diff options
author | Peter Maydell <peter.maydell@linaro.org> | 2020-02-28 15:36:02 +0000 |
---|---|---|
committer | Peter Maydell <peter.maydell@linaro.org> | 2020-03-06 10:05:12 +0000 |
commit | c02c112a2ca66da9bf0843d428e27eac5107b365 (patch) | |
tree | 45538b768e78d4666d28a132422b2396f2fb4c89 /docs/system/security.rst | |
parent | 1bf84a1e2e8f3262c63469b11fb641fcc9747e6a (diff) |
docs/system: Convert security.texi to rST format
security.texi is included from qemu-doc.texi but is not used
in the qemu.1 manpage. So we can do a straightforward conversion
of the contents, which go into the system manual.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Message-id: 20200228153619.9906-17-peter.maydell@linaro.org
Message-id: 20200226113034.6741-16-pbonzini@redhat.com
Diffstat (limited to 'docs/system/security.rst')
-rw-r--r-- | docs/system/security.rst | 173 |
1 files changed, 173 insertions, 0 deletions
diff --git a/docs/system/security.rst b/docs/system/security.rst new file mode 100644 index 0000000000..f2092c8768 --- /dev/null +++ b/docs/system/security.rst @@ -0,0 +1,173 @@ +Security +======== + +Overview +-------- + +This chapter explains the security requirements that QEMU is designed to meet +and principles for securely deploying QEMU. + +Security Requirements +--------------------- + +QEMU supports many different use cases, some of which have stricter security +requirements than others. The community has agreed on the overall security +requirements that users may depend on. These requirements define what is +considered supported from a security perspective. + +Virtualization Use Case +''''''''''''''''''''''' + +The virtualization use case covers cloud and virtual private server (VPS) +hosting, as well as traditional data center and desktop virtualization. These +use cases rely on hardware virtualization extensions to execute guest code +safely on the physical CPU at close-to-native speed. + +The following entities are untrusted, meaning that they may be buggy or +malicious: + +- Guest +- User-facing interfaces (e.g. VNC, SPICE, WebSocket) +- Network protocols (e.g. NBD, live migration) +- User-supplied files (e.g. disk images, kernels, device trees) +- Passthrough devices (e.g. PCI, USB) + +Bugs affecting these entities are evaluated on whether they can cause damage in +real-world use cases and treated as security bugs if this is the case. + +Non-virtualization Use Case +''''''''''''''''''''''''''' + +The non-virtualization use case covers emulation using the Tiny Code Generator +(TCG). In principle the TCG and device emulation code used in conjunction with +the non-virtualization use case should meet the same security requirements as +the virtualization use case. However, for historical reasons much of the +non-virtualization use case code was not written with these security +requirements in mind. + +Bugs affecting the non-virtualization use case are not considered security +bugs at this time. Users with non-virtualization use cases must not rely on +QEMU to provide guest isolation or any security guarantees. + +Architecture +------------ + +This section describes the design principles that ensure the security +requirements are met. + +Guest Isolation +''''''''''''''' + +Guest isolation is the confinement of guest code to the virtual machine. When +guest code gains control of execution on the host this is called escaping the +virtual machine. Isolation also includes resource limits such as throttling of +CPU, memory, disk, or network. Guests must be unable to exceed their resource +limits. + +QEMU presents an attack surface to the guest in the form of emulated devices. +The guest must not be able to gain control of QEMU. Bugs in emulated devices +could allow malicious guests to gain code execution in QEMU. At this point the +guest has escaped the virtual machine and is able to act in the context of the +QEMU process on the host. + +Guests often interact with other guests and share resources with them. A +malicious guest must not gain control of other guests or access their data. +Disk image files and network traffic must be protected from other guests unless +explicitly shared between them by the user. + +Principle of Least Privilege +'''''''''''''''''''''''''''' + +The principle of least privilege states that each component only has access to +the privileges necessary for its function. In the case of QEMU this means that +each process only has access to resources belonging to the guest. + +The QEMU process should not have access to any resources that are inaccessible +to the guest. This way the guest does not gain anything by escaping into the +QEMU process since it already has access to those same resources from within +the guest. + +Following the principle of least privilege immediately fulfills guest isolation +requirements. For example, guest A only has access to its own disk image file +``a.img`` and not guest B's disk image file ``b.img``. + +In reality certain resources are inaccessible to the guest but must be +available to QEMU to perform its function. For example, host system calls are +necessary for QEMU but are not exposed to guests. A guest that escapes into +the QEMU process can then begin invoking host system calls. + +New features must be designed to follow the principle of least privilege. +Should this not be possible for technical reasons, the security risk must be +clearly documented so users are aware of the trade-off of enabling the feature. + +Isolation mechanisms +'''''''''''''''''''' + +Several isolation mechanisms are available to realize this architecture of +guest isolation and the principle of least privilege. With the exception of +Linux seccomp, these mechanisms are all deployed by management tools that +launch QEMU, such as libvirt. They are also platform-specific so they are only +described briefly for Linux here. + +The fundamental isolation mechanism is that QEMU processes must run as +unprivileged users. Sometimes it seems more convenient to launch QEMU as +root to give it access to host devices (e.g. ``/dev/net/tun``) but this poses a +huge security risk. File descriptor passing can be used to give an otherwise +unprivileged QEMU process access to host devices without running QEMU as root. +It is also possible to launch QEMU as a non-root user and configure UNIX groups +for access to ``/dev/kvm``, ``/dev/net/tun``, and other device nodes. +Some Linux distros already ship with UNIX groups for these devices by default. + +- SELinux and AppArmor make it possible to confine processes beyond the + traditional UNIX process and file permissions model. They restrict the QEMU + process from accessing processes and files on the host system that are not + needed by QEMU. + +- Resource limits and cgroup controllers provide throughput and utilization + limits on key resources such as CPU time, memory, and I/O bandwidth. + +- Linux namespaces can be used to make process, file system, and other system + resources unavailable to QEMU. A namespaced QEMU process is restricted to only + those resources that were granted to it. + +- Linux seccomp is available via the QEMU ``--sandbox`` option. It disables + system calls that are not needed by QEMU, thereby reducing the host kernel + attack surface. + +Sensitive configurations +------------------------ + +There are aspects of QEMU that can have security implications which users & +management applications must be aware of. + +Monitor console (QMP and HMP) +''''''''''''''''''''''''''''' + +The monitor console (whether used with QMP or HMP) provides an interface +to dynamically control many aspects of QEMU's runtime operation. Many of the +commands exposed will instruct QEMU to access content on the host file system +and/or trigger spawning of external processes. + +For example, the ``migrate`` command allows for the spawning of arbitrary +processes for the purpose of tunnelling the migration data stream. The +``blockdev-add`` command instructs QEMU to open arbitrary files, exposing +their content to the guest as a virtual disk. + +Unless QEMU is otherwise confined using technologies such as SELinux, AppArmor, +or Linux namespaces, the monitor console should be considered to have privileges +equivalent to those of the user account QEMU is running under. + +It is further important to consider the security of the character device backend +over which the monitor console is exposed. It needs to have protection against +malicious third parties which might try to make unauthorized connections, or +perform man-in-the-middle attacks. Many of the character device backends do not +satisfy this requirement and so must not be used for the monitor console. + +The general recommendation is that the monitor console should be exposed over +a UNIX domain socket backend to the local host only. Use of the TCP based +character device backend is inappropriate unless configured to use both TLS +encryption and authorization control policy on client connections. + +In summary, the monitor console is considered a privileged control interface to +QEMU and as such should only be made accessible to a trusted management +application or user. |