diff options
author | Yang Zhong <yang.zhong@intel.com> | 2017-06-02 14:06:44 +0800 |
---|---|---|
committer | Paolo Bonzini <pbonzini@redhat.com> | 2017-06-15 11:04:06 +0200 |
commit | d9bb58e51068dfc48746c6af0179926c8dc05bce (patch) | |
tree | bd0c3683d7acdf7b2f67ac38b7d7571dbd103694 /accel | |
parent | a9ded6017ea39ea845fb1acf5187528bd74acb04 (diff) |
tcg: move tcg related files into accel/tcg/ subdirectory
move cputlb.c, cpu-exec-common.c and cpu-exec.c related tcg exec
file into accel/tcg/ subdirectory.
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <1496383606-18060-3-git-send-email-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'accel')
-rw-r--r-- | accel/tcg/Makefile.objs | 2 | ||||
-rw-r--r-- | accel/tcg/cpu-exec-common.c | 82 | ||||
-rw-r--r-- | accel/tcg/cpu-exec.c | 683 | ||||
-rw-r--r-- | accel/tcg/cputlb.c | 1051 | ||||
-rw-r--r-- | accel/tcg/trace-events | 7 |
5 files changed, 1825 insertions, 0 deletions
diff --git a/accel/tcg/Makefile.objs b/accel/tcg/Makefile.objs index 6e3211ade1..940379beb8 100644 --- a/accel/tcg/Makefile.objs +++ b/accel/tcg/Makefile.objs @@ -1 +1,3 @@ obj-$(CONFIG_SOFTMMU) += tcg-all.o +obj-$(CONFIG_SOFTMMU) += cputlb.o +obj-y += cpu-exec.o cpu-exec-common.o diff --git a/accel/tcg/cpu-exec-common.c b/accel/tcg/cpu-exec-common.c new file mode 100644 index 0000000000..e81da276bb --- /dev/null +++ b/accel/tcg/cpu-exec-common.c @@ -0,0 +1,82 @@ +/* + * emulator main execution loop + * + * Copyright (c) 2003-2005 Fabrice Bellard + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +#include "qemu/osdep.h" +#include "cpu.h" +#include "sysemu/cpus.h" +#include "exec/exec-all.h" +#include "exec/memory-internal.h" + +/* exit the current TB, but without causing any exception to be raised */ +void cpu_loop_exit_noexc(CPUState *cpu) +{ + /* XXX: restore cpu registers saved in host registers */ + + cpu->exception_index = -1; + siglongjmp(cpu->jmp_env, 1); +} + +#if defined(CONFIG_SOFTMMU) +void cpu_reloading_memory_map(void) +{ + if (qemu_in_vcpu_thread() && current_cpu->running) { + /* The guest can in theory prolong the RCU critical section as long + * as it feels like. The major problem with this is that because it + * can do multiple reconfigurations of the memory map within the + * critical section, we could potentially accumulate an unbounded + * collection of memory data structures awaiting reclamation. + * + * Because the only thing we're currently protecting with RCU is the + * memory data structures, it's sufficient to break the critical section + * in this callback, which we know will get called every time the + * memory map is rearranged. + * + * (If we add anything else in the system that uses RCU to protect + * its data structures, we will need to implement some other mechanism + * to force TCG CPUs to exit the critical section, at which point this + * part of this callback might become unnecessary.) + * + * This pair matches cpu_exec's rcu_read_lock()/rcu_read_unlock(), which + * only protects cpu->as->dispatch. Since we know our caller is about + * to reload it, it's safe to split the critical section. + */ + rcu_read_unlock(); + rcu_read_lock(); + } +} +#endif + +void cpu_loop_exit(CPUState *cpu) +{ + siglongjmp(cpu->jmp_env, 1); +} + +void cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc) +{ + if (pc) { + cpu_restore_state(cpu, pc); + } + siglongjmp(cpu->jmp_env, 1); +} + +void cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc) +{ + cpu->exception_index = EXCP_ATOMIC; + cpu_loop_exit_restore(cpu, pc); +} diff --git a/accel/tcg/cpu-exec.c b/accel/tcg/cpu-exec.c new file mode 100644 index 0000000000..3581618bc0 --- /dev/null +++ b/accel/tcg/cpu-exec.c @@ -0,0 +1,683 @@ +/* + * emulator main execution loop + * + * Copyright (c) 2003-2005 Fabrice Bellard + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ +#include "qemu/osdep.h" +#include "cpu.h" +#include "trace.h" +#include "disas/disas.h" +#include "exec/exec-all.h" +#include "tcg.h" +#include "qemu/atomic.h" +#include "sysemu/qtest.h" +#include "qemu/timer.h" +#include "exec/address-spaces.h" +#include "qemu/rcu.h" +#include "exec/tb-hash.h" +#include "exec/log.h" +#include "qemu/main-loop.h" +#if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) +#include "hw/i386/apic.h" +#endif +#include "sysemu/cpus.h" +#include "sysemu/replay.h" + +/* -icount align implementation. */ + +typedef struct SyncClocks { + int64_t diff_clk; + int64_t last_cpu_icount; + int64_t realtime_clock; +} SyncClocks; + +#if !defined(CONFIG_USER_ONLY) +/* Allow the guest to have a max 3ms advance. + * The difference between the 2 clocks could therefore + * oscillate around 0. + */ +#define VM_CLOCK_ADVANCE 3000000 +#define THRESHOLD_REDUCE 1.5 +#define MAX_DELAY_PRINT_RATE 2000000000LL +#define MAX_NB_PRINTS 100 + +static void align_clocks(SyncClocks *sc, const CPUState *cpu) +{ + int64_t cpu_icount; + + if (!icount_align_option) { + return; + } + + cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; + sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount); + sc->last_cpu_icount = cpu_icount; + + if (sc->diff_clk > VM_CLOCK_ADVANCE) { +#ifndef _WIN32 + struct timespec sleep_delay, rem_delay; + sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; + sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; + if (nanosleep(&sleep_delay, &rem_delay) < 0) { + sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; + } else { + sc->diff_clk = 0; + } +#else + Sleep(sc->diff_clk / SCALE_MS); + sc->diff_clk = 0; +#endif + } +} + +static void print_delay(const SyncClocks *sc) +{ + static float threshold_delay; + static int64_t last_realtime_clock; + static int nb_prints; + + if (icount_align_option && + sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && + nb_prints < MAX_NB_PRINTS) { + if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || + (-sc->diff_clk / (float)1000000000LL < + (threshold_delay - THRESHOLD_REDUCE))) { + threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; + printf("Warning: The guest is now late by %.1f to %.1f seconds\n", + threshold_delay - 1, + threshold_delay); + nb_prints++; + last_realtime_clock = sc->realtime_clock; + } + } +} + +static void init_delay_params(SyncClocks *sc, + const CPUState *cpu) +{ + if (!icount_align_option) { + return; + } + sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); + sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; + sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; + if (sc->diff_clk < max_delay) { + max_delay = sc->diff_clk; + } + if (sc->diff_clk > max_advance) { + max_advance = sc->diff_clk; + } + + /* Print every 2s max if the guest is late. We limit the number + of printed messages to NB_PRINT_MAX(currently 100) */ + print_delay(sc); +} +#else +static void align_clocks(SyncClocks *sc, const CPUState *cpu) +{ +} + +static void init_delay_params(SyncClocks *sc, const CPUState *cpu) +{ +} +#endif /* CONFIG USER ONLY */ + +/* Execute a TB, and fix up the CPU state afterwards if necessary */ +static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb) +{ + CPUArchState *env = cpu->env_ptr; + uintptr_t ret; + TranslationBlock *last_tb; + int tb_exit; + uint8_t *tb_ptr = itb->tc_ptr; + + qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc, + "Trace %p [%d: " TARGET_FMT_lx "] %s\n", + itb->tc_ptr, cpu->cpu_index, itb->pc, + lookup_symbol(itb->pc)); + +#if defined(DEBUG_DISAS) + if (qemu_loglevel_mask(CPU_LOG_TB_CPU) + && qemu_log_in_addr_range(itb->pc)) { + qemu_log_lock(); +#if defined(TARGET_I386) + log_cpu_state(cpu, CPU_DUMP_CCOP); +#else + log_cpu_state(cpu, 0); +#endif + qemu_log_unlock(); + } +#endif /* DEBUG_DISAS */ + + cpu->can_do_io = !use_icount; + ret = tcg_qemu_tb_exec(env, tb_ptr); + cpu->can_do_io = 1; + last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); + tb_exit = ret & TB_EXIT_MASK; + trace_exec_tb_exit(last_tb, tb_exit); + + if (tb_exit > TB_EXIT_IDX1) { + /* We didn't start executing this TB (eg because the instruction + * counter hit zero); we must restore the guest PC to the address + * of the start of the TB. + */ + CPUClass *cc = CPU_GET_CLASS(cpu); + qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc, + "Stopped execution of TB chain before %p [" + TARGET_FMT_lx "] %s\n", + last_tb->tc_ptr, last_tb->pc, + lookup_symbol(last_tb->pc)); + if (cc->synchronize_from_tb) { + cc->synchronize_from_tb(cpu, last_tb); + } else { + assert(cc->set_pc); + cc->set_pc(cpu, last_tb->pc); + } + } + return ret; +} + +#ifndef CONFIG_USER_ONLY +/* Execute the code without caching the generated code. An interpreter + could be used if available. */ +static void cpu_exec_nocache(CPUState *cpu, int max_cycles, + TranslationBlock *orig_tb, bool ignore_icount) +{ + TranslationBlock *tb; + + /* Should never happen. + We only end up here when an existing TB is too long. */ + if (max_cycles > CF_COUNT_MASK) + max_cycles = CF_COUNT_MASK; + + tb_lock(); + tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, orig_tb->flags, + max_cycles | CF_NOCACHE + | (ignore_icount ? CF_IGNORE_ICOUNT : 0)); + tb->orig_tb = orig_tb; + tb_unlock(); + + /* execute the generated code */ + trace_exec_tb_nocache(tb, tb->pc); + cpu_tb_exec(cpu, tb); + + tb_lock(); + tb_phys_invalidate(tb, -1); + tb_free(tb); + tb_unlock(); +} +#endif + +static void cpu_exec_step(CPUState *cpu) +{ + CPUClass *cc = CPU_GET_CLASS(cpu); + CPUArchState *env = (CPUArchState *)cpu->env_ptr; + TranslationBlock *tb; + target_ulong cs_base, pc; + uint32_t flags; + + cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); + if (sigsetjmp(cpu->jmp_env, 0) == 0) { + mmap_lock(); + tb_lock(); + tb = tb_gen_code(cpu, pc, cs_base, flags, + 1 | CF_NOCACHE | CF_IGNORE_ICOUNT); + tb->orig_tb = NULL; + tb_unlock(); + mmap_unlock(); + + cc->cpu_exec_enter(cpu); + /* execute the generated code */ + trace_exec_tb_nocache(tb, pc); + cpu_tb_exec(cpu, tb); + cc->cpu_exec_exit(cpu); + + tb_lock(); + tb_phys_invalidate(tb, -1); + tb_free(tb); + tb_unlock(); + } else { + /* We may have exited due to another problem here, so we need + * to reset any tb_locks we may have taken but didn't release. + * The mmap_lock is dropped by tb_gen_code if it runs out of + * memory. + */ +#ifndef CONFIG_SOFTMMU + tcg_debug_assert(!have_mmap_lock()); +#endif + tb_lock_reset(); + } +} + +void cpu_exec_step_atomic(CPUState *cpu) +{ + start_exclusive(); + + /* Since we got here, we know that parallel_cpus must be true. */ + parallel_cpus = false; + cpu_exec_step(cpu); + parallel_cpus = true; + + end_exclusive(); +} + +struct tb_desc { + target_ulong pc; + target_ulong cs_base; + CPUArchState *env; + tb_page_addr_t phys_page1; + uint32_t flags; +}; + +static bool tb_cmp(const void *p, const void *d) +{ + const TranslationBlock *tb = p; + const struct tb_desc *desc = d; + + if (tb->pc == desc->pc && + tb->page_addr[0] == desc->phys_page1 && + tb->cs_base == desc->cs_base && + tb->flags == desc->flags && + !atomic_read(&tb->invalid)) { + /* check next page if needed */ + if (tb->page_addr[1] == -1) { + return true; + } else { + tb_page_addr_t phys_page2; + target_ulong virt_page2; + + virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; + phys_page2 = get_page_addr_code(desc->env, virt_page2); + if (tb->page_addr[1] == phys_page2) { + return true; + } + } + } + return false; +} + +TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, + target_ulong cs_base, uint32_t flags) +{ + tb_page_addr_t phys_pc; + struct tb_desc desc; + uint32_t h; + + desc.env = (CPUArchState *)cpu->env_ptr; + desc.cs_base = cs_base; + desc.flags = flags; + desc.pc = pc; + phys_pc = get_page_addr_code(desc.env, pc); + desc.phys_page1 = phys_pc & TARGET_PAGE_MASK; + h = tb_hash_func(phys_pc, pc, flags); + return qht_lookup(&tcg_ctx.tb_ctx.htable, tb_cmp, &desc, h); +} + +static inline TranslationBlock *tb_find(CPUState *cpu, + TranslationBlock *last_tb, + int tb_exit) +{ + CPUArchState *env = (CPUArchState *)cpu->env_ptr; + TranslationBlock *tb; + target_ulong cs_base, pc; + uint32_t flags; + bool have_tb_lock = false; + + /* we record a subset of the CPU state. It will + always be the same before a given translated block + is executed. */ + cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); + tb = atomic_rcu_read(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]); + if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base || + tb->flags != flags)) { + tb = tb_htable_lookup(cpu, pc, cs_base, flags); + if (!tb) { + + /* mmap_lock is needed by tb_gen_code, and mmap_lock must be + * taken outside tb_lock. As system emulation is currently + * single threaded the locks are NOPs. + */ + mmap_lock(); + tb_lock(); + have_tb_lock = true; + + /* There's a chance that our desired tb has been translated while + * taking the locks so we check again inside the lock. + */ + tb = tb_htable_lookup(cpu, pc, cs_base, flags); + if (!tb) { + /* if no translated code available, then translate it now */ + tb = tb_gen_code(cpu, pc, cs_base, flags, 0); + } + + mmap_unlock(); + } + + /* We add the TB in the virtual pc hash table for the fast lookup */ + atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb); + } +#ifndef CONFIG_USER_ONLY + /* We don't take care of direct jumps when address mapping changes in + * system emulation. So it's not safe to make a direct jump to a TB + * spanning two pages because the mapping for the second page can change. + */ + if (tb->page_addr[1] != -1) { + last_tb = NULL; + } +#endif + /* See if we can patch the calling TB. */ + if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { + if (!have_tb_lock) { + tb_lock(); + have_tb_lock = true; + } + if (!tb->invalid) { + tb_add_jump(last_tb, tb_exit, tb); + } + } + if (have_tb_lock) { + tb_unlock(); + } + return tb; +} + +static inline bool cpu_handle_halt(CPUState *cpu) +{ + if (cpu->halted) { +#if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) + if ((cpu->interrupt_request & CPU_INTERRUPT_POLL) + && replay_interrupt()) { + X86CPU *x86_cpu = X86_CPU(cpu); + qemu_mutex_lock_iothread(); + apic_poll_irq(x86_cpu->apic_state); + cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); + qemu_mutex_unlock_iothread(); + } +#endif + if (!cpu_has_work(cpu)) { + return true; + } + + cpu->halted = 0; + } + + return false; +} + +static inline void cpu_handle_debug_exception(CPUState *cpu) +{ + CPUClass *cc = CPU_GET_CLASS(cpu); + CPUWatchpoint *wp; + + if (!cpu->watchpoint_hit) { + QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { + wp->flags &= ~BP_WATCHPOINT_HIT; + } + } + + cc->debug_excp_handler(cpu); +} + +static inline bool cpu_handle_exception(CPUState *cpu, int *ret) +{ + if (cpu->exception_index >= 0) { + if (cpu->exception_index >= EXCP_INTERRUPT) { + /* exit request from the cpu execution loop */ + *ret = cpu->exception_index; + if (*ret == EXCP_DEBUG) { + cpu_handle_debug_exception(cpu); + } + cpu->exception_index = -1; + return true; + } else { +#if defined(CONFIG_USER_ONLY) + /* if user mode only, we simulate a fake exception + which will be handled outside the cpu execution + loop */ +#if defined(TARGET_I386) + CPUClass *cc = CPU_GET_CLASS(cpu); + cc->do_interrupt(cpu); +#endif + *ret = cpu->exception_index; + cpu->exception_index = -1; + return true; +#else + if (replay_exception()) { + CPUClass *cc = CPU_GET_CLASS(cpu); + qemu_mutex_lock_iothread(); + cc->do_interrupt(cpu); + qemu_mutex_unlock_iothread(); + cpu->exception_index = -1; + } else if (!replay_has_interrupt()) { + /* give a chance to iothread in replay mode */ + *ret = EXCP_INTERRUPT; + return true; + } +#endif + } +#ifndef CONFIG_USER_ONLY + } else if (replay_has_exception() + && cpu->icount_decr.u16.low + cpu->icount_extra == 0) { + /* try to cause an exception pending in the log */ + cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0), true); + *ret = -1; + return true; +#endif + } + + return false; +} + +static inline bool cpu_handle_interrupt(CPUState *cpu, + TranslationBlock **last_tb) +{ + CPUClass *cc = CPU_GET_CLASS(cpu); + + if (unlikely(atomic_read(&cpu->interrupt_request))) { + int interrupt_request; + qemu_mutex_lock_iothread(); + interrupt_request = cpu->interrupt_request; + if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { + /* Mask out external interrupts for this step. */ + interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; + } + if (interrupt_request & CPU_INTERRUPT_DEBUG) { + cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; + cpu->exception_index = EXCP_DEBUG; + qemu_mutex_unlock_iothread(); + return true; + } + if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { + /* Do nothing */ + } else if (interrupt_request & CPU_INTERRUPT_HALT) { + replay_interrupt(); + cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; + cpu->halted = 1; + cpu->exception_index = EXCP_HLT; + qemu_mutex_unlock_iothread(); + return true; + } +#if defined(TARGET_I386) + else if (interrupt_request & CPU_INTERRUPT_INIT) { + X86CPU *x86_cpu = X86_CPU(cpu); + CPUArchState *env = &x86_cpu->env; + replay_interrupt(); + cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); + do_cpu_init(x86_cpu); + cpu->exception_index = EXCP_HALTED; + qemu_mutex_unlock_iothread(); + return true; + } +#else + else if (interrupt_request & CPU_INTERRUPT_RESET) { + replay_interrupt(); + cpu_reset(cpu); + qemu_mutex_unlock_iothread(); + return true; + } +#endif + /* The target hook has 3 exit conditions: + False when the interrupt isn't processed, + True when it is, and we should restart on a new TB, + and via longjmp via cpu_loop_exit. */ + else { + if (cc->cpu_exec_interrupt(cpu, interrupt_request)) { + replay_interrupt(); + *last_tb = NULL; + } + /* The target hook may have updated the 'cpu->interrupt_request'; + * reload the 'interrupt_request' value */ + interrupt_request = cpu->interrupt_request; + } + if (interrupt_request & CPU_INTERRUPT_EXITTB) { + cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; + /* ensure that no TB jump will be modified as + the program flow was changed */ + *last_tb = NULL; + } + + /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ + qemu_mutex_unlock_iothread(); + } + + /* Finally, check if we need to exit to the main loop. */ + if (unlikely(atomic_read(&cpu->exit_request) + || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) { + atomic_set(&cpu->exit_request, 0); + cpu->exception_index = EXCP_INTERRUPT; + return true; + } + + return false; +} + +static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, + TranslationBlock **last_tb, int *tb_exit) +{ + uintptr_t ret; + int32_t insns_left; + + trace_exec_tb(tb, tb->pc); + ret = cpu_tb_exec(cpu, tb); + tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); + *tb_exit = ret & TB_EXIT_MASK; + if (*tb_exit != TB_EXIT_REQUESTED) { + *last_tb = tb; + return; + } + + *last_tb = NULL; + insns_left = atomic_read(&cpu->icount_decr.u32); + atomic_set(&cpu->icount_decr.u16.high, 0); + if (insns_left < 0) { + /* Something asked us to stop executing chained TBs; just + * continue round the main loop. Whatever requested the exit + * will also have set something else (eg exit_request or + * interrupt_request) which we will handle next time around + * the loop. But we need to ensure the zeroing of icount_decr + * comes before the next read of cpu->exit_request + * or cpu->interrupt_request. + */ + smp_mb(); + return; + } + + /* Instruction counter expired. */ + assert(use_icount); +#ifndef CONFIG_USER_ONLY + /* Ensure global icount has gone forward */ + cpu_update_icount(cpu); + /* Refill decrementer and continue execution. */ + insns_left = MIN(0xffff, cpu->icount_budget); + cpu->icount_decr.u16.low = insns_left; + cpu->icount_extra = cpu->icount_budget - insns_left; + if (!cpu->icount_extra) { + /* Execute any remaining instructions, then let the main loop + * handle the next event. + */ + if (insns_left > 0) { + cpu_exec_nocache(cpu, insns_left, tb, false); + } + } +#endif +} + +/* main execution loop */ + +int cpu_exec(CPUState *cpu) +{ + CPUClass *cc = CPU_GET_CLASS(cpu); + int ret; + SyncClocks sc = { 0 }; + + /* replay_interrupt may need current_cpu */ + current_cpu = cpu; + + if (cpu_handle_halt(cpu)) { + return EXCP_HALTED; + } + + rcu_read_lock(); + + cc->cpu_exec_enter(cpu); + + /* Calculate difference between guest clock and host clock. + * This delay includes the delay of the last cycle, so + * what we have to do is sleep until it is 0. As for the + * advance/delay we gain here, we try to fix it next time. + */ + init_delay_params(&sc, cpu); + + /* prepare setjmp context for exception handling */ + if (sigsetjmp(cpu->jmp_env, 0) != 0) { +#if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6) + /* Some compilers wrongly smash all local variables after + * siglongjmp. There were bug reports for gcc 4.5.0 and clang. + * Reload essential local variables here for those compilers. + * Newer versions of gcc would complain about this code (-Wclobbered). */ + cpu = current_cpu; + cc = CPU_GET_CLASS(cpu); +#else /* buggy compiler */ + /* Assert that the compiler does not smash local variables. */ + g_assert(cpu == current_cpu); + g_assert(cc == CPU_GET_CLASS(cpu)); +#endif /* buggy compiler */ + cpu->can_do_io = 1; + tb_lock_reset(); + if (qemu_mutex_iothread_locked()) { + qemu_mutex_unlock_iothread(); + } + } + + /* if an exception is pending, we execute it here */ + while (!cpu_handle_exception(cpu, &ret)) { + TranslationBlock *last_tb = NULL; + int tb_exit = 0; + + while (!cpu_handle_interrupt(cpu, &last_tb)) { + TranslationBlock *tb = tb_find(cpu, last_tb, tb_exit); + cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit); + /* Try to align the host and virtual clocks + if the guest is in advance */ + align_clocks(&sc, cpu); + } + } + + cc->cpu_exec_exit(cpu); + rcu_read_unlock(); + + return ret; +} diff --git a/accel/tcg/cputlb.c b/accel/tcg/cputlb.c new file mode 100644 index 0000000000..743776ae19 --- /dev/null +++ b/accel/tcg/cputlb.c @@ -0,0 +1,1051 @@ +/* + * Common CPU TLB handling + * + * Copyright (c) 2003 Fabrice Bellard + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +#include "qemu/osdep.h" +#include "qemu/main-loop.h" +#include "cpu.h" +#include "exec/exec-all.h" +#include "exec/memory.h" +#include "exec/address-spaces.h" +#include "exec/cpu_ldst.h" +#include "exec/cputlb.h" +#include "exec/memory-internal.h" +#include "exec/ram_addr.h" +#include "tcg/tcg.h" +#include "qemu/error-report.h" +#include "exec/log.h" +#include "exec/helper-proto.h" +#include "qemu/atomic.h" + +/* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ +/* #define DEBUG_TLB */ +/* #define DEBUG_TLB_LOG */ + +#ifdef DEBUG_TLB +# define DEBUG_TLB_GATE 1 +# ifdef DEBUG_TLB_LOG +# define DEBUG_TLB_LOG_GATE 1 +# else +# define DEBUG_TLB_LOG_GATE 0 +# endif +#else +# define DEBUG_TLB_GATE 0 +# define DEBUG_TLB_LOG_GATE 0 +#endif + +#define tlb_debug(fmt, ...) do { \ + if (DEBUG_TLB_LOG_GATE) { \ + qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ + ## __VA_ARGS__); \ + } else if (DEBUG_TLB_GATE) { \ + fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ + } \ +} while (0) + +#define assert_cpu_is_self(this_cpu) do { \ + if (DEBUG_TLB_GATE) { \ + g_assert(!cpu->created || qemu_cpu_is_self(cpu)); \ + } \ + } while (0) + +/* run_on_cpu_data.target_ptr should always be big enough for a + * target_ulong even on 32 bit builds */ +QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); + +/* We currently can't handle more than 16 bits in the MMUIDX bitmask. + */ +QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); +#define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) + +/* flush_all_helper: run fn across all cpus + * + * If the wait flag is set then the src cpu's helper will be queued as + * "safe" work and the loop exited creating a synchronisation point + * where all queued work will be finished before execution starts + * again. + */ +static void flush_all_helper(CPUState *src, run_on_cpu_func fn, + run_on_cpu_data d) +{ + CPUState *cpu; + + CPU_FOREACH(cpu) { + if (cpu != src) { + async_run_on_cpu(cpu, fn, d); + } + } +} + +/* statistics */ +int tlb_flush_count; + +/* This is OK because CPU architectures generally permit an + * implementation to drop entries from the TLB at any time, so + * flushing more entries than required is only an efficiency issue, + * not a correctness issue. + */ +static void tlb_flush_nocheck(CPUState *cpu) +{ + CPUArchState *env = cpu->env_ptr; + + /* The QOM tests will trigger tlb_flushes without setting up TCG + * so we bug out here in that case. + */ + if (!tcg_enabled()) { + return; + } + + assert_cpu_is_self(cpu); + tlb_debug("(count: %d)\n", tlb_flush_count++); + + tb_lock(); + + memset(env->tlb_table, -1, sizeof(env->tlb_table)); + memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table)); + memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache)); + + env->vtlb_index = 0; + env->tlb_flush_addr = -1; + env->tlb_flush_mask = 0; + + tb_unlock(); + + atomic_mb_set(&cpu->pending_tlb_flush, 0); +} + +static void tlb_flush_global_async_work(CPUState *cpu, run_on_cpu_data data) +{ + tlb_flush_nocheck(cpu); +} + +void tlb_flush(CPUState *cpu) +{ + if (cpu->created && !qemu_cpu_is_self(cpu)) { + if (atomic_mb_read(&cpu->pending_tlb_flush) != ALL_MMUIDX_BITS) { + atomic_mb_set(&cpu->pending_tlb_flush, ALL_MMUIDX_BITS); + async_run_on_cpu(cpu, tlb_flush_global_async_work, + RUN_ON_CPU_NULL); + } + } else { + tlb_flush_nocheck(cpu); + } +} + +void tlb_flush_all_cpus(CPUState *src_cpu) +{ + const run_on_cpu_func fn = tlb_flush_global_async_work; + flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL); + fn(src_cpu, RUN_ON_CPU_NULL); +} + +void tlb_flush_all_cpus_synced(CPUState *src_cpu) +{ + const run_on_cpu_func fn = tlb_flush_global_async_work; + flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL); + async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_NULL); +} + +static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) +{ + CPUArchState *env = cpu->env_ptr; + unsigned long mmu_idx_bitmask = data.host_int; + int mmu_idx; + + assert_cpu_is_self(cpu); + + tb_lock(); + + tlb_debug("start: mmu_idx:0x%04lx\n", mmu_idx_bitmask); + + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + + if (test_bit(mmu_idx, &mmu_idx_bitmask)) { + tlb_debug("%d\n", mmu_idx); + + memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0])); + memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0])); + } + } + + memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache)); + + tlb_debug("done\n"); + + tb_unlock(); +} + +void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) +{ + tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); + + if (!qemu_cpu_is_self(cpu)) { + uint16_t pending_flushes = idxmap; + pending_flushes &= ~atomic_mb_read(&cpu->pending_tlb_flush); + + if (pending_flushes) { + tlb_debug("reduced mmu_idx: 0x%" PRIx16 "\n", pending_flushes); + + atomic_or(&cpu->pending_tlb_flush, pending_flushes); + async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, + RUN_ON_CPU_HOST_INT(pending_flushes)); + } + } else { + tlb_flush_by_mmuidx_async_work(cpu, + RUN_ON_CPU_HOST_INT(idxmap)); + } +} + +void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) +{ + const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; + + tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); + + flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); + fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); +} + +void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, + uint16_t idxmap) +{ + const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; + + tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); + + flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); + async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); +} + + + +static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) +{ + if (addr == (tlb_entry->addr_read & + (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || + addr == (tlb_entry->addr_write & + (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || + addr == (tlb_entry->addr_code & + (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { + memset(tlb_entry, -1, sizeof(*tlb_entry)); + } +} + +static void tlb_flush_page_async_work(CPUState *cpu, run_on_cpu_data data) +{ + CPUArchState *env = cpu->env_ptr; + target_ulong addr = (target_ulong) data.target_ptr; + int i; + int mmu_idx; + + assert_cpu_is_self(cpu); + + tlb_debug("page :" TARGET_FMT_lx "\n", addr); + + /* Check if we need to flush due to large pages. */ + if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { + tlb_debug("forcing full flush (" + TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", + env->tlb_flush_addr, env->tlb_flush_mask); + + tlb_flush(cpu); + return; + } + + addr &= TARGET_PAGE_MASK; + i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); + } + + /* check whether there are entries that need to be flushed in the vtlb */ + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + int k; + for (k = 0; k < CPU_VTLB_SIZE; k++) { + tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr); + } + } + + tb_flush_jmp_cache(cpu, addr); +} + +void tlb_flush_page(CPUState *cpu, target_ulong addr) +{ + tlb_debug("page :" TARGET_FMT_lx "\n", addr); + + if (!qemu_cpu_is_self(cpu)) { + async_run_on_cpu(cpu, tlb_flush_page_async_work, + RUN_ON_CPU_TARGET_PTR(addr)); + } else { + tlb_flush_page_async_work(cpu, RUN_ON_CPU_TARGET_PTR(addr)); + } +} + +/* As we are going to hijack the bottom bits of the page address for a + * mmuidx bit mask we need to fail to build if we can't do that + */ +QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN); + +static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu, + run_on_cpu_data data) +{ + CPUArchState *env = cpu->env_ptr; + target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr; + target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK; + unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS; + int page = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + int mmu_idx; + int i; + + assert_cpu_is_self(cpu); + + tlb_debug("page:%d addr:"TARGET_FMT_lx" mmu_idx:0x%lx\n", + page, addr, mmu_idx_bitmap); + + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + if (test_bit(mmu_idx, &mmu_idx_bitmap)) { + tlb_flush_entry(&env->tlb_table[mmu_idx][page], addr); + + /* check whether there are vltb entries that need to be flushed */ + for (i = 0; i < CPU_VTLB_SIZE; i++) { + tlb_flush_entry(&env->tlb_v_table[mmu_idx][i], addr); + } + } + } + + tb_flush_jmp_cache(cpu, addr); +} + +static void tlb_check_page_and_flush_by_mmuidx_async_work(CPUState *cpu, + run_on_cpu_data data) +{ + CPUArchState *env = cpu->env_ptr; + target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr; + target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK; + unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS; + + tlb_debug("addr:"TARGET_FMT_lx" mmu_idx: %04lx\n", addr, mmu_idx_bitmap); + + /* Check if we need to flush due to large pages. */ + if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { + tlb_debug("forced full flush (" + TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", + env->tlb_flush_addr, env->tlb_flush_mask); + + tlb_flush_by_mmuidx_async_work(cpu, + RUN_ON_CPU_HOST_INT(mmu_idx_bitmap)); + } else { + tlb_flush_page_by_mmuidx_async_work(cpu, data); + } +} + +void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) +{ + target_ulong addr_and_mmu_idx; + + tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); + + /* This should already be page aligned */ + addr_and_mmu_idx = addr & TARGET_PAGE_MASK; + addr_and_mmu_idx |= idxmap; + + if (!qemu_cpu_is_self(cpu)) { + async_run_on_cpu(cpu, tlb_check_page_and_flush_by_mmuidx_async_work, + RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); + } else { + tlb_check_page_and_flush_by_mmuidx_async_work( + cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); + } +} + +void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, + uint16_t idxmap) +{ + const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work; + target_ulong addr_and_mmu_idx; + + tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); + + /* This should already be page aligned */ + addr_and_mmu_idx = addr & TARGET_PAGE_MASK; + addr_and_mmu_idx |= idxmap; + + flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); + fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); +} + +void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, + target_ulong addr, + uint16_t idxmap) +{ + const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work; + target_ulong addr_and_mmu_idx; + + tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); + + /* This should already be page aligned */ + addr_and_mmu_idx = addr & TARGET_PAGE_MASK; + addr_and_mmu_idx |= idxmap; + + flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); + async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); +} + +void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) +{ + const run_on_cpu_func fn = tlb_flush_page_async_work; + + flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr)); + fn(src, RUN_ON_CPU_TARGET_PTR(addr)); +} + +void tlb_flush_page_all_cpus_synced(CPUState *src, + target_ulong addr) +{ + const run_on_cpu_func fn = tlb_flush_page_async_work; + + flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr)); + async_safe_run_on_cpu(src, fn, RUN_ON_CPU_TARGET_PTR(addr)); +} + +/* update the TLBs so that writes to code in the virtual page 'addr' + can be detected */ +void tlb_protect_code(ram_addr_t ram_addr) +{ + cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE, + DIRTY_MEMORY_CODE); +} + +/* update the TLB so that writes in physical page 'phys_addr' are no longer + tested for self modifying code */ +void tlb_unprotect_code(ram_addr_t ram_addr) +{ + cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); +} + + +/* + * Dirty write flag handling + * + * When the TCG code writes to a location it looks up the address in + * the TLB and uses that data to compute the final address. If any of + * the lower bits of the address are set then the slow path is forced. + * There are a number of reasons to do this but for normal RAM the + * most usual is detecting writes to code regions which may invalidate + * generated code. + * + * Because we want other vCPUs to respond to changes straight away we + * update the te->addr_write field atomically. If the TLB entry has + * been changed by the vCPU in the mean time we skip the update. + * + * As this function uses atomic accesses we also need to ensure + * updates to tlb_entries follow the same access rules. We don't need + * to worry about this for oversized guests as MTTCG is disabled for + * them. + */ + +static void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start, + uintptr_t length) +{ +#if TCG_OVERSIZED_GUEST + uintptr_t addr = tlb_entry->addr_write; + + if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) { + addr &= TARGET_PAGE_MASK; + addr += tlb_entry->addend; + if ((addr - start) < length) { + tlb_entry->addr_write |= TLB_NOTDIRTY; + } + } +#else + /* paired with atomic_mb_set in tlb_set_page_with_attrs */ + uintptr_t orig_addr = atomic_mb_read(&tlb_entry->addr_write); + uintptr_t addr = orig_addr; + + if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) { + addr &= TARGET_PAGE_MASK; + addr += atomic_read(&tlb_entry->addend); + if ((addr - start) < length) { + uintptr_t notdirty_addr = orig_addr | TLB_NOTDIRTY; + atomic_cmpxchg(&tlb_entry->addr_write, orig_addr, notdirty_addr); + } + } +#endif +} + +/* For atomic correctness when running MTTCG we need to use the right + * primitives when copying entries */ +static inline void copy_tlb_helper(CPUTLBEntry *d, CPUTLBEntry *s, + bool atomic_set) +{ +#if TCG_OVERSIZED_GUEST + *d = *s; +#else + if (atomic_set) { + d->addr_read = s->addr_read; + d->addr_code = s->addr_code; + atomic_set(&d->addend, atomic_read(&s->addend)); + /* Pairs with flag setting in tlb_reset_dirty_range */ + atomic_mb_set(&d->addr_write, atomic_read(&s->addr_write)); + } else { + d->addr_read = s->addr_read; + d->addr_write = atomic_read(&s->addr_write); + d->addr_code = s->addr_code; + d->addend = atomic_read(&s->addend); + } +#endif +} + +/* This is a cross vCPU call (i.e. another vCPU resetting the flags of + * the target vCPU). As such care needs to be taken that we don't + * dangerously race with another vCPU update. The only thing actually + * updated is the target TLB entry ->addr_write flags. + */ +void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) +{ + CPUArchState *env; + + int mmu_idx; + + env = cpu->env_ptr; + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + unsigned int i; + + for (i = 0; i < CPU_TLB_SIZE; i++) { + tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i], + start1, length); + } + + for (i = 0; i < CPU_VTLB_SIZE; i++) { + tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i], + start1, length); + } + } +} + +static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) +{ + if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { + tlb_entry->addr_write = vaddr; + } +} + +/* update the TLB corresponding to virtual page vaddr + so that it is no longer dirty */ +void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) +{ + CPUArchState *env = cpu->env_ptr; + int i; + int mmu_idx; + + assert_cpu_is_self(cpu); + + vaddr &= TARGET_PAGE_MASK; + i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr); + } + + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + int k; + for (k = 0; k < CPU_VTLB_SIZE; k++) { + tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr); + } + } +} + +/* Our TLB does not support large pages, so remember the area covered by + large pages and trigger a full TLB flush if these are invalidated. */ +static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr, + target_ulong size) +{ + target_ulong mask = ~(size - 1); + + if (env->tlb_flush_addr == (target_ulong)-1) { + env->tlb_flush_addr = vaddr & mask; + env->tlb_flush_mask = mask; + return; + } + /* Extend the existing region to include the new page. + This is a compromise between unnecessary flushes and the cost + of maintaining a full variable size TLB. */ + mask &= env->tlb_flush_mask; + while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) { + mask <<= 1; + } + env->tlb_flush_addr &= mask; + env->tlb_flush_mask = mask; +} + +/* Add a new TLB entry. At most one entry for a given virtual address + * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the + * supplied size is only used by tlb_flush_page. + * + * Called from TCG-generated code, which is under an RCU read-side + * critical section. + */ +void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, + hwaddr paddr, MemTxAttrs attrs, int prot, + int mmu_idx, target_ulong size) +{ + CPUArchState *env = cpu->env_ptr; + MemoryRegionSection *section; + unsigned int index; + target_ulong address; + target_ulong code_address; + uintptr_t addend; + CPUTLBEntry *te, *tv, tn; + hwaddr iotlb, xlat, sz; + unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE; + int asidx = cpu_asidx_from_attrs(cpu, attrs); + + assert_cpu_is_self(cpu); + assert(size >= TARGET_PAGE_SIZE); + if (size != TARGET_PAGE_SIZE) { + tlb_add_large_page(env, vaddr, size); + } + + sz = size; + section = address_space_translate_for_iotlb(cpu, asidx, paddr, &xlat, &sz); + assert(sz >= TARGET_PAGE_SIZE); + + tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx + " prot=%x idx=%d\n", + vaddr, paddr, prot, mmu_idx); + + address = vaddr; + if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) { + /* IO memory case */ + address |= TLB_MMIO; + addend = 0; + } else { + /* TLB_MMIO for rom/romd handled below */ + addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; + } + + code_address = address; + iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat, + prot, &address); + + index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + te = &env->tlb_table[mmu_idx][index]; + /* do not discard the translation in te, evict it into a victim tlb */ + tv = &env->tlb_v_table[mmu_idx][vidx]; + + /* addr_write can race with tlb_reset_dirty_range */ + copy_tlb_helper(tv, te, true); + + env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index]; + + /* refill the tlb */ + env->iotlb[mmu_idx][index].addr = iotlb - vaddr; + env->iotlb[mmu_idx][index].attrs = attrs; + + /* Now calculate the new entry */ + tn.addend = addend - vaddr; + if (prot & PAGE_READ) { + tn.addr_read = address; + } else { + tn.addr_read = -1; + } + + if (prot & PAGE_EXEC) { + tn.addr_code = code_address; + } else { + tn.addr_code = -1; + } + + tn.addr_write = -1; + if (prot & PAGE_WRITE) { + if ((memory_region_is_ram(section->mr) && section->readonly) + || memory_region_is_romd(section->mr)) { + /* Write access calls the I/O callback. */ + tn.addr_write = address | TLB_MMIO; + } else if (memory_region_is_ram(section->mr) + && cpu_physical_memory_is_clean( + memory_region_get_ram_addr(section->mr) + xlat)) { + tn.addr_write = address | TLB_NOTDIRTY; + } else { + tn.addr_write = address; + } + } + + /* Pairs with flag setting in tlb_reset_dirty_range */ + copy_tlb_helper(te, &tn, true); + /* atomic_mb_set(&te->addr_write, write_address); */ +} + +/* Add a new TLB entry, but without specifying the memory + * transaction attributes to be used. + */ +void tlb_set_page(CPUState *cpu, target_ulong vaddr, + hwaddr paddr, int prot, + int mmu_idx, target_ulong size) +{ + tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, + prot, mmu_idx, size); +} + +static void report_bad_exec(CPUState *cpu, target_ulong addr) +{ + /* Accidentally executing outside RAM or ROM is quite common for + * several user-error situations, so report it in a way that + * makes it clear that this isn't a QEMU bug and provide suggestions + * about what a user could do to fix things. + */ + error_report("Trying to execute code outside RAM or ROM at 0x" + TARGET_FMT_lx, addr); + error_printf("This usually means one of the following happened:\n\n" + "(1) You told QEMU to execute a kernel for the wrong machine " + "type, and it crashed on startup (eg trying to run a " + "raspberry pi kernel on a versatilepb QEMU machine)\n" + "(2) You didn't give QEMU a kernel or BIOS filename at all, " + "and QEMU executed a ROM full of no-op instructions until " + "it fell off the end\n" + "(3) Your guest kernel has a bug and crashed by jumping " + "off into nowhere\n\n" + "This is almost always one of the first two, so check your " + "command line and that you are using the right type of kernel " + "for this machine.\n" + "If you think option (3) is likely then you can try debugging " + "your guest with the -d debug options; in particular " + "-d guest_errors will cause the log to include a dump of the " + "guest register state at this point.\n\n" + "Execution cannot continue; stopping here.\n\n"); + + /* Report also to the logs, with more detail including register dump */ + qemu_log_mask(LOG_GUEST_ERROR, "qemu: fatal: Trying to execute code " + "outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr); + log_cpu_state_mask(LOG_GUEST_ERROR, cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); +} + +static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) +{ + ram_addr_t ram_addr; + + ram_addr = qemu_ram_addr_from_host(ptr); + if (ram_addr == RAM_ADDR_INVALID) { + error_report("Bad ram pointer %p", ptr); + abort(); + } + return ram_addr; +} + +/* NOTE: this function can trigger an exception */ +/* NOTE2: the returned address is not exactly the physical address: it + * is actually a ram_addr_t (in system mode; the user mode emulation + * version of this function returns a guest virtual address). + */ +tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) +{ + int mmu_idx, page_index, pd; + void *p; + MemoryRegion *mr; + CPUState *cpu = ENV_GET_CPU(env1); + CPUIOTLBEntry *iotlbentry; + + page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + mmu_idx = cpu_mmu_index(env1, true); + if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code != + (addr & TARGET_PAGE_MASK))) { + cpu_ldub_code(env1, addr); + } + iotlbentry = &env1->iotlb[mmu_idx][page_index]; + pd = iotlbentry->addr & ~TARGET_PAGE_MASK; + mr = iotlb_to_region(cpu, pd, iotlbentry->attrs); + if (memory_region_is_unassigned(mr)) { + cpu_unassigned_access(cpu, addr, false, true, 0, 4); + /* The CPU's unassigned access hook might have longjumped out + * with an exception. If it didn't (or there was no hook) then + * we can't proceed further. + */ + report_bad_exec(cpu, addr); + exit(1); + } + p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend); + return qemu_ram_addr_from_host_nofail(p); +} + +static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry, + target_ulong addr, uintptr_t retaddr, int size) +{ + CPUState *cpu = ENV_GET_CPU(env); + hwaddr physaddr = iotlbentry->addr; + MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs); + uint64_t val; + bool locked = false; + + physaddr = (physaddr & TARGET_PAGE_MASK) + addr; + cpu->mem_io_pc = retaddr; + if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { + cpu_io_recompile(cpu, retaddr); + } + + cpu->mem_io_vaddr = addr; + + if (mr->global_locking) { + qemu_mutex_lock_iothread(); + locked = true; + } + memory_region_dispatch_read(mr, physaddr, &val, size, iotlbentry->attrs); + if (locked) { + qemu_mutex_unlock_iothread(); + } + + return val; +} + +static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry, + uint64_t val, target_ulong addr, + uintptr_t retaddr, int size) +{ + CPUState *cpu = ENV_GET_CPU(env); + hwaddr physaddr = iotlbentry->addr; + MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs); + bool locked = false; + + physaddr = (physaddr & TARGET_PAGE_MASK) + addr; + if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { + cpu_io_recompile(cpu, retaddr); + } + cpu->mem_io_vaddr = addr; + cpu->mem_io_pc = retaddr; + + if (mr->global_locking) { + qemu_mutex_lock_iothread(); + locked = true; + } + memory_region_dispatch_write(mr, physaddr, val, size, iotlbentry->attrs); + if (locked) { + qemu_mutex_unlock_iothread(); + } +} + +/* Return true if ADDR is present in the victim tlb, and has been copied + back to the main tlb. */ +static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, + size_t elt_ofs, target_ulong page) +{ + size_t vidx; + for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { + CPUTLBEntry *vtlb = &env->tlb_v_table[mmu_idx][vidx]; + target_ulong cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs); + + if (cmp == page) { + /* Found entry in victim tlb, swap tlb and iotlb. */ + CPUTLBEntry tmptlb, *tlb = &env->tlb_table[mmu_idx][index]; + + copy_tlb_helper(&tmptlb, tlb, false); + copy_tlb_helper(tlb, vtlb, true); + copy_tlb_helper(vtlb, &tmptlb, true); + + CPUIOTLBEntry tmpio, *io = &env->iotlb[mmu_idx][index]; + CPUIOTLBEntry *vio = &env->iotlb_v[mmu_idx][vidx]; + tmpio = *io; *io = *vio; *vio = tmpio; + return true; + } + } + return false; +} + +/* Macro to call the above, with local variables from the use context. */ +#define VICTIM_TLB_HIT(TY, ADDR) \ + victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \ + (ADDR) & TARGET_PAGE_MASK) + +/* Probe for whether the specified guest write access is permitted. + * If it is not permitted then an exception will be taken in the same + * way as if this were a real write access (and we will not return). + * Otherwise the function will return, and there will be a valid + * entry in the TLB for this access. + */ +void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx, + uintptr_t retaddr) +{ + int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; + + if ((addr & TARGET_PAGE_MASK) + != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { + /* TLB entry is for a different page */ + if (!VICTIM_TLB_HIT(addr_write, addr)) { + tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); + } + } +} + +/* Probe for a read-modify-write atomic operation. Do not allow unaligned + * operations, or io operations to proceed. Return the host address. */ +static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, + TCGMemOpIdx oi, uintptr_t retaddr) +{ + size_t mmu_idx = get_mmuidx(oi); + size_t index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + CPUTLBEntry *tlbe = &env->tlb_table[mmu_idx][index]; + target_ulong tlb_addr = tlbe->addr_write; + TCGMemOp mop = get_memop(oi); + int a_bits = get_alignment_bits(mop); + int s_bits = mop & MO_SIZE; + + /* Adjust the given return address. */ + retaddr -= GETPC_ADJ; + + /* Enforce guest required alignment. */ + if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { + /* ??? Maybe indicate atomic op to cpu_unaligned_access */ + cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, + mmu_idx, retaddr); + } + + /* Enforce qemu required alignment. */ + if (unlikely(addr & ((1 << s_bits) - 1))) { + /* We get here if guest alignment was not requested, + or was not enforced by cpu_unaligned_access above. + We might widen the access and emulate, but for now + mark an exception and exit the cpu loop. */ + goto stop_the_world; + } + + /* Check TLB entry and enforce page permissions. */ + if ((addr & TARGET_PAGE_MASK) + != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { + if (!VICTIM_TLB_HIT(addr_write, addr)) { + tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); + } + tlb_addr = tlbe->addr_write; + } + + /* Check notdirty */ + if (unlikely(tlb_addr & TLB_NOTDIRTY)) { + tlb_set_dirty(ENV_GET_CPU(env), addr); + tlb_addr = tlb_addr & ~TLB_NOTDIRTY; + } + + /* Notice an IO access */ + if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { + /* There's really nothing that can be done to + support this apart from stop-the-world. */ + goto stop_the_world; + } + + /* Let the guest notice RMW on a write-only page. */ + if (unlikely(tlbe->addr_read != tlb_addr)) { + tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_LOAD, mmu_idx, retaddr); + /* Since we don't support reads and writes to different addresses, + and we do have the proper page loaded for write, this shouldn't + ever return. But just in case, handle via stop-the-world. */ + goto stop_the_world; + } + + return (void *)((uintptr_t)addr + tlbe->addend); + + stop_the_world: + cpu_loop_exit_atomic(ENV_GET_CPU(env), retaddr); +} + +#ifdef TARGET_WORDS_BIGENDIAN +# define TGT_BE(X) (X) +# define TGT_LE(X) BSWAP(X) +#else +# define TGT_BE(X) BSWAP(X) +# define TGT_LE(X) (X) +#endif + +#define MMUSUFFIX _mmu + +#define DATA_SIZE 1 +#include "softmmu_template.h" + +#define DATA_SIZE 2 +#include "softmmu_template.h" + +#define DATA_SIZE 4 +#include "softmmu_template.h" + +#define DATA_SIZE 8 +#include "softmmu_template.h" + +/* First set of helpers allows passing in of OI and RETADDR. This makes + them callable from other helpers. */ + +#define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr +#define ATOMIC_NAME(X) \ + HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu)) +#define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr) + +#define DATA_SIZE 1 +#include "atomic_template.h" + +#define DATA_SIZE 2 +#include "atomic_template.h" + +#define DATA_SIZE 4 +#include "atomic_template.h" + +#ifdef CONFIG_ATOMIC64 +#define DATA_SIZE 8 +#include "atomic_template.h" +#endif + +#ifdef CONFIG_ATOMIC128 +#define DATA_SIZE 16 +#include "atomic_template.h" +#endif + +/* Second set of helpers are directly callable from TCG as helpers. */ + +#undef EXTRA_ARGS +#undef ATOMIC_NAME +#undef ATOMIC_MMU_LOOKUP +#define EXTRA_ARGS , TCGMemOpIdx oi +#define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END)) +#define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, GETPC()) + +#define DATA_SIZE 1 +#include "atomic_template.h" + +#define DATA_SIZE 2 +#include "atomic_template.h" + +#define DATA_SIZE 4 +#include "atomic_template.h" + +#ifdef CONFIG_ATOMIC64 +#define DATA_SIZE 8 +#include "atomic_template.h" +#endif + +/* Code access functions. */ + +#undef MMUSUFFIX +#define MMUSUFFIX _cmmu +#undef GETPC +#define GETPC() ((uintptr_t)0) +#define SOFTMMU_CODE_ACCESS + +#define DATA_SIZE 1 +#include "softmmu_template.h" + +#define DATA_SIZE 2 +#include "softmmu_template.h" + +#define DATA_SIZE 4 +#include "softmmu_template.h" + +#define DATA_SIZE 8 +#include "softmmu_template.h" diff --git a/accel/tcg/trace-events b/accel/tcg/trace-events new file mode 100644 index 0000000000..f2db388bdc --- /dev/null +++ b/accel/tcg/trace-events @@ -0,0 +1,7 @@ +# Trace events for debugging and performance instrumentation + +# TCG related tracing (mostly disabled by default) +# cpu-exec.c +disable exec_tb(void *tb, uintptr_t pc) "tb:%p pc=0x%"PRIxPTR +disable exec_tb_nocache(void *tb, uintptr_t pc) "tb:%p pc=0x%"PRIxPTR +disable exec_tb_exit(void *last_tb, unsigned int flags) "tb:%p flags=%x" |