aboutsummaryrefslogtreecommitdiff
path: root/docs/system/authz.rst
diff options
context:
space:
mode:
authorDaniel P. Berrangé <berrange@redhat.com>2021-05-14 18:20:30 +0100
committerDaniel P. Berrangé <berrange@redhat.com>2021-06-14 13:28:50 +0100
commit1c45af36e77ca315b33f237786f8a9fda512a8d3 (patch)
tree90ddb351eaa41063d24884c708dba3c32a3cb266 /docs/system/authz.rst
parent491024a5b4efcf79ef46ddfd5c02957102d60175 (diff)
docs: document usage of the authorization framework
The authorization framework provides a way to control access to network services after a client has been authenticated. This documents how to actually use it. Reviewed-by: Marc-André Lureau <marcandre.lureau@redhat.com> Signed-off-by: Daniel P. Berrangé <berrange@redhat.com>
Diffstat (limited to 'docs/system/authz.rst')
-rw-r--r--docs/system/authz.rst263
1 files changed, 263 insertions, 0 deletions
diff --git a/docs/system/authz.rst b/docs/system/authz.rst
new file mode 100644
index 0000000000..942af39602
--- /dev/null
+++ b/docs/system/authz.rst
@@ -0,0 +1,263 @@
+.. _client authorization:
+
+Client authorization
+--------------------
+
+When configuring a QEMU network backend with either TLS certificates or SASL
+authentication, access will be granted if the client successfully proves
+their identity. If the authorization identity database is scoped to the QEMU
+client this may be sufficient. It is common, however, for the identity database
+to be much broader and thus authentication alone does not enable sufficient
+access control. In this case QEMU provides a flexible system for enforcing
+finer grained authorization on clients post-authentication.
+
+Identity providers
+~~~~~~~~~~~~~~~~~~
+
+At the time of writing there are two authentication frameworks used by QEMU
+that emit an identity upon completion.
+
+ * TLS x509 certificate distinguished name.
+
+ When configuring the QEMU backend as a network server with TLS, there
+ are a choice of credentials to use. The most common scenario is to utilize
+ x509 certificates. The simplest configuration only involves issuing
+ certificates to the servers, allowing the client to avoid a MITM attack
+ against their intended server.
+
+ It is possible, however, to enable mutual verification by requiring that
+ the client provide a certificate to the server to prove its own identity.
+ This is done by setting the property ``verify-peer=yes`` on the
+ ``tls-creds-x509`` object, which is in fact the default.
+
+ When peer verification is enabled, client will need to be issued with a
+ certificate by the same certificate authority as the server. If this is
+ still not sufficiently strong access control the Distinguished Name of
+ the certificate can be used as an identity in the QEMU authorization
+ framework.
+
+ * SASL username.
+
+ When configuring the QEMU backend as a network server with SASL, upon
+ completion of the SASL authentication mechanism, a username will be
+ provided. The format of this username will vary depending on the choice
+ of mechanism configured for SASL. It might be a simple UNIX style user
+ ``joebloggs``, while if using Kerberos/GSSAPI it can have a realm
+ attached ``joebloggs@QEMU.ORG``. Whatever format the username is presented
+ in, it can be used with the QEMU authorization framework.
+
+Authorization drivers
+~~~~~~~~~~~~~~~~~~~~~
+
+The QEMU authorization framework is a general purpose design with choice of
+user customizable drivers. These are provided as objects that can be
+created at startup using the ``-object`` argument, or at runtime using the
+``object_add`` monitor command.
+
+Simple
+^^^^^^
+
+This authorization driver provides a simple mechanism for granting access
+based on an exact match against a single identity. This is useful when it is
+known that only a single client is to be allowed access.
+
+A possible use case would be when configuring QEMU for an incoming live
+migration. It is known exactly which source QEMU the migration is expected
+to arrive from. The x509 certificate associated with this source QEMU would
+thus be used as the identity to match against. Alternatively if the virtual
+machine is dedicated to a specific tenant, then the VNC server would be
+configured with SASL and the username of only that tenant listed.
+
+To create an instance of this driver via QMP:
+
+::
+
+ {
+ "execute": "object-add",
+ "arguments": {
+ "qom-type": "authz-simple",
+ "id": "authz0",
+ "props": {
+ "identity": "fred"
+ }
+ }
+ }
+
+
+Or via the command line
+
+::
+
+ -object authz-simple,id=authz0,identity=fred
+
+
+List
+^^^^
+
+In some network backends it will be desirable to grant access to a range of
+clients. This authorization driver provides a list mechanism for granting
+access by matching identities against a list of permitted one. Each match
+rule has an associated policy and a catch all policy applies if no rule
+matches. The match can either be done as an exact string comparison, or can
+use the shell-like glob syntax, which allows for use of wildcards.
+
+To create an instance of this class via QMP:
+
+::
+
+ {
+ "execute": "object-add",
+ "arguments": {
+ "qom-type": "authz-list",
+ "id": "authz0",
+ "props": {
+ "rules": [
+ { "match": "fred", "policy": "allow", "format": "exact" },
+ { "match": "bob", "policy": "allow", "format": "exact" },
+ { "match": "danb", "policy": "deny", "format": "exact" },
+ { "match": "dan*", "policy": "allow", "format": "glob" }
+ ],
+ "policy": "deny"
+ }
+ }
+ }
+
+
+Due to the way this driver requires setting nested properties, creating
+it on the command line will require use of the JSON syntax for ``-object``.
+In most cases, however, the next driver will be more suitable.
+
+List file
+^^^^^^^^^
+
+This is a variant on the previous driver that allows for a more dynamic
+access control policy by storing the match rules in a standalone file
+that can be reloaded automatically upon change.
+
+To create an instance of this class via QMP:
+
+::
+
+ {
+ "execute": "object-add",
+ "arguments": {
+ "qom-type": "authz-list-file",
+ "id": "authz0",
+ "props": {
+ "filename": "/etc/qemu/myvm-vnc.acl",
+ "refresh": true
+ }
+ }
+ }
+
+
+If ``refresh`` is ``yes``, inotify is used to monitor for changes
+to the file and auto-reload the rules.
+
+The ``myvm-vnc.acl`` file should contain the match rules in a format that
+closely matches the previous driver:
+
+::
+
+ {
+ "rules": [
+ { "match": "fred", "policy": "allow", "format": "exact" },
+ { "match": "bob", "policy": "allow", "format": "exact" },
+ { "match": "danb", "policy": "deny", "format": "exact" },
+ { "match": "dan*", "policy": "allow", "format": "glob" }
+ ],
+ "policy": "deny"
+ }
+
+
+The object can be created on the command line using
+
+::
+
+ -object authz-list-file,id=authz0,\
+ filename=/etc/qemu/myvm-vnc.acl,refresh=on
+
+
+PAM
+^^^
+
+In some scenarios it might be desirable to integrate with authorization
+mechanisms that are implemented outside of QEMU. In order to allow maximum
+flexibility, QEMU provides a driver that uses the ``PAM`` framework.
+
+To create an instance of this class via QMP:
+
+::
+
+ {
+ "execute": "object-add",
+ "arguments": {
+ "qom-type": "authz-pam",
+ "id": "authz0",
+ "parameters": {
+ "service": "qemu-vnc-tls"
+ }
+ }
+ }
+
+
+The driver only uses the PAM "account" verification
+subsystem. The above config would require a config
+file /etc/pam.d/qemu-vnc-tls. For a simple file
+lookup it would contain
+
+::
+
+ account requisite pam_listfile.so item=user sense=allow \
+ file=/etc/qemu/vnc.allow
+
+
+The external file would then contain a list of usernames.
+If x509 cert was being used as the username, a suitable
+entry would match the distinguished name:
+
+::
+
+ CN=laptop.berrange.com,O=Berrange Home,L=London,ST=London,C=GB
+
+
+On the command line it can be created using
+
+::
+
+ -object authz-pam,id=authz0,service=qemu-vnc-tls
+
+
+There are a variety of PAM plugins that can be used which are not illustrated
+here, and it is possible to implement brand new plugins using the PAM API.
+
+
+Connecting backends
+~~~~~~~~~~~~~~~~~~~
+
+The authorization driver is created using the ``-object`` argument and then
+needs to be associated with a network service. The authorization driver object
+will be given a unique ID that needs to be referenced.
+
+The property to set in the network service will vary depending on the type of
+identity to verify. By convention, any network server backend that uses TLS
+will provide ``tls-authz`` property, while any server using SASL will provide
+a ``sasl-authz`` property.
+
+Thus an example using SASL and authorization for the VNC server would look
+like:
+
+::
+
+ $QEMU --object authz-simple,id=authz0,identity=fred \
+ --vnc 0.0.0.0:1,sasl,sasl-authz=authz0
+
+While to validate both the x509 certificate and SASL username:
+
+::
+
+ echo "CN=laptop.qemu.org,O=QEMU Project,L=London,ST=London,C=GB" >> tls.acl
+ $QEMU --object authz-simple,id=authz0,identity=fred \
+ --object authz-list-file,id=authz1,filename=tls.acl \
+ --object tls-creds-x509,id=tls0,dir=/etc/qemu/tls,verify-peer=yes \
+ --vnc 0.0.0.0:1,sasl,sasl-authz=auth0,tls-creds=tls0,tls-authz=authz1