by the alignment of the address. */
- if (!mr->ops->impl.unaligned) {
- unsigned align_size_max = addr & -addr;
- if (align_size_max != 0 && align_size_max < access_size_max) {
- access_size_max = align_size_max;
- }
- }
-
- /* Don't attempt accesses larger than the maximum. */
- if (l > access_size_max) {
- l = access_size_max;
- }
- l = pow2floor(l);
-
- return l;
-}
-
-static bool prepare_mmio_access(MemoryRegion *mr)
-{
- bool unlocked = !qemu_mutex_iothread_locked();
- bool release_lock = false;
-
- if (unlocked) {
- qemu_mutex_lock_iothread();
- unlocked = false;
- release_lock = true;
- }
- if (mr->flush_coalesced_mmio) {
- if (unlocked) {
- qemu_mutex_lock_iothread();
- }
- qemu_flush_coalesced_mmio_buffer();
- if (unlocked) {
- qemu_mutex_unlock_iothread();
- }
- }
-
- return release_lock;
-}
-
-/* Called within RCU critical section. */
-static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
- MemTxAttrs attrs,
- const void *ptr,
- hwaddr len, hwaddr addr1,
- hwaddr l, MemoryRegion *mr)
-{
- uint8_t *ram_ptr;
- uint64_t val;
- MemTxResult result = MEMTX_OK;
- bool release_lock = false;
- const uint8_t *buf = ptr;
-
- for (;;) {
- if (!memory_access_is_direct(mr, true)) {
- release_lock |= prepare_mmio_access(mr);
- l = memory_access_size(mr, l, addr1);
- /* XXX: could force current_cpu to NULL to avoid
- potential bugs */
- val = ldn_he_p(buf, l);
- result |= memory_region_dispatch_write(mr, addr1, val,
- size_memop(l), attrs);
- } else {
- /* RAM case */
- ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
- memcpy(ram_ptr, buf, l);
- invalidate_and_set_dirty(mr, addr1, l);
- }
-
- if (release_lock) {
- qemu_mutex_unlock_iothread();
- release_lock = false;
- }
-
- len -= l;
- buf += l;
- addr += l;
-
- if (!len) {
- break;
- }
-
- l = len;
- mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
- }
-
- return result;
-}
-
-/* Called from RCU critical section. */
-static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
- const void *buf, hwaddr len)
-{
- hwaddr l;
- hwaddr addr1;
- MemoryRegion *mr;
- MemTxResult result = MEMTX_OK;
-
- l = len;
- mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
- result = flatview_write_continue(fv, addr, attrs, buf, len,
- addr1, l, mr);
-
- return result;
-}
-
-/* Called within RCU critical section. */
-MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
- MemTxAttrs attrs, void *ptr,
- hwaddr len, hwaddr addr1, hwaddr l,
- MemoryRegion *mr)
-{
- uint8_t *ram_ptr;
- uint64_t val;
- MemTxResult result = MEMTX_OK;
- bool release_lock = false;
- uint8_t *buf = ptr;
-
- for (;;) {
- if (!memory_access_is_direct(mr, false)) {
- /* I/O case */
- release_lock |= prepare_mmio_access(mr);
- l = memory_access_size(mr, l, addr1);
- result |= memory_region_dispatch_read(mr, addr1, &val,
- size_memop(l), attrs);
- stn_he_p(buf, l, val);
- } else {
- /* RAM case */
- ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
- memcpy(buf, ram_ptr, l);
- }
-
- if (release_lock) {
- qemu_mutex_unlock_iothread();
- release_lock = false;
- }
-
- len -= l;
- buf += l;
- addr += l;
-
- if (!len) {
- break;
- }
-
- l = len;
- mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
- }
-
- return result;
-}
-
-/* Called from RCU critical section. */
-static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
- MemTxAttrs attrs, void *buf, hwaddr len)
-{
- hwaddr l;
- hwaddr addr1;
- MemoryRegion *mr;
-
- l = len;
- mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
- return flatview_read_continue(fv, addr, attrs, buf, len,
- addr1, l, mr);
-}
-
-MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
- MemTxAttrs attrs, void *buf, hwaddr len)
-{
- MemTxResult result = MEMTX_OK;
- FlatView *fv;
-
- if (len > 0) {
- RCU_READ_LOCK_GUARD();
- fv = address_space_to_flatview(as);
- result = flatview_read(fv, addr, attrs, buf, len);
- }
-
- return result;
-}
-
-MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
- MemTxAttrs attrs,
- const void *buf, hwaddr len)
-{
- MemTxResult result = MEMTX_OK;
- FlatView *fv;
-
- if (len > 0) {
- RCU_READ_LOCK_GUARD();
- fv = address_space_to_flatview(as);
- result = flatview_write(fv, addr, attrs, buf, len);
- }
-
- return result;
-}
-
-MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
- void *buf, hwaddr len, bool is_write)
-{
- if (is_write) {
- return address_space_write(as, addr, attrs, buf, len);
- } else {
- return address_space_read_full(as, addr, attrs, buf, len);
- }
-}
-
-void cpu_physical_memory_rw(hwaddr addr, void *buf,
- hwaddr len, bool is_write)
-{
- address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
- buf, len, is_write);
-}
-
-enum write_rom_type {
- WRITE_DATA,
- FLUSH_CACHE,
-};
-
-static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
- hwaddr addr,
- MemTxAttrs attrs,
- const void *ptr,
- hwaddr len,
- enum write_rom_type type)
-{
- hwaddr l;
- uint8_t *ram_ptr;
- hwaddr addr1;
- MemoryRegion *mr;
- const uint8_t *buf = ptr;
-
- RCU_READ_LOCK_GUARD();
- while (len > 0) {
- l = len;
- mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
-
- if (!(memory_region_is_ram(mr) ||
- memory_region_is_romd(mr))) {
- l = memory_access_size(mr, l, addr1);
- } else {
- /* ROM/RAM case */
- ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
- switch (type) {
- case WRITE_DATA:
- memcpy(ram_ptr, buf, l);
- invalidate_and_set_dirty(mr, addr1, l);
- break;
- case FLUSH_CACHE:
- flush_icache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr + l);
- break;
- }
- }
- len -= l;
- buf += l;
- addr += l;
- }
- return MEMTX_OK;
-}
-
-/* used for ROM loading : can write in RAM and ROM */
-MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
- MemTxAttrs attrs,
- const void *buf, hwaddr len)
-{
- return address_space_write_rom_internal(as, addr, attrs,
- buf, len, WRITE_DATA);
-}
-
-void cpu_flush_icache_range(hwaddr start, hwaddr len)
-{
- /*
- * This function should do the same thing as an icache flush that was
- * triggered from within the guest. For TCG we are always cache coherent,
- * so there is no need to flush anything. For KVM / Xen we need to flush
- * the host's instruction cache at least.
- */
- if (tcg_enabled()) {
- return;
- }
-
- address_space_write_rom_internal(&address_space_memory,
- start, MEMTXATTRS_UNSPECIFIED,
- NULL, len, FLUSH_CACHE);
-}
-
-typedef struct {
- MemoryRegion *mr;
- void *buffer;
- hwaddr addr;
- hwaddr len;
- bool in_use;
-} BounceBuffer;
-
-static BounceBuffer bounce;
-
-typedef struct MapClient {
- QEMUBH *bh;
- QLIST_ENTRY(MapClient) link;
-} MapClient;
-
-QemuMutex map_client_list_lock;
-static QLIST_HEAD(, MapClient) map_client_list
- = QLIST_HEAD_INITIALIZER(map_client_list);
-
-static void cpu_unregister_map_client_do(MapClient *client)
-{
- QLIST_REMOVE(client, link);
- g_free(client);
-}
-
-static void cpu_notify_map_clients_locked(void)
-{
- MapClient *client;
-
- while (!QLIST_EMPTY(&map_client_list)) {
- client = QLIST_FIRST(&map_client_list);
- qemu_bh_schedule(client->bh);
- cpu_unregister_map_client_do(client);
- }
-}
-
-void cpu_register_map_client(QEMUBH *bh)
-{
- MapClient *client = g_malloc(sizeof(*client));
-
- qemu_mutex_lock(&map_client_list_lock);
- client->bh = bh;
- QLIST_INSERT_HEAD(&map_client_list, client, link);
- if (!qatomic_read(&bounce.in_use)) {
- cpu_notify_map_clients_locked();
- }
- qemu_mutex_unlock(&map_client_list_lock);
-}
-
-void cpu_exec_init_all(void)
-{
- qemu_mutex_init(&ram_list.mutex);
- /* The data structures we set up here depend on knowing the page size,
- * so no more changes can be made after this point.
- * In an ideal world, nothing we did before we had finished the
- * machine setup would care about the target page size, and we could
- * do this much later, rather than requiring board models to state
- * up front what their requirements are.
- */
- finalize_target_page_bits();
- io_mem_init();
- memory_map_init();
- qemu_mutex_init(&map_client_list_lock);
-}
-
-void cpu_unregister_map_client(QEMUBH *bh)
-{
- MapClient *client;
-
- qemu_mutex_lock(&map_client_list_lock);
- QLIST_FOREACH(client, &map_client_list, link) {
- if (client->bh == bh) {
- cpu_unregister_map_client_do(client);
- break;
- }
- }
- qemu_mutex_unlock(&map_client_list_lock);
-}
-
-static void cpu_notify_map_clients(void)
-{
- qemu_mutex_lock(&map_client_list_lock);
- cpu_notify_map_clients_locked();
- qemu_mutex_unlock(&map_client_list_lock);
-}
-
-static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
- bool is_write, MemTxAttrs attrs)
-{
- MemoryRegion *mr;
- hwaddr l, xlat;
-
- while (len > 0) {
- l = len;
- mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
- if (!memory_access_is_direct(mr, is_write)) {
- l = memory_access_size(mr, l, addr);
- if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
- return false;
- }
- }
-
- len -= l;
- addr += l;
- }
- return true;
-}
-
-bool address_space_access_valid(AddressSpace *as, hwaddr addr,
- hwaddr len, bool is_write,
- MemTxAttrs attrs)
-{
- FlatView *fv;
- bool result;
-
- RCU_READ_LOCK_GUARD();
- fv = address_space_to_flatview(as);
- result = flatview_access_valid(fv, addr, len, is_write, attrs);
- return result;
-}
-
-static hwaddr
-flatview_extend_translation(FlatView *fv, hwaddr addr,
- hwaddr target_len,
- MemoryRegion *mr, hwaddr base, hwaddr len,
- bool is_write, MemTxAttrs attrs)
-{
- hwaddr done = 0;
- hwaddr xlat;
- MemoryRegion *this_mr;
-
- for (;;) {
- target_len -= len;
- addr += len;
- done += len;
- if (target_len == 0) {
- return done;
- }
-
- len = target_len;
- this_mr = flatview_translate(fv, addr, &xlat,
- &len, is_write, attrs);
- if (this_mr != mr || xlat != base + done) {
- return done;
- }
- }
-}
-
-/* Map a physical memory region into a host virtual address.
- * May map a subset of the requested range, given by and returned in *plen.
- * May return NULL if resources needed to perform the mapping are exhausted.
- * Use only for reads OR writes - not for read-modify-write operations.
- * Use cpu_register_map_client() to know when retrying the map operation is
- * likely to succeed.
- */
-void *address_space_map(AddressSpace *as,
- hwaddr addr,
- hwaddr *plen,
- bool is_write,
- MemTxAttrs attrs)
-{
- hwaddr len = *plen;
- hwaddr l, xlat;
- MemoryRegion *mr;
- void *ptr;
- FlatView *fv;
-
- if (len == 0) {
- return NULL;
- }
-
- l = len;
- RCU_READ_LOCK_GUARD();
- fv = address_space_to_flatview(as);
- mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
-
- if (!memory_access_is_direct(mr, is_write)) {
- if (qatomic_xchg(&bounce.in_use, true)) {
- *plen = 0;
- return NULL;
- }
- /* Avoid unbounded allocations */
- l = MIN(l, TARGET_PAGE_SIZE);
- bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
- bounce.addr = addr;
- bounce.len = l;
-
- memory_region_ref(mr);
- bounce.mr = mr;
- if (!is_write) {
- flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
- bounce.buffer, l);
- }
-
- *plen = l;
- return bounce.buffer;
- }
-
-
- memory_region_ref(mr);
- *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
- l, is_write, attrs);
- ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
-
- return ptr;
-}
-
-/* Unmaps a memory region previously mapped by address_space_map().
- * Will also mark the memory as dirty if is_write is true. access_len gives
- * the amount of memory that was actually read or written by the caller.
- */
-void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
- bool is_write, hwaddr access_len)
-{
- if (buffer != bounce.buffer) {
- MemoryRegion *mr;
- ram_addr_t addr1;
-
- mr = memory_region_from_host(buffer, &addr1);
- assert(mr != NULL);
- if (is_write) {
- invalidate_and_set_dirty(mr, addr1, access_len);
- }
- if (xen_enabled()) {
- xen_invalidate_map_cache_entry(buffer);
- }
- memory_region_unref(mr);
- return;
- }
- if (is_write) {
- address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
- bounce.buffer, access_len);
- }
- qemu_vfree(bounce.buffer);
- bounce.buffer = NULL;
- memory_region_unref(bounce.mr);
- qatomic_mb_set(&bounce.in_use, false);
- cpu_notify_map_clients();
-}
-
-void *cpu_physical_memory_map(hwaddr addr,
- hwaddr *plen,
- bool is_write)
-{
- return address_space_map(&address_space_memory, addr, plen, is_write,
- MEMTXATTRS_UNSPECIFIED);
-}
-
-void cpu_physical_memory_unmap(void *buffer, hwaddr len,
- bool is_write, hwaddr access_len)
-{
- return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
-}
-
-#define ARG1_DECL AddressSpace *as
-#define ARG1 as
-#define SUFFIX
-#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
-#define RCU_READ_LOCK(...) rcu_read_lock()
-#define RCU_READ_UNLOCK(...) rcu_read_unlock()
-#include "memory_ldst.c.inc"
-
-int64_t address_space_cache_init(MemoryRegionCache *cache,
- AddressSpace *as,
- hwaddr addr,
- hwaddr len,
- bool is_write)
-{
- AddressSpaceDispatch *d;
- hwaddr l;
- MemoryRegion *mr;
-
- assert(len > 0);
-
- l = len;
- cache->fv = address_space_get_flatview(as);
- d = flatview_to_dispatch(cache->fv);
- cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
-
- mr = cache->mrs.mr;
- memory_region_ref(mr);
- if (memory_access_is_direct(mr, is_write)) {
- /* We don't care about the memory attributes here as we're only
- * doing this if we found actual RAM, which behaves the same
- * regardless of attributes; so UNSPECIFIED is fine.
- */
- l = flatview_extend_translation(cache->fv, addr, len, mr,
- cache->xlat, l, is_write,
- MEMTXATTRS_UNSPECIFIED);
- cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
- } else {
- cache->ptr = NULL;
- }
-
- cache->len = l;
- cache->is_write = is_write;
- return l;
-}
-
-void address_space_cache_invalidate(MemoryRegionCache *cache,
- hwaddr addr,
- hwaddr access_len)
-{
- assert(cache->is_write);
- if (likely(cache->ptr)) {
- invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
- }
-}
-
-void address_space_cache_destroy(MemoryRegionCache *cache)
-{
- if (!cache->mrs.mr) {
- return;
- }
-
- if (xen_enabled()) {
- xen_invalidate_map_cache_entry(cache->ptr);
- }
- memory_region_unref(cache->mrs.mr);
- flatview_unref(cache->fv);
- cache->mrs.mr = NULL;
- cache->fv = NULL;
-}
-
-/* Called from RCU critical section. This function has the same
- * semantics as address_space_translate, but it only works on a
- * predefined range of a MemoryRegion that was mapped with
- * address_space_cache_init.
- */
-static inline MemoryRegion *address_space_translate_cached(
- MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
- hwaddr *plen, bool is_write, MemTxAttrs attrs)
-{
- MemoryRegionSection section;
- MemoryRegion *mr;
- IOMMUMemoryRegion *iommu_mr;
- AddressSpace *target_as;
-
- assert(!cache->ptr);
- *xlat = addr + cache->xlat;
-
- mr = cache->mrs.mr;
- iommu_mr = memory_region_get_iommu(mr);
- if (!iommu_mr) {
- /* MMIO region. */
- return mr;
- }
-
- section = address_space_translate_iommu(iommu_mr, xlat, plen,
- NULL, is_write, true,
- &target_as, attrs);
- return section.mr;
-}
-
-/* Called from RCU critical section. address_space_read_cached uses this
- * out of line function when the target is an MMIO or IOMMU region.
- */
-MemTxResult
-address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
- void *buf, hwaddr len)
-{
- hwaddr addr1, l;
- MemoryRegion *mr;
-
- l = len;
- mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
- MEMTXATTRS_UNSPECIFIED);
- return flatview_read_continue(cache->fv,
- addr, MEMTXATTRS_UNSPECIFIED, buf, len,
- addr1, l, mr);
-}
-
-/* Called from RCU critical section. address_space_write_cached uses this
- * out of line function when the target is an MMIO or IOMMU region.
- */
-MemTxResult
-address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
- const void *buf, hwaddr len)
-{
- hwaddr addr1, l;
- MemoryRegion *mr;
-
- l = len;
- mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
- MEMTXATTRS_UNSPECIFIED);
- return flatview_write_continue(cache->fv,
- addr, MEMTXATTRS_UNSPECIFIED, buf, len,
- addr1, l, mr);
-}
-
-#define ARG1_DECL MemoryRegionCache *cache
-#define ARG1 cache
-#define SUFFIX _cached_slow
-#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
-#define RCU_READ_LOCK() ((void)0)
-#define RCU_READ_UNLOCK() ((void)0)
-#include "memory_ldst.c.inc"
-
-/* virtual memory access for debug (includes writing to ROM) */
-int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
- void *ptr, target_ulong len, bool is_write)
-{
- hwaddr phys_addr;
- target_ulong l, page;
- uint8_t *buf = ptr;
-
- cpu_synchronize_state(cpu);
- while (len > 0) {
- int asidx;
- MemTxAttrs attrs;
- MemTxResult res;
-
- page = addr & TARGET_PAGE_MASK;
- phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
- asidx = cpu_asidx_from_attrs(cpu, attrs);
- /* if no physical page mapped, return an error */
- if (phys_addr == -1)
- return -1;
- l = (page + TARGET_PAGE_SIZE) - addr;
- if (l > len)
- l = len;
- phys_addr += (addr & ~TARGET_PAGE_MASK);
- if (is_write) {
- res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
- attrs, buf, l);
- } else {
- res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
- attrs, buf, l);
- }
- if (res != MEMTX_OK) {
- return -1;
- }
- len -= l;
- buf += l;
- addr += l;
- }
- return 0;
-}
-
-/*
- * Allows code that needs to deal with migration bitmaps etc to still be built
- * target independent.
- */
-size_t qemu_target_page_size(void)
-{
- return TARGET_PAGE_SIZE;
-}
-
-int qemu_target_page_bits(void)
-{
- return TARGET_PAGE_BITS;
-}
-
-int qemu_target_page_bits_min(void)
-{
- return TARGET_PAGE_BITS_MIN;
-}
-#endif
-
-bool target_words_bigendian(void)
-{
-#if defined(TARGET_WORDS_BIGENDIAN)
- return true;
-#else
- return false;
-#endif
-}
-
-#ifndef CONFIG_USER_ONLY
-bool cpu_physical_memory_is_io(hwaddr phys_addr)
-{
- MemoryRegion*mr;
- hwaddr l = 1;
- bool res;
-
- RCU_READ_LOCK_GUARD();
- mr = address_space_translate(&address_space_memory,
- phys_addr, &phys_addr, &l, false,
- MEMTXATTRS_UNSPECIFIED);
-
- res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
- return res;
-}
-
-int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
-{
- RAMBlock *block;
- int ret = 0;
-
- RCU_READ_LOCK_GUARD();
- RAMBLOCK_FOREACH(block) {
- ret = func(block, opaque);
- if (ret) {
- break;
- }
- }
- return ret;
-}
-
-/*
- * Unmap pages of memory from start to start+length such that
- * they a) read as 0, b) Trigger whatever fault mechanism
- * the OS provides for postcopy.
- * The pages must be unmapped by the end of the function.
- * Returns: 0 on success, none-0 on failure
- *
- */
-int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
-{
- int ret = -1;
-
- uint8_t *host_startaddr = rb->host + start;
-
- if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
- error_report("ram_block_discard_range: Unaligned start address: %p",
- host_startaddr);
- goto err;
- }
-
- if ((start + length) <= rb->used_length) {
- bool need_madvise, need_fallocate;
- if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
- error_report("ram_block_discard_range: Unaligned length: %zx",
- length);
- goto err;
- }
-
- errno = ENOTSUP; /* If we are missing MADVISE etc */
-
- /* The logic here is messy;
- * madvise DONTNEED fails for hugepages
- * fallocate works on hugepages and shmem
- */
- need_madvise = (rb->page_size == qemu_host_page_size);
- need_fallocate = rb->fd != -1;
- if (need_fallocate) {
- /* For a file, this causes the area of the file to be zero'd
- * if read, and for hugetlbfs also causes it to be unmapped
- * so a userfault will trigger.
- */
-#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
- ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
- start, length);
- if (ret) {
- ret = -errno;
- error_report("ram_block_discard_range: Failed to fallocate "
- "%s:%" PRIx64 " +%zx (%d)",
- rb->idstr, start, length, ret);
- goto err;
- }
-#else
- ret = -ENOSYS;
- error_report("ram_block_discard_range: fallocate not available/file"
- "%s:%" PRIx64 " +%zx (%d)",
- rb->idstr, start, length, ret);
- goto err;
-#endif
- }
- if (need_madvise) {
- /* For normal RAM this causes it to be unmapped,
- * for shared memory it causes the local mapping to disappear
- * and to fall back on the file contents (which we just
- * fallocate'd away).
- */
-#if defined(CONFIG_MADVISE)
- ret = madvise(host_startaddr, length, MADV_DONTNEED);
- if (ret) {
- ret = -errno;
- error_report("ram_block_discard_range: Failed to discard range "
- "%s:%" PRIx64 " +%zx (%d)",
- rb->idstr, start, length, ret);
- goto err;
- }
-#else
- ret = -ENOSYS;
- error_report("ram_block_discard_range: MADVISE not available"
- "%s:%" PRIx64 " +%zx (%d)",
- rb->idstr, start, length, ret);
- goto err;
-#endif
- }
- trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
- need_madvise, need_fallocate, ret);
- } else {
- error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
- "/%zx/" RAM_ADDR_FMT")",
- rb->idstr, start, length, rb->used_length);
- }
-
-err:
- return ret;
-}
-
-bool ramblock_is_pmem(RAMBlock *rb)
-{
- return rb->flags & RAM_PMEM;
-}
-
-#endif
-
-void page_size_init(void)
-{
- /* NOTE: we can always suppose that qemu_host_page_size >=
- TARGET_PAGE_SIZE */
- if (qemu_host_page_size == 0) {
- qemu_host_page_size = qemu_real_host_page_size;
- }
- if (qemu_host_page_size < TARGET_PAGE_SIZE) {
- qemu_host_page_size = TARGET_PAGE_SIZE;
- }
- qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
-}
-
-#if !defined(CONFIG_USER_ONLY)
-
-static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
-{
- if (start == end - 1) {
- qemu_printf("\t%3d ", start);
- } else {
- qemu_printf("\t%3d..%-3d ", start, end - 1);
- }
- qemu_printf(" skip=%d ", skip);
- if (ptr == PHYS_MAP_NODE_NIL) {
- qemu_printf(" ptr=NIL");
- } else if (!skip) {
- qemu_printf(" ptr=#%d", ptr);
- } else {
- qemu_printf(" ptr=[%d]", ptr);
- }
- qemu_printf("\n");
-}
-
-#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
- int128_sub((size), int128_one())) : 0)
-
-void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
-{
- int i;
-
- qemu_printf(" Dispatch\n");
- qemu_printf(" Physical sections\n");
-
- for (i = 0; i < d->map.sections_nb; ++i) {
- MemoryRegionSection *s = d->map.sections + i;
- const char *names[] = { " [unassigned]", " [not dirty]",
- " [ROM]", " [watch]" };
-
- qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
- " %s%s%s%s%s",
- i,
- s->offset_within_address_space,
- s->offset_within_address_space + MR_SIZE(s->mr->size),
- s->mr->name ? s->mr->name : "(noname)",
- i < ARRAY_SIZE(names) ? names[i] : "",
- s->mr == root ? " [ROOT]" : "",
- s == d->mru_section ? " [MRU]" : "",
- s->mr->is_iommu ? " [iommu]" : "");
-
- if (s->mr->alias) {
- qemu_printf(" alias=%s", s->mr->alias->name ?
- s->mr->alias->name : "noname");
- }
- qemu_printf("\n");
- }
-
- qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
- P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
- for (i = 0; i < d->map.nodes_nb; ++i) {
- int j, jprev;
- PhysPageEntry prev;
- Node *n = d->map.nodes + i;
-
- qemu_printf(" [%d]\n", i);
-
- for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
- PhysPageEntry *pe = *n + j;
-
- if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
- continue;
- }
-
- mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
-
- jprev = j;
- prev = *pe;
- }
-
- if (jprev != ARRAY_SIZE(*n)) {
- mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
- }
- }
-}
-
-/*
- * If positive, discarding RAM is disabled. If negative, discarding RAM is
- * required to work and cannot be disabled.
- */
-static int ram_block_discard_disabled;
-
-int ram_block_discard_disable(bool state)
-{
- int old;
-
- if (!state) {
- qatomic_dec(&ram_block_discard_disabled);
- return 0;
- }
-
- do {
- old = qatomic_read(&ram_block_discard_disabled);
- if (old < 0) {
- return -EBUSY;
- }
- } while (qatomic_cmpxchg(&ram_block_discard_disabled,
- old, old + 1) != old);
- return 0;
-}
-
-int ram_block_discard_require(bool state)
-{
- int old;
-
- if (!state) {
- qatomic_inc(&ram_block_discard_disabled);
- return 0;
- }
-
- do {
- old = qatomic_read(&ram_block_discard_disabled);
- if (old > 0) {
- return -EBUSY;
- }
- } while (qatomic_cmpxchg(&ram_block_discard_disabled,
- old, old - 1) != old);
- return 0;
-}
-
-bool ram_block_discard_is_disabled(void)
-{
- return qatomic_read(&ram_block_discard_disabled) > 0;
-}
-
-bool ram_block_discard_is_required(void)
-{
- return qatomic_read(&ram_block_discard_disabled) < 0;
-}
-
-#endif