aboutsummaryrefslogtreecommitdiff
path: root/accel
diff options
context:
space:
mode:
authorYang Zhong <yang.zhong@intel.com>2017-06-02 14:06:45 +0800
committerPaolo Bonzini <pbonzini@redhat.com>2017-06-15 11:04:06 +0200
commit244f144134d0dd182f1af8654e7f9a79fe770368 (patch)
tree4d67a5fcf277ad4923855d4bc1c97825503892fc /accel
parentd9bb58e51068dfc48746c6af0179926c8dc05bce (diff)
tcg: move tcg backend files into accel/tcg/
move tcg-runtime.c, translate-all.(ch) and translate-common.c into accel/tcg/ subdirectory and updated related trace-events file. Signed-off-by: Yang Zhong <yang.zhong@intel.com> Message-Id: <1496383606-18060-4-git-send-email-yang.zhong@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'accel')
-rw-r--r--accel/tcg/Makefile.objs2
-rw-r--r--accel/tcg/trace-events3
-rw-r--r--accel/tcg/translate-all.c2221
-rw-r--r--accel/tcg/translate-all.h36
-rw-r--r--accel/tcg/translate-common.c56
5 files changed, 2317 insertions, 1 deletions
diff --git a/accel/tcg/Makefile.objs b/accel/tcg/Makefile.objs
index 940379beb8..f173cd5397 100644
--- a/accel/tcg/Makefile.objs
+++ b/accel/tcg/Makefile.objs
@@ -1,3 +1,3 @@
obj-$(CONFIG_SOFTMMU) += tcg-all.o
obj-$(CONFIG_SOFTMMU) += cputlb.o
-obj-y += cpu-exec.o cpu-exec-common.o
+obj-y += cpu-exec.o cpu-exec-common.o translate-all.o translate-common.o
diff --git a/accel/tcg/trace-events b/accel/tcg/trace-events
index f2db388bdc..2de8359670 100644
--- a/accel/tcg/trace-events
+++ b/accel/tcg/trace-events
@@ -5,3 +5,6 @@
disable exec_tb(void *tb, uintptr_t pc) "tb:%p pc=0x%"PRIxPTR
disable exec_tb_nocache(void *tb, uintptr_t pc) "tb:%p pc=0x%"PRIxPTR
disable exec_tb_exit(void *last_tb, unsigned int flags) "tb:%p flags=%x"
+
+# translate-all.c
+translate_block(void *tb, uintptr_t pc, uint8_t *tb_code) "tb:%p, pc:0x%"PRIxPTR", tb_code:%p"
diff --git a/accel/tcg/translate-all.c b/accel/tcg/translate-all.c
new file mode 100644
index 0000000000..7b25a16244
--- /dev/null
+++ b/accel/tcg/translate-all.c
@@ -0,0 +1,2221 @@
+/*
+ * Host code generation
+ *
+ * Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+#ifdef _WIN32
+#include <windows.h>
+#endif
+#include "qemu/osdep.h"
+
+
+#include "qemu-common.h"
+#define NO_CPU_IO_DEFS
+#include "cpu.h"
+#include "trace.h"
+#include "disas/disas.h"
+#include "exec/exec-all.h"
+#include "tcg.h"
+#if defined(CONFIG_USER_ONLY)
+#include "qemu.h"
+#include "exec/exec-all.h"
+#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
+#include <sys/param.h>
+#if __FreeBSD_version >= 700104
+#define HAVE_KINFO_GETVMMAP
+#define sigqueue sigqueue_freebsd /* avoid redefinition */
+#include <sys/proc.h>
+#include <machine/profile.h>
+#define _KERNEL
+#include <sys/user.h>
+#undef _KERNEL
+#undef sigqueue
+#include <libutil.h>
+#endif
+#endif
+#else
+#include "exec/address-spaces.h"
+#endif
+
+#include "exec/cputlb.h"
+#include "exec/tb-hash.h"
+#include "translate-all.h"
+#include "qemu/bitmap.h"
+#include "qemu/timer.h"
+#include "qemu/main-loop.h"
+#include "exec/log.h"
+#include "sysemu/cpus.h"
+
+/* #define DEBUG_TB_INVALIDATE */
+/* #define DEBUG_TB_FLUSH */
+/* make various TB consistency checks */
+/* #define DEBUG_TB_CHECK */
+
+#if !defined(CONFIG_USER_ONLY)
+/* TB consistency checks only implemented for usermode emulation. */
+#undef DEBUG_TB_CHECK
+#endif
+
+/* Access to the various translations structures need to be serialised via locks
+ * for consistency. This is automatic for SoftMMU based system
+ * emulation due to its single threaded nature. In user-mode emulation
+ * access to the memory related structures are protected with the
+ * mmap_lock.
+ */
+#ifdef CONFIG_SOFTMMU
+#define assert_memory_lock() tcg_debug_assert(have_tb_lock)
+#else
+#define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
+#endif
+
+#define SMC_BITMAP_USE_THRESHOLD 10
+
+typedef struct PageDesc {
+ /* list of TBs intersecting this ram page */
+ TranslationBlock *first_tb;
+#ifdef CONFIG_SOFTMMU
+ /* in order to optimize self modifying code, we count the number
+ of lookups we do to a given page to use a bitmap */
+ unsigned int code_write_count;
+ unsigned long *code_bitmap;
+#else
+ unsigned long flags;
+#endif
+} PageDesc;
+
+/* In system mode we want L1_MAP to be based on ram offsets,
+ while in user mode we want it to be based on virtual addresses. */
+#if !defined(CONFIG_USER_ONLY)
+#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
+# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
+#else
+# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
+#endif
+#else
+# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
+#endif
+
+/* Size of the L2 (and L3, etc) page tables. */
+#define V_L2_BITS 10
+#define V_L2_SIZE (1 << V_L2_BITS)
+
+uintptr_t qemu_host_page_size;
+intptr_t qemu_host_page_mask;
+
+/*
+ * L1 Mapping properties
+ */
+static int v_l1_size;
+static int v_l1_shift;
+static int v_l2_levels;
+
+/* The bottom level has pointers to PageDesc, and is indexed by
+ * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
+ */
+#define V_L1_MIN_BITS 4
+#define V_L1_MAX_BITS (V_L2_BITS + 3)
+#define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
+
+static void *l1_map[V_L1_MAX_SIZE];
+
+/* code generation context */
+TCGContext tcg_ctx;
+bool parallel_cpus;
+
+/* translation block context */
+__thread int have_tb_lock;
+
+static void page_table_config_init(void)
+{
+ uint32_t v_l1_bits;
+
+ assert(TARGET_PAGE_BITS);
+ /* The bits remaining after N lower levels of page tables. */
+ v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
+ if (v_l1_bits < V_L1_MIN_BITS) {
+ v_l1_bits += V_L2_BITS;
+ }
+
+ v_l1_size = 1 << v_l1_bits;
+ v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
+ v_l2_levels = v_l1_shift / V_L2_BITS - 1;
+
+ assert(v_l1_bits <= V_L1_MAX_BITS);
+ assert(v_l1_shift % V_L2_BITS == 0);
+ assert(v_l2_levels >= 0);
+}
+
+#define assert_tb_locked() tcg_debug_assert(have_tb_lock)
+#define assert_tb_unlocked() tcg_debug_assert(!have_tb_lock)
+
+void tb_lock(void)
+{
+ assert_tb_unlocked();
+ qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
+ have_tb_lock++;
+}
+
+void tb_unlock(void)
+{
+ assert_tb_locked();
+ have_tb_lock--;
+ qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
+}
+
+void tb_lock_reset(void)
+{
+ if (have_tb_lock) {
+ qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
+ have_tb_lock = 0;
+ }
+}
+
+static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
+
+void cpu_gen_init(void)
+{
+ tcg_context_init(&tcg_ctx);
+}
+
+/* Encode VAL as a signed leb128 sequence at P.
+ Return P incremented past the encoded value. */
+static uint8_t *encode_sleb128(uint8_t *p, target_long val)
+{
+ int more, byte;
+
+ do {
+ byte = val & 0x7f;
+ val >>= 7;
+ more = !((val == 0 && (byte & 0x40) == 0)
+ || (val == -1 && (byte & 0x40) != 0));
+ if (more) {
+ byte |= 0x80;
+ }
+ *p++ = byte;
+ } while (more);
+
+ return p;
+}
+
+/* Decode a signed leb128 sequence at *PP; increment *PP past the
+ decoded value. Return the decoded value. */
+static target_long decode_sleb128(uint8_t **pp)
+{
+ uint8_t *p = *pp;
+ target_long val = 0;
+ int byte, shift = 0;
+
+ do {
+ byte = *p++;
+ val |= (target_ulong)(byte & 0x7f) << shift;
+ shift += 7;
+ } while (byte & 0x80);
+ if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
+ val |= -(target_ulong)1 << shift;
+ }
+
+ *pp = p;
+ return val;
+}
+
+/* Encode the data collected about the instructions while compiling TB.
+ Place the data at BLOCK, and return the number of bytes consumed.
+
+ The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
+ which come from the target's insn_start data, followed by a uintptr_t
+ which comes from the host pc of the end of the code implementing the insn.
+
+ Each line of the table is encoded as sleb128 deltas from the previous
+ line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
+ That is, the first column is seeded with the guest pc, the last column
+ with the host pc, and the middle columns with zeros. */
+
+static int encode_search(TranslationBlock *tb, uint8_t *block)
+{
+ uint8_t *highwater = tcg_ctx.code_gen_highwater;
+ uint8_t *p = block;
+ int i, j, n;
+
+ tb->tc_search = block;
+
+ for (i = 0, n = tb->icount; i < n; ++i) {
+ target_ulong prev;
+
+ for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
+ if (i == 0) {
+ prev = (j == 0 ? tb->pc : 0);
+ } else {
+ prev = tcg_ctx.gen_insn_data[i - 1][j];
+ }
+ p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
+ }
+ prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
+ p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
+
+ /* Test for (pending) buffer overflow. The assumption is that any
+ one row beginning below the high water mark cannot overrun
+ the buffer completely. Thus we can test for overflow after
+ encoding a row without having to check during encoding. */
+ if (unlikely(p > highwater)) {
+ return -1;
+ }
+ }
+
+ return p - block;
+}
+
+/* The cpu state corresponding to 'searched_pc' is restored.
+ * Called with tb_lock held.
+ */
+static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
+ uintptr_t searched_pc)
+{
+ target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
+ uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
+ CPUArchState *env = cpu->env_ptr;
+ uint8_t *p = tb->tc_search;
+ int i, j, num_insns = tb->icount;
+#ifdef CONFIG_PROFILER
+ int64_t ti = profile_getclock();
+#endif
+
+ searched_pc -= GETPC_ADJ;
+
+ if (searched_pc < host_pc) {
+ return -1;
+ }
+
+ /* Reconstruct the stored insn data while looking for the point at
+ which the end of the insn exceeds the searched_pc. */
+ for (i = 0; i < num_insns; ++i) {
+ for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
+ data[j] += decode_sleb128(&p);
+ }
+ host_pc += decode_sleb128(&p);
+ if (host_pc > searched_pc) {
+ goto found;
+ }
+ }
+ return -1;
+
+ found:
+ if (tb->cflags & CF_USE_ICOUNT) {
+ assert(use_icount);
+ /* Reset the cycle counter to the start of the block. */
+ cpu->icount_decr.u16.low += num_insns;
+ /* Clear the IO flag. */
+ cpu->can_do_io = 0;
+ }
+ cpu->icount_decr.u16.low -= i;
+ restore_state_to_opc(env, tb, data);
+
+#ifdef CONFIG_PROFILER
+ tcg_ctx.restore_time += profile_getclock() - ti;
+ tcg_ctx.restore_count++;
+#endif
+ return 0;
+}
+
+bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
+{
+ TranslationBlock *tb;
+ bool r = false;
+
+ /* A retaddr of zero is invalid so we really shouldn't have ended
+ * up here. The target code has likely forgotten to check retaddr
+ * != 0 before attempting to restore state. We return early to
+ * avoid blowing up on a recursive tb_lock(). The target must have
+ * previously survived a failed cpu_restore_state because
+ * tb_find_pc(0) would have failed anyway. It still should be
+ * fixed though.
+ */
+
+ if (!retaddr) {
+ return r;
+ }
+
+ tb_lock();
+ tb = tb_find_pc(retaddr);
+ if (tb) {
+ cpu_restore_state_from_tb(cpu, tb, retaddr);
+ if (tb->cflags & CF_NOCACHE) {
+ /* one-shot translation, invalidate it immediately */
+ tb_phys_invalidate(tb, -1);
+ tb_free(tb);
+ }
+ r = true;
+ }
+ tb_unlock();
+
+ return r;
+}
+
+void page_size_init(void)
+{
+ /* NOTE: we can always suppose that qemu_host_page_size >=
+ TARGET_PAGE_SIZE */
+ qemu_real_host_page_size = getpagesize();
+ qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
+ if (qemu_host_page_size == 0) {
+ qemu_host_page_size = qemu_real_host_page_size;
+ }
+ if (qemu_host_page_size < TARGET_PAGE_SIZE) {
+ qemu_host_page_size = TARGET_PAGE_SIZE;
+ }
+ qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
+}
+
+static void page_init(void)
+{
+ page_size_init();
+ page_table_config_init();
+
+#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
+ {
+#ifdef HAVE_KINFO_GETVMMAP
+ struct kinfo_vmentry *freep;
+ int i, cnt;
+
+ freep = kinfo_getvmmap(getpid(), &cnt);
+ if (freep) {
+ mmap_lock();
+ for (i = 0; i < cnt; i++) {
+ unsigned long startaddr, endaddr;
+
+ startaddr = freep[i].kve_start;
+ endaddr = freep[i].kve_end;
+ if (h2g_valid(startaddr)) {
+ startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
+
+ if (h2g_valid(endaddr)) {
+ endaddr = h2g(endaddr);
+ page_set_flags(startaddr, endaddr, PAGE_RESERVED);
+ } else {
+#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
+ endaddr = ~0ul;
+ page_set_flags(startaddr, endaddr, PAGE_RESERVED);
+#endif
+ }
+ }
+ }
+ free(freep);
+ mmap_unlock();
+ }
+#else
+ FILE *f;
+
+ last_brk = (unsigned long)sbrk(0);
+
+ f = fopen("/compat/linux/proc/self/maps", "r");
+ if (f) {
+ mmap_lock();
+
+ do {
+ unsigned long startaddr, endaddr;
+ int n;
+
+ n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
+
+ if (n == 2 && h2g_valid(startaddr)) {
+ startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
+
+ if (h2g_valid(endaddr)) {
+ endaddr = h2g(endaddr);
+ } else {
+ endaddr = ~0ul;
+ }
+ page_set_flags(startaddr, endaddr, PAGE_RESERVED);
+ }
+ } while (!feof(f));
+
+ fclose(f);
+ mmap_unlock();
+ }
+#endif
+ }
+#endif
+}
+
+/* If alloc=1:
+ * Called with tb_lock held for system emulation.
+ * Called with mmap_lock held for user-mode emulation.
+ */
+static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
+{
+ PageDesc *pd;
+ void **lp;
+ int i;
+
+ if (alloc) {
+ assert_memory_lock();
+ }
+
+ /* Level 1. Always allocated. */
+ lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
+
+ /* Level 2..N-1. */
+ for (i = v_l2_levels; i > 0; i--) {
+ void **p = atomic_rcu_read(lp);
+
+ if (p == NULL) {
+ if (!alloc) {
+ return NULL;
+ }
+ p = g_new0(void *, V_L2_SIZE);
+ atomic_rcu_set(lp, p);
+ }
+
+ lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
+ }
+
+ pd = atomic_rcu_read(lp);
+ if (pd == NULL) {
+ if (!alloc) {
+ return NULL;
+ }
+ pd = g_new0(PageDesc, V_L2_SIZE);
+ atomic_rcu_set(lp, pd);
+ }
+
+ return pd + (index & (V_L2_SIZE - 1));
+}
+
+static inline PageDesc *page_find(tb_page_addr_t index)
+{
+ return page_find_alloc(index, 0);
+}
+
+#if defined(CONFIG_USER_ONLY)
+/* Currently it is not recommended to allocate big chunks of data in
+ user mode. It will change when a dedicated libc will be used. */
+/* ??? 64-bit hosts ought to have no problem mmaping data outside the
+ region in which the guest needs to run. Revisit this. */
+#define USE_STATIC_CODE_GEN_BUFFER
+#endif
+
+/* Minimum size of the code gen buffer. This number is randomly chosen,
+ but not so small that we can't have a fair number of TB's live. */
+#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
+
+/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
+ indicated, this is constrained by the range of direct branches on the
+ host cpu, as used by the TCG implementation of goto_tb. */
+#if defined(__x86_64__)
+# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
+#elif defined(__sparc__)
+# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
+#elif defined(__powerpc64__)
+# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
+#elif defined(__powerpc__)
+# define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
+#elif defined(__aarch64__)
+# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
+#elif defined(__arm__)
+# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
+#elif defined(__s390x__)
+ /* We have a +- 4GB range on the branches; leave some slop. */
+# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
+#elif defined(__mips__)
+ /* We have a 256MB branch region, but leave room to make sure the
+ main executable is also within that region. */
+# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
+#else
+# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
+#endif
+
+#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
+
+#define DEFAULT_CODE_GEN_BUFFER_SIZE \
+ (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
+ ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
+
+static inline size_t size_code_gen_buffer(size_t tb_size)
+{
+ /* Size the buffer. */
+ if (tb_size == 0) {
+#ifdef USE_STATIC_CODE_GEN_BUFFER
+ tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
+#else
+ /* ??? Needs adjustments. */
+ /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
+ static buffer, we could size this on RESERVED_VA, on the text
+ segment size of the executable, or continue to use the default. */
+ tb_size = (unsigned long)(ram_size / 4);
+#endif
+ }
+ if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
+ tb_size = MIN_CODE_GEN_BUFFER_SIZE;
+ }
+ if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
+ tb_size = MAX_CODE_GEN_BUFFER_SIZE;
+ }
+ return tb_size;
+}
+
+#ifdef __mips__
+/* In order to use J and JAL within the code_gen_buffer, we require
+ that the buffer not cross a 256MB boundary. */
+static inline bool cross_256mb(void *addr, size_t size)
+{
+ return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
+}
+
+/* We weren't able to allocate a buffer without crossing that boundary,
+ so make do with the larger portion of the buffer that doesn't cross.
+ Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
+static inline void *split_cross_256mb(void *buf1, size_t size1)
+{
+ void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
+ size_t size2 = buf1 + size1 - buf2;
+
+ size1 = buf2 - buf1;
+ if (size1 < size2) {
+ size1 = size2;
+ buf1 = buf2;
+ }
+
+ tcg_ctx.code_gen_buffer_size = size1;
+ return buf1;
+}
+#endif
+
+#ifdef USE_STATIC_CODE_GEN_BUFFER
+static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
+ __attribute__((aligned(CODE_GEN_ALIGN)));
+
+# ifdef _WIN32
+static inline void do_protect(void *addr, long size, int prot)
+{
+ DWORD old_protect;
+ VirtualProtect(addr, size, prot, &old_protect);
+}
+
+static inline void map_exec(void *addr, long size)
+{
+ do_protect(addr, size, PAGE_EXECUTE_READWRITE);
+}
+
+static inline void map_none(void *addr, long size)
+{
+ do_protect(addr, size, PAGE_NOACCESS);
+}
+# else
+static inline void do_protect(void *addr, long size, int prot)
+{
+ uintptr_t start, end;
+
+ start = (uintptr_t)addr;
+ start &= qemu_real_host_page_mask;
+
+ end = (uintptr_t)addr + size;
+ end = ROUND_UP(end, qemu_real_host_page_size);
+
+ mprotect((void *)start, end - start, prot);
+}
+
+static inline void map_exec(void *addr, long size)
+{
+ do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
+}
+
+static inline void map_none(void *addr, long size)
+{
+ do_protect(addr, size, PROT_NONE);
+}
+# endif /* WIN32 */
+
+static inline void *alloc_code_gen_buffer(void)
+{
+ void *buf = static_code_gen_buffer;
+ size_t full_size, size;
+
+ /* The size of the buffer, rounded down to end on a page boundary. */
+ full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
+ & qemu_real_host_page_mask) - (uintptr_t)buf;
+
+ /* Reserve a guard page. */
+ size = full_size - qemu_real_host_page_size;
+
+ /* Honor a command-line option limiting the size of the buffer. */
+ if (size > tcg_ctx.code_gen_buffer_size) {
+ size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
+ & qemu_real_host_page_mask) - (uintptr_t)buf;
+ }
+ tcg_ctx.code_gen_buffer_size = size;
+
+#ifdef __mips__
+ if (cross_256mb(buf, size)) {
+ buf = split_cross_256mb(buf, size);
+ size = tcg_ctx.code_gen_buffer_size;
+ }
+#endif
+
+ map_exec(buf, size);
+ map_none(buf + size, qemu_real_host_page_size);
+ qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
+
+ return buf;
+}
+#elif defined(_WIN32)
+static inline void *alloc_code_gen_buffer(void)
+{
+ size_t size = tcg_ctx.code_gen_buffer_size;
+ void *buf1, *buf2;
+
+ /* Perform the allocation in two steps, so that the guard page
+ is reserved but uncommitted. */
+ buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
+ MEM_RESERVE, PAGE_NOACCESS);
+ if (buf1 != NULL) {
+ buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
+ assert(buf1 == buf2);
+ }
+
+ return buf1;
+}
+#else
+static inline void *alloc_code_gen_buffer(void)
+{
+ int flags = MAP_PRIVATE | MAP_ANONYMOUS;
+ uintptr_t start = 0;
+ size_t size = tcg_ctx.code_gen_buffer_size;
+ void *buf;
+
+ /* Constrain the position of the buffer based on the host cpu.
+ Note that these addresses are chosen in concert with the
+ addresses assigned in the relevant linker script file. */
+# if defined(__PIE__) || defined(__PIC__)
+ /* Don't bother setting a preferred location if we're building
+ a position-independent executable. We're more likely to get
+ an address near the main executable if we let the kernel
+ choose the address. */
+# elif defined(__x86_64__) && defined(MAP_32BIT)
+ /* Force the memory down into low memory with the executable.
+ Leave the choice of exact location with the kernel. */
+ flags |= MAP_32BIT;
+ /* Cannot expect to map more than 800MB in low memory. */
+ if (size > 800u * 1024 * 1024) {
+ tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
+ }
+# elif defined(__sparc__)
+ start = 0x40000000ul;
+# elif defined(__s390x__)
+ start = 0x90000000ul;
+# elif defined(__mips__)
+# if _MIPS_SIM == _ABI64
+ start = 0x128000000ul;
+# else
+ start = 0x08000000ul;
+# endif
+# endif
+
+ buf = mmap((void *)start, size + qemu_real_host_page_size,
+ PROT_NONE, flags, -1, 0);
+ if (buf == MAP_FAILED) {
+ return NULL;
+ }
+
+#ifdef __mips__
+ if (cross_256mb(buf, size)) {
+ /* Try again, with the original still mapped, to avoid re-acquiring
+ that 256mb crossing. This time don't specify an address. */
+ size_t size2;
+ void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
+ PROT_NONE, flags, -1, 0);
+ switch ((int)(buf2 != MAP_FAILED)) {
+ case 1:
+ if (!cross_256mb(buf2, size)) {
+ /* Success! Use the new buffer. */
+ munmap(buf, size + qemu_real_host_page_size);
+ break;
+ }
+ /* Failure. Work with what we had. */
+ munmap(buf2, size + qemu_real_host_page_size);
+ /* fallthru */
+ default:
+ /* Split the original buffer. Free the smaller half. */
+ buf2 = split_cross_256mb(buf, size);
+ size2 = tcg_ctx.code_gen_buffer_size;
+ if (buf == buf2) {
+ munmap(buf + size2 + qemu_real_host_page_size, size - size2);
+ } else {
+ munmap(buf, size - size2);
+ }
+ size = size2;
+ break;
+ }
+ buf = buf2;
+ }
+#endif
+
+ /* Make the final buffer accessible. The guard page at the end
+ will remain inaccessible with PROT_NONE. */
+ mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
+
+ /* Request large pages for the buffer. */
+ qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
+
+ return buf;
+}
+#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
+
+static inline void code_gen_alloc(size_t tb_size)
+{
+ tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
+ tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
+ if (tcg_ctx.code_gen_buffer == NULL) {
+ fprintf(stderr, "Could not allocate dynamic translator buffer\n");
+ exit(1);
+ }
+
+ /* Estimate a good size for the number of TBs we can support. We
+ still haven't deducted the prologue from the buffer size here,
+ but that's minimal and won't affect the estimate much. */
+ tcg_ctx.code_gen_max_blocks
+ = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
+ tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
+
+ qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
+}
+
+static void tb_htable_init(void)
+{
+ unsigned int mode = QHT_MODE_AUTO_RESIZE;
+
+ qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
+}
+
+/* Must be called before using the QEMU cpus. 'tb_size' is the size
+ (in bytes) allocated to the translation buffer. Zero means default
+ size. */
+void tcg_exec_init(unsigned long tb_size)
+{
+ cpu_gen_init();
+ page_init();
+ tb_htable_init();
+ code_gen_alloc(tb_size);
+#if defined(CONFIG_SOFTMMU)
+ /* There's no guest base to take into account, so go ahead and
+ initialize the prologue now. */
+ tcg_prologue_init(&tcg_ctx);
+#endif
+}
+
+bool tcg_enabled(void)
+{
+ return tcg_ctx.code_gen_buffer != NULL;
+}
+
+/*
+ * Allocate a new translation block. Flush the translation buffer if
+ * too many translation blocks or too much generated code.
+ *
+ * Called with tb_lock held.
+ */
+static TranslationBlock *tb_alloc(target_ulong pc)
+{
+ TranslationBlock *tb;
+
+ assert_tb_locked();
+
+ if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
+ return NULL;
+ }
+ tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
+ tb->pc = pc;
+ tb->cflags = 0;
+ tb->invalid = false;
+ return tb;
+}
+
+/* Called with tb_lock held. */
+void tb_free(TranslationBlock *tb)
+{
+ assert_tb_locked();
+
+ /* In practice this is mostly used for single use temporary TB
+ Ignore the hard cases and just back up if this TB happens to
+ be the last one generated. */
+ if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
+ tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
+ tcg_ctx.code_gen_ptr = tb->tc_ptr;
+ tcg_ctx.tb_ctx.nb_tbs--;
+ }
+}
+
+static inline void invalidate_page_bitmap(PageDesc *p)
+{
+#ifdef CONFIG_SOFTMMU
+ g_free(p->code_bitmap);
+ p->code_bitmap = NULL;
+ p->code_write_count = 0;
+#endif
+}
+
+/* Set to NULL all the 'first_tb' fields in all PageDescs. */
+static void page_flush_tb_1(int level, void **lp)
+{
+ int i;
+
+ if (*lp == NULL) {
+ return;
+ }
+ if (level == 0) {
+ PageDesc *pd = *lp;
+
+ for (i = 0; i < V_L2_SIZE; ++i) {
+ pd[i].first_tb = NULL;
+ invalidate_page_bitmap(pd + i);
+ }
+ } else {
+ void **pp = *lp;
+
+ for (i = 0; i < V_L2_SIZE; ++i) {
+ page_flush_tb_1(level - 1, pp + i);
+ }
+ }
+}
+
+static void page_flush_tb(void)
+{
+ int i, l1_sz = v_l1_size;
+
+ for (i = 0; i < l1_sz; i++) {
+ page_flush_tb_1(v_l2_levels, l1_map + i);
+ }
+}
+
+/* flush all the translation blocks */
+static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
+{
+ tb_lock();
+
+ /* If it is already been done on request of another CPU,
+ * just retry.
+ */
+ if (tcg_ctx.tb_ctx.tb_flush_count != tb_flush_count.host_int) {
+ goto done;
+ }
+
+#if defined(DEBUG_TB_FLUSH)
+ printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
+ (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
+ tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
+ ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
+ tcg_ctx.tb_ctx.nb_tbs : 0);
+#endif
+ if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
+ > tcg_ctx.code_gen_buffer_size) {
+ cpu_abort(cpu, "Internal error: code buffer overflow\n");
+ }
+
+ CPU_FOREACH(cpu) {
+ int i;
+
+ for (i = 0; i < TB_JMP_CACHE_SIZE; ++i) {
+ atomic_set(&cpu->tb_jmp_cache[i], NULL);
+ }
+ }
+
+ tcg_ctx.tb_ctx.nb_tbs = 0;
+ qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
+ page_flush_tb();
+
+ tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
+ /* XXX: flush processor icache at this point if cache flush is
+ expensive */
+ atomic_mb_set(&tcg_ctx.tb_ctx.tb_flush_count,
+ tcg_ctx.tb_ctx.tb_flush_count + 1);
+
+done:
+ tb_unlock();
+}
+
+void tb_flush(CPUState *cpu)
+{
+ if (tcg_enabled()) {
+ unsigned tb_flush_count = atomic_mb_read(&tcg_ctx.tb_ctx.tb_flush_count);
+ async_safe_run_on_cpu(cpu, do_tb_flush,
+ RUN_ON_CPU_HOST_INT(tb_flush_count));
+ }
+}
+
+#ifdef DEBUG_TB_CHECK
+
+static void
+do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
+{
+ TranslationBlock *tb = p;
+ target_ulong addr = *(target_ulong *)userp;
+
+ if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
+ printf("ERROR invalidate: address=" TARGET_FMT_lx
+ " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
+ }
+}
+
+/* verify that all the pages have correct rights for code
+ *
+ * Called with tb_lock held.
+ */
+static void tb_invalidate_check(target_ulong address)
+{
+ address &= TARGET_PAGE_MASK;
+ qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
+}
+
+static void
+do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
+{
+ TranslationBlock *tb = p;
+ int flags1, flags2;
+
+ flags1 = page_get_flags(tb->pc);
+ flags2 = page_get_flags(tb->pc + tb->size - 1);
+ if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
+ printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
+ (long)tb->pc, tb->size, flags1, flags2);
+ }
+}
+
+/* verify that all the pages have correct rights for code */
+static void tb_page_check(void)
+{
+ qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
+}
+
+#endif
+
+static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
+{
+ TranslationBlock *tb1;
+ unsigned int n1;
+
+ for (;;) {
+ tb1 = *ptb;
+ n1 = (uintptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
+ if (tb1 == tb) {
+ *ptb = tb1->page_next[n1];
+ break;
+ }
+ ptb = &tb1->page_next[n1];
+ }
+}
+
+/* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
+static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
+{
+ TranslationBlock *tb1;
+ uintptr_t *ptb, ntb;
+ unsigned int n1;
+
+ ptb = &tb->jmp_list_next[n];
+ if (*ptb) {
+ /* find tb(n) in circular list */
+ for (;;) {
+ ntb = *ptb;
+ n1 = ntb & 3;
+ tb1 = (TranslationBlock *)(ntb & ~3);
+ if (n1 == n && tb1 == tb) {
+ break;
+ }
+ if (n1 == 2) {
+ ptb = &tb1->jmp_list_first;
+ } else {
+ ptb = &tb1->jmp_list_next[n1];
+ }
+ }
+ /* now we can suppress tb(n) from the list */
+ *ptb = tb->jmp_list_next[n];
+
+ tb->jmp_list_next[n] = (uintptr_t)NULL;
+ }
+}
+
+/* reset the jump entry 'n' of a TB so that it is not chained to
+ another TB */
+static inline void tb_reset_jump(TranslationBlock *tb, int n)
+{
+ uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
+ tb_set_jmp_target(tb, n, addr);
+}
+
+/* remove any jumps to the TB */
+static inline void tb_jmp_unlink(TranslationBlock *tb)
+{
+ TranslationBlock *tb1;
+ uintptr_t *ptb, ntb;
+ unsigned int n1;
+
+ ptb = &tb->jmp_list_first;
+ for (;;) {
+ ntb = *ptb;
+ n1 = ntb & 3;
+ tb1 = (TranslationBlock *)(ntb & ~3);
+ if (n1 == 2) {
+ break;
+ }
+ tb_reset_jump(tb1, n1);
+ *ptb = tb1->jmp_list_next[n1];
+ tb1->jmp_list_next[n1] = (uintptr_t)NULL;
+ }
+}
+
+/* invalidate one TB
+ *
+ * Called with tb_lock held.
+ */
+void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
+{
+ CPUState *cpu;
+ PageDesc *p;
+ uint32_t h;
+ tb_page_addr_t phys_pc;
+
+ assert_tb_locked();
+
+ atomic_set(&tb->invalid, true);
+
+ /* remove the TB from the hash list */
+ phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
+ h = tb_hash_func(phys_pc, tb->pc, tb->flags);
+ qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
+
+ /* remove the TB from the page list */
+ if (tb->page_addr[0] != page_addr) {
+ p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
+ tb_page_remove(&p->first_tb, tb);
+ invalidate_page_bitmap(p);
+ }
+ if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
+ p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
+ tb_page_remove(&p->first_tb, tb);
+ invalidate_page_bitmap(p);
+ }
+
+ /* remove the TB from the hash list */
+ h = tb_jmp_cache_hash_func(tb->pc);
+ CPU_FOREACH(cpu) {
+ if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
+ atomic_set(&cpu->tb_jmp_cache[h], NULL);
+ }
+ }
+
+ /* suppress this TB from the two jump lists */
+ tb_remove_from_jmp_list(tb, 0);
+ tb_remove_from_jmp_list(tb, 1);
+
+ /* suppress any remaining jumps to this TB */
+ tb_jmp_unlink(tb);
+
+ tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
+}
+
+#ifdef CONFIG_SOFTMMU
+static void build_page_bitmap(PageDesc *p)
+{
+ int n, tb_start, tb_end;
+ TranslationBlock *tb;
+
+ p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
+
+ tb = p->first_tb;
+ while (tb != NULL) {
+ n = (uintptr_t)tb & 3;
+ tb = (TranslationBlock *)((uintptr_t)tb & ~3);
+ /* NOTE: this is subtle as a TB may span two physical pages */
+ if (n == 0) {
+ /* NOTE: tb_end may be after the end of the page, but
+ it is not a problem */
+ tb_start = tb->pc & ~TARGET_PAGE_MASK;
+ tb_end = tb_start + tb->size;
+ if (tb_end > TARGET_PAGE_SIZE) {
+ tb_end = TARGET_PAGE_SIZE;
+ }
+ } else {
+ tb_start = 0;
+ tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
+ }
+ bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
+ tb = tb->page_next[n];
+ }
+}
+#endif
+
+/* add the tb in the target page and protect it if necessary
+ *
+ * Called with mmap_lock held for user-mode emulation.
+ */
+static inline void tb_alloc_page(TranslationBlock *tb,
+ unsigned int n, tb_page_addr_t page_addr)
+{
+ PageDesc *p;
+#ifndef CONFIG_USER_ONLY
+ bool page_already_protected;
+#endif
+
+ assert_memory_lock();
+
+ tb->page_addr[n] = page_addr;
+ p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
+ tb->page_next[n] = p->first_tb;
+#ifndef CONFIG_USER_ONLY
+ page_already_protected = p->first_tb != NULL;
+#endif
+ p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
+ invalidate_page_bitmap(p);
+
+#if defined(CONFIG_USER_ONLY)
+ if (p->flags & PAGE_WRITE) {
+ target_ulong addr;
+ PageDesc *p2;
+ int prot;
+
+ /* force the host page as non writable (writes will have a
+ page fault + mprotect overhead) */
+ page_addr &= qemu_host_page_mask;
+ prot = 0;
+ for (addr = page_addr; addr < page_addr + qemu_host_page_size;
+ addr += TARGET_PAGE_SIZE) {
+
+ p2 = page_find(addr >> TARGET_PAGE_BITS);
+ if (!p2) {
+ continue;
+ }
+ prot |= p2->flags;
+ p2->flags &= ~PAGE_WRITE;
+ }
+ mprotect(g2h(page_addr), qemu_host_page_size,
+ (prot & PAGE_BITS) & ~PAGE_WRITE);
+#ifdef DEBUG_TB_INVALIDATE
+ printf("protecting code page: 0x" TARGET_FMT_lx "\n",
+ page_addr);
+#endif
+ }
+#else
+ /* if some code is already present, then the pages are already
+ protected. So we handle the case where only the first TB is
+ allocated in a physical page */
+ if (!page_already_protected) {
+ tlb_protect_code(page_addr);
+ }
+#endif
+}
+
+/* add a new TB and link it to the physical page tables. phys_page2 is
+ * (-1) to indicate that only one page contains the TB.
+ *
+ * Called with mmap_lock held for user-mode emulation.
+ */
+static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
+ tb_page_addr_t phys_page2)
+{
+ uint32_t h;
+
+ assert_memory_lock();
+
+ /* add in the page list */
+ tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
+ if (phys_page2 != -1) {
+ tb_alloc_page(tb, 1, phys_page2);
+ } else {
+ tb->page_addr[1] = -1;
+ }
+
+ /* add in the hash table */
+ h = tb_hash_func(phys_pc, tb->pc, tb->flags);
+ qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);
+
+#ifdef DEBUG_TB_CHECK
+ tb_page_check();
+#endif
+}
+
+/* Called with mmap_lock held for user mode emulation. */
+TranslationBlock *tb_gen_code(CPUState *cpu,
+ target_ulong pc, target_ulong cs_base,
+ uint32_t flags, int cflags)
+{
+ CPUArchState *env = cpu->env_ptr;
+ TranslationBlock *tb;
+ tb_page_addr_t phys_pc, phys_page2;
+ target_ulong virt_page2;
+ tcg_insn_unit *gen_code_buf;
+ int gen_code_size, search_size;
+#ifdef CONFIG_PROFILER
+ int64_t ti;
+#endif
+ assert_memory_lock();
+
+ phys_pc = get_page_addr_code(env, pc);
+ if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
+ cflags |= CF_USE_ICOUNT;
+ }
+
+ tb = tb_alloc(pc);
+ if (unlikely(!tb)) {
+ buffer_overflow:
+ /* flush must be done */
+ tb_flush(cpu);
+ mmap_unlock();
+ /* Make the execution loop process the flush as soon as possible. */
+ cpu->exception_index = EXCP_INTERRUPT;
+ cpu_loop_exit(cpu);
+ }
+
+ gen_code_buf = tcg_ctx.code_gen_ptr;
+ tb->tc_ptr = gen_code_buf;
+ tb->cs_base = cs_base;
+ tb->flags = flags;
+ tb->cflags = cflags;
+
+#ifdef CONFIG_PROFILER
+ tcg_ctx.tb_count1++; /* includes aborted translations because of
+ exceptions */
+ ti = profile_getclock();
+#endif
+
+ tcg_func_start(&tcg_ctx);
+
+ tcg_ctx.cpu = ENV_GET_CPU(env);
+ gen_intermediate_code(env, tb);
+ tcg_ctx.cpu = NULL;
+
+ trace_translate_block(tb, tb->pc, tb->tc_ptr);
+
+ /* generate machine code */
+ tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
+ tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
+ tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
+#ifdef USE_DIRECT_JUMP
+ tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
+ tcg_ctx.tb_jmp_target_addr = NULL;
+#else
+ tcg_ctx.tb_jmp_insn_offset = NULL;
+ tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
+#endif
+
+#ifdef CONFIG_PROFILER
+ tcg_ctx.tb_count++;
+ tcg_ctx.interm_time += profile_getclock() - ti;
+ tcg_ctx.code_time -= profile_getclock();
+#endif
+
+ /* ??? Overflow could be handled better here. In particular, we
+ don't need to re-do gen_intermediate_code, nor should we re-do
+ the tcg optimization currently hidden inside tcg_gen_code. All
+ that should be required is to flush the TBs, allocate a new TB,
+ re-initialize it per above, and re-do the actual code generation. */
+ gen_code_size = tcg_gen_code(&tcg_ctx, tb);
+ if (unlikely(gen_code_size < 0)) {
+ goto buffer_overflow;
+ }
+ search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
+ if (unlikely(search_size < 0)) {
+ goto buffer_overflow;
+ }
+
+#ifdef CONFIG_PROFILER
+ tcg_ctx.code_time += profile_getclock();
+ tcg_ctx.code_in_len += tb->size;
+ tcg_ctx.code_out_len += gen_code_size;
+ tcg_ctx.search_out_len += search_size;
+#endif
+
+#ifdef DEBUG_DISAS
+ if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
+ qemu_log_in_addr_range(tb->pc)) {
+ qemu_log_lock();
+ qemu_log("OUT: [size=%d]\n", gen_code_size);
+ log_disas(tb->tc_ptr, gen_code_size);
+ qemu_log("\n");
+ qemu_log_flush();
+ qemu_log_unlock();
+ }
+#endif
+
+ tcg_ctx.code_gen_ptr = (void *)
+ ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
+ CODE_GEN_ALIGN);
+
+ /* init jump list */
+ assert(((uintptr_t)tb & 3) == 0);
+ tb->jmp_list_first = (uintptr_t)tb | 2;
+ tb->jmp_list_next[0] = (uintptr_t)NULL;
+ tb->jmp_list_next[1] = (uintptr_t)NULL;
+
+ /* init original jump addresses wich has been set during tcg_gen_code() */
+ if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
+ tb_reset_jump(tb, 0);
+ }
+ if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
+ tb_reset_jump(tb, 1);
+ }
+
+ /* check next page if needed */
+ virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
+ phys_page2 = -1;
+ if ((pc & TARGET_PAGE_MASK) != virt_page2) {
+ phys_page2 = get_page_addr_code(env, virt_page2);
+ }
+ /* As long as consistency of the TB stuff is provided by tb_lock in user
+ * mode and is implicit in single-threaded softmmu emulation, no explicit
+ * memory barrier is required before tb_link_page() makes the TB visible
+ * through the physical hash table and physical page list.
+ */
+ tb_link_page(tb, phys_pc, phys_page2);
+ return tb;
+}
+
+/*
+ * Invalidate all TBs which intersect with the target physical address range
+ * [start;end[. NOTE: start and end may refer to *different* physical pages.
+ * 'is_cpu_write_access' should be true if called from a real cpu write
+ * access: the virtual CPU will exit the current TB if code is modified inside
+ * this TB.
+ *
+ * Called with mmap_lock held for user-mode emulation, grabs tb_lock
+ * Called with tb_lock held for system-mode emulation
+ */
+static void tb_invalidate_phys_range_1(tb_page_addr_t start, tb_page_addr_t end)
+{
+ while (start < end) {
+ tb_invalidate_phys_page_range(start, end, 0);
+ start &= TARGET_PAGE_MASK;
+ start += TARGET_PAGE_SIZE;
+ }
+}
+
+#ifdef CONFIG_SOFTMMU
+void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
+{
+ assert_tb_locked();
+ tb_invalidate_phys_range_1(start, end);
+}
+#else
+void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
+{
+ assert_memory_lock();
+ tb_lock();
+ tb_invalidate_phys_range_1(start, end);
+ tb_unlock();
+}
+#endif
+/*
+ * Invalidate all TBs which intersect with the target physical address range
+ * [start;end[. NOTE: start and end must refer to the *same* physical page.
+ * 'is_cpu_write_access' should be true if called from a real cpu write
+ * access: the virtual CPU will exit the current TB if code is modified inside
+ * this TB.
+ *
+ * Called with tb_lock/mmap_lock held for user-mode emulation
+ * Called with tb_lock held for system-mode emulation
+ */
+void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
+ int is_cpu_write_access)
+{
+ TranslationBlock *tb, *tb_next;
+#if defined(TARGET_HAS_PRECISE_SMC)
+ CPUState *cpu = current_cpu;
+ CPUArchState *env = NULL;
+#endif
+ tb_page_addr_t tb_start, tb_end;
+ PageDesc *p;
+ int n;
+#ifdef TARGET_HAS_PRECISE_SMC
+ int current_tb_not_found = is_cpu_write_access;
+ TranslationBlock *current_tb = NULL;
+ int current_tb_modified = 0;
+ target_ulong current_pc = 0;
+ target_ulong current_cs_base = 0;
+ uint32_t current_flags = 0;
+#endif /* TARGET_HAS_PRECISE_SMC */
+
+ assert_memory_lock();
+ assert_tb_locked();
+
+ p = page_find(start >> TARGET_PAGE_BITS);
+ if (!p) {
+ return;
+ }
+#if defined(TARGET_HAS_PRECISE_SMC)
+ if (cpu != NULL) {
+ env = cpu->env_ptr;
+ }
+#endif
+
+ /* we remove all the TBs in the range [start, end[ */
+ /* XXX: see if in some cases it could be faster to invalidate all
+ the code */
+ tb = p->first_tb;
+ while (tb != NULL) {
+ n = (uintptr_t)tb & 3;
+ tb = (TranslationBlock *)((uintptr_t)tb & ~3);
+ tb_next = tb->page_next[n];
+ /* NOTE: this is subtle as a TB may span two physical pages */
+ if (n == 0) {
+ /* NOTE: tb_end may be after the end of the page, but
+ it is not a problem */
+ tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
+ tb_end = tb_start + tb->size;
+ } else {
+ tb_start = tb->page_addr[1];
+ tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
+ }
+ if (!(tb_end <= start || tb_start >= end)) {
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb_not_found) {
+ current_tb_not_found = 0;
+ current_tb = NULL;
+ if (cpu->mem_io_pc) {
+ /* now we have a real cpu fault */
+ current_tb = tb_find_pc(cpu->mem_io_pc);
+ }
+ }
+ if (current_tb == tb &&
+ (current_tb->cflags & CF_COUNT_MASK) != 1) {
+ /* If we are modifying the current TB, we must stop
+ its execution. We could be more precise by checking
+ that the modification is after the current PC, but it
+ would require a specialized function to partially
+ restore the CPU state */
+
+ current_tb_modified = 1;
+ cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
+ cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
+ &current_flags);
+ }
+#endif /* TARGET_HAS_PRECISE_SMC */
+ tb_phys_invalidate(tb, -1);
+ }
+ tb = tb_next;
+ }
+#if !defined(CONFIG_USER_ONLY)
+ /* if no code remaining, no need to continue to use slow writes */
+ if (!p->first_tb) {
+ invalidate_page_bitmap(p);
+ tlb_unprotect_code(start);
+ }
+#endif
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb_modified) {
+ /* we generate a block containing just the instruction
+ modifying the memory. It will ensure that it cannot modify
+ itself */
+ tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
+ cpu_loop_exit_noexc(cpu);
+ }
+#endif
+}
+
+#ifdef CONFIG_SOFTMMU
+/* len must be <= 8 and start must be a multiple of len.
+ * Called via softmmu_template.h when code areas are written to with
+ * iothread mutex not held.
+ */
+void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
+{
+ PageDesc *p;
+
+#if 0
+ if (1) {
+ qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
+ cpu_single_env->mem_io_vaddr, len,
+ cpu_single_env->eip,
+ cpu_single_env->eip +
+ (intptr_t)cpu_single_env->segs[R_CS].base);
+ }
+#endif
+ assert_memory_lock();
+
+ p = page_find(start >> TARGET_PAGE_BITS);
+ if (!p) {
+ return;
+ }
+ if (!p->code_bitmap &&
+ ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
+ /* build code bitmap. FIXME: writes should be protected by
+ * tb_lock, reads by tb_lock or RCU.
+ */
+ build_page_bitmap(p);
+ }
+ if (p->code_bitmap) {
+ unsigned int nr;
+ unsigned long b;
+
+ nr = start & ~TARGET_PAGE_MASK;
+ b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
+ if (b & ((1 << len) - 1)) {
+ goto do_invalidate;
+ }
+ } else {
+ do_invalidate:
+ tb_invalidate_phys_page_range(start, start + len, 1);
+ }
+}
+#else
+/* Called with mmap_lock held. If pc is not 0 then it indicates the
+ * host PC of the faulting store instruction that caused this invalidate.
+ * Returns true if the caller needs to abort execution of the current
+ * TB (because it was modified by this store and the guest CPU has
+ * precise-SMC semantics).
+ */
+static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
+{
+ TranslationBlock *tb;
+ PageDesc *p;
+ int n;
+#ifdef TARGET_HAS_PRECISE_SMC
+ TranslationBlock *current_tb = NULL;
+ CPUState *cpu = current_cpu;
+ CPUArchState *env = NULL;
+ int current_tb_modified = 0;
+ target_ulong current_pc = 0;
+ target_ulong current_cs_base = 0;
+ uint32_t current_flags = 0;
+#endif
+
+ assert_memory_lock();
+
+ addr &= TARGET_PAGE_MASK;
+ p = page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ return false;
+ }
+
+ tb_lock();
+ tb = p->first_tb;
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (tb && pc != 0) {
+ current_tb = tb_find_pc(pc);
+ }
+ if (cpu != NULL) {
+ env = cpu->env_ptr;
+ }
+#endif
+ while (tb != NULL) {
+ n = (uintptr_t)tb & 3;
+ tb = (TranslationBlock *)((uintptr_t)tb & ~3);
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb == tb &&
+ (current_tb->cflags & CF_COUNT_MASK) != 1) {
+ /* If we are modifying the current TB, we must stop
+ its execution. We could be more precise by checking
+ that the modification is after the current PC, but it
+ would require a specialized function to partially
+ restore the CPU state */
+
+ current_tb_modified = 1;
+ cpu_restore_state_from_tb(cpu, current_tb, pc);
+ cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
+ &current_flags);
+ }
+#endif /* TARGET_HAS_PRECISE_SMC */
+ tb_phys_invalidate(tb, addr);
+ tb = tb->page_next[n];
+ }
+ p->first_tb = NULL;
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb_modified) {
+ /* we generate a block containing just the instruction
+ modifying the memory. It will ensure that it cannot modify
+ itself */
+ tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
+ /* tb_lock will be reset after cpu_loop_exit_noexc longjmps
+ * back into the cpu_exec loop. */
+ return true;
+ }
+#endif
+ tb_unlock();
+
+ return false;
+}
+#endif
+
+/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
+ tb[1].tc_ptr. Return NULL if not found */
+static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
+{
+ int m_min, m_max, m;
+ uintptr_t v;
+ TranslationBlock *tb;
+
+ if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
+ return NULL;
+ }
+ if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
+ tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
+ return NULL;
+ }
+ /* binary search (cf Knuth) */
+ m_min = 0;
+ m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
+ while (m_min <= m_max) {
+ m = (m_min + m_max) >> 1;
+ tb = &tcg_ctx.tb_ctx.tbs[m];
+ v = (uintptr_t)tb->tc_ptr;
+ if (v == tc_ptr) {
+ return tb;
+ } else if (tc_ptr < v) {
+ m_max = m - 1;
+ } else {
+ m_min = m + 1;
+ }
+ }
+ return &tcg_ctx.tb_ctx.tbs[m_max];
+}
+
+#if !defined(CONFIG_USER_ONLY)
+void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
+{
+ ram_addr_t ram_addr;
+ MemoryRegion *mr;
+ hwaddr l = 1;
+
+ rcu_read_lock();
+ mr = address_space_translate(as, addr, &addr, &l, false);
+ if (!(memory_region_is_ram(mr)
+ || memory_region_is_romd(mr))) {
+ rcu_read_unlock();
+ return;
+ }
+ ram_addr = memory_region_get_ram_addr(mr) + addr;
+ tb_lock();
+ tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
+ tb_unlock();
+ rcu_read_unlock();
+}
+#endif /* !defined(CONFIG_USER_ONLY) */
+
+/* Called with tb_lock held. */
+void tb_check_watchpoint(CPUState *cpu)
+{
+ TranslationBlock *tb;
+
+ tb = tb_find_pc(cpu->mem_io_pc);
+ if (tb) {
+ /* We can use retranslation to find the PC. */
+ cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
+ tb_phys_invalidate(tb, -1);
+ } else {
+ /* The exception probably happened in a helper. The CPU state should
+ have been saved before calling it. Fetch the PC from there. */
+ CPUArchState *env = cpu->env_ptr;
+ target_ulong pc, cs_base;
+ tb_page_addr_t addr;
+ uint32_t flags;
+
+ cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
+ addr = get_page_addr_code(env, pc);
+ tb_invalidate_phys_range(addr, addr + 1);
+ }
+}
+
+#ifndef CONFIG_USER_ONLY
+/* in deterministic execution mode, instructions doing device I/Os
+ * must be at the end of the TB.
+ *
+ * Called by softmmu_template.h, with iothread mutex not held.
+ */
+void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
+{
+#if defined(TARGET_MIPS) || defined(TARGET_SH4)
+ CPUArchState *env = cpu->env_ptr;
+#endif
+ TranslationBlock *tb;
+ uint32_t n, cflags;
+ target_ulong pc, cs_base;
+ uint32_t flags;
+
+ tb_lock();
+ tb = tb_find_pc(retaddr);
+ if (!tb) {
+ cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
+ (void *)retaddr);
+ }
+ n = cpu->icount_decr.u16.low + tb->icount;
+ cpu_restore_state_from_tb(cpu, tb, retaddr);
+ /* Calculate how many instructions had been executed before the fault
+ occurred. */
+ n = n - cpu->icount_decr.u16.low;
+ /* Generate a new TB ending on the I/O insn. */
+ n++;
+ /* On MIPS and SH, delay slot instructions can only be restarted if
+ they were already the first instruction in the TB. If this is not
+ the first instruction in a TB then re-execute the preceding
+ branch. */
+#if defined(TARGET_MIPS)
+ if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
+ env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
+ cpu->icount_decr.u16.low++;
+ env->hflags &= ~MIPS_HFLAG_BMASK;
+ }
+#elif defined(TARGET_SH4)
+ if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
+ && n > 1) {
+ env->pc -= 2;
+ cpu->icount_decr.u16.low++;
+ env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
+ }
+#endif
+ /* This should never happen. */
+ if (n > CF_COUNT_MASK) {
+ cpu_abort(cpu, "TB too big during recompile");
+ }
+
+ cflags = n | CF_LAST_IO;
+ pc = tb->pc;
+ cs_base = tb->cs_base;
+ flags = tb->flags;
+ tb_phys_invalidate(tb, -1);
+ if (tb->cflags & CF_NOCACHE) {
+ if (tb->orig_tb) {
+ /* Invalidate original TB if this TB was generated in
+ * cpu_exec_nocache() */
+ tb_phys_invalidate(tb->orig_tb, -1);
+ }
+ tb_free(tb);
+ }
+ /* FIXME: In theory this could raise an exception. In practice
+ we have already translated the block once so it's probably ok. */
+ tb_gen_code(cpu, pc, cs_base, flags, cflags);
+
+ /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
+ * the first in the TB) then we end up generating a whole new TB and
+ * repeating the fault, which is horribly inefficient.
+ * Better would be to execute just this insn uncached, or generate a
+ * second new TB.
+ *
+ * cpu_loop_exit_noexc will longjmp back to cpu_exec where the
+ * tb_lock gets reset.
+ */
+ cpu_loop_exit_noexc(cpu);
+}
+
+void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
+{
+ unsigned int i;
+
+ /* Discard jump cache entries for any tb which might potentially
+ overlap the flushed page. */
+ i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
+ memset(&cpu->tb_jmp_cache[i], 0,
+ TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
+
+ i = tb_jmp_cache_hash_page(addr);
+ memset(&cpu->tb_jmp_cache[i], 0,
+ TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
+}
+
+static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
+ struct qht_stats hst)
+{
+ uint32_t hgram_opts;
+ size_t hgram_bins;
+ char *hgram;
+
+ if (!hst.head_buckets) {
+ return;
+ }
+ cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
+ hst.used_head_buckets, hst.head_buckets,
+ (double)hst.used_head_buckets / hst.head_buckets * 100);
+
+ hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
+ hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
+ if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
+ hgram_opts |= QDIST_PR_NODECIMAL;
+ }
+ hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
+ cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
+ qdist_avg(&hst.occupancy) * 100, hgram);
+ g_free(hgram);
+
+ hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
+ hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
+ if (hgram_bins > 10) {
+ hgram_bins = 10;
+ } else {
+ hgram_bins = 0;
+ hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
+ }
+ hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
+ cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n",
+ qdist_avg(&hst.chain), hgram);
+ g_free(hgram);
+}
+
+void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
+{
+ int i, target_code_size, max_target_code_size;
+ int direct_jmp_count, direct_jmp2_count, cross_page;
+ TranslationBlock *tb;
+ struct qht_stats hst;
+
+ tb_lock();
+
+ target_code_size = 0;
+ max_target_code_size = 0;
+ cross_page = 0;
+ direct_jmp_count = 0;
+ direct_jmp2_count = 0;
+ for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
+ tb = &tcg_ctx.tb_ctx.tbs[i];
+ target_code_size += tb->size;
+ if (tb->size > max_target_code_size) {
+ max_target_code_size = tb->size;
+ }
+ if (tb->page_addr[1] != -1) {
+ cross_page++;
+ }
+ if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
+ direct_jmp_count++;
+ if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
+ direct_jmp2_count++;
+ }
+ }
+ }
+ /* XXX: avoid using doubles ? */
+ cpu_fprintf(f, "Translation buffer state:\n");
+ cpu_fprintf(f, "gen code size %td/%zd\n",
+ tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
+ tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
+ cpu_fprintf(f, "TB count %d/%d\n",
+ tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
+ cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
+ tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
+ tcg_ctx.tb_ctx.nb_tbs : 0,
+ max_target_code_size);
+ cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
+ tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
+ tcg_ctx.code_gen_buffer) /
+ tcg_ctx.tb_ctx.nb_tbs : 0,
+ target_code_size ? (double) (tcg_ctx.code_gen_ptr -
+ tcg_ctx.code_gen_buffer) /
+ target_code_size : 0);
+ cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
+ tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
+ tcg_ctx.tb_ctx.nb_tbs : 0);
+ cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
+ direct_jmp_count,
+ tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
+ tcg_ctx.tb_ctx.nb_tbs : 0,
+ direct_jmp2_count,
+ tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
+ tcg_ctx.tb_ctx.nb_tbs : 0);
+
+ qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
+ print_qht_statistics(f, cpu_fprintf, hst);
+ qht_statistics_destroy(&hst);
+
+ cpu_fprintf(f, "\nStatistics:\n");
+ cpu_fprintf(f, "TB flush count %u\n",
+ atomic_read(&tcg_ctx.tb_ctx.tb_flush_count));
+ cpu_fprintf(f, "TB invalidate count %d\n",
+ tcg_ctx.tb_ctx.tb_phys_invalidate_count);
+ cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
+ tcg_dump_info(f, cpu_fprintf);
+
+ tb_unlock();
+}
+
+void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
+{
+ tcg_dump_op_count(f, cpu_fprintf);
+}
+
+#else /* CONFIG_USER_ONLY */
+
+void cpu_interrupt(CPUState *cpu, int mask)
+{
+ g_assert(qemu_mutex_iothread_locked());
+ cpu->interrupt_request |= mask;
+ cpu->icount_decr.u16.high = -1;
+}
+
+/*
+ * Walks guest process memory "regions" one by one
+ * and calls callback function 'fn' for each region.
+ */
+struct walk_memory_regions_data {
+ walk_memory_regions_fn fn;
+ void *priv;
+ target_ulong start;
+ int prot;
+};
+
+static int walk_memory_regions_end(struct walk_memory_regions_data *data,
+ target_ulong end, int new_prot)
+{
+ if (data->start != -1u) {
+ int rc = data->fn(data->priv, data->start, end, data->prot);
+ if (rc != 0) {
+ return rc;
+ }
+ }
+
+ data->start = (new_prot ? end : -1u);
+ data->prot = new_prot;
+
+ return 0;
+}
+
+static int walk_memory_regions_1(struct walk_memory_regions_data *data,
+ target_ulong base, int level, void **lp)
+{
+ target_ulong pa;
+ int i, rc;
+
+ if (*lp == NULL) {
+ return walk_memory_regions_end(data, base, 0);
+ }
+
+ if (level == 0) {
+ PageDesc *pd = *lp;
+
+ for (i = 0; i < V_L2_SIZE; ++i) {
+ int prot = pd[i].flags;
+
+ pa = base | (i << TARGET_PAGE_BITS);
+ if (prot != data->prot) {
+ rc = walk_memory_regions_end(data, pa, prot);
+ if (rc != 0) {
+ return rc;
+ }
+ }
+ }
+ } else {
+ void **pp = *lp;
+
+ for (i = 0; i < V_L2_SIZE; ++i) {
+ pa = base | ((target_ulong)i <<
+ (TARGET_PAGE_BITS + V_L2_BITS * level));
+ rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
+ if (rc != 0) {
+ return rc;
+ }
+ }
+ }
+
+ return 0;
+}
+
+int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
+{
+ struct walk_memory_regions_data data;
+ uintptr_t i, l1_sz = v_l1_size;
+
+ data.fn = fn;
+ data.priv = priv;
+ data.start = -1u;
+ data.prot = 0;
+
+ for (i = 0; i < l1_sz; i++) {
+ target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
+ int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
+ if (rc != 0) {
+ return rc;
+ }
+ }
+
+ return walk_memory_regions_end(&data, 0, 0);
+}
+
+static int dump_region(void *priv, target_ulong start,
+ target_ulong end, unsigned long prot)
+{
+ FILE *f = (FILE *)priv;
+
+ (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
+ " "TARGET_FMT_lx" %c%c%c\n",
+ start, end, end - start,
+ ((prot & PAGE_READ) ? 'r' : '-'),
+ ((prot & PAGE_WRITE) ? 'w' : '-'),
+ ((prot & PAGE_EXEC) ? 'x' : '-'));
+
+ return 0;
+}
+
+/* dump memory mappings */
+void page_dump(FILE *f)
+{
+ const int length = sizeof(target_ulong) * 2;
+ (void) fprintf(f, "%-*s %-*s %-*s %s\n",
+ length, "start", length, "end", length, "size", "prot");
+ walk_memory_regions(f, dump_region);
+}
+
+int page_get_flags(target_ulong address)
+{
+ PageDesc *p;
+
+ p = page_find(address >> TARGET_PAGE_BITS);
+ if (!p) {
+ return 0;
+ }
+ return p->flags;
+}
+
+/* Modify the flags of a page and invalidate the code if necessary.
+ The flag PAGE_WRITE_ORG is positioned automatically depending
+ on PAGE_WRITE. The mmap_lock should already be held. */
+void page_set_flags(target_ulong start, target_ulong end, int flags)
+{
+ target_ulong addr, len;
+
+ /* This function should never be called with addresses outside the
+ guest address space. If this assert fires, it probably indicates
+ a missing call to h2g_valid. */
+#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
+ assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
+#endif
+ assert(start < end);
+ assert_memory_lock();
+
+ start = start & TARGET_PAGE_MASK;
+ end = TARGET_PAGE_ALIGN(end);
+
+ if (flags & PAGE_WRITE) {
+ flags |= PAGE_WRITE_ORG;
+ }
+
+ for (addr = start, len = end - start;
+ len != 0;
+ len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
+ PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
+
+ /* If the write protection bit is set, then we invalidate
+ the code inside. */
+ if (!(p->flags & PAGE_WRITE) &&
+ (flags & PAGE_WRITE) &&
+ p->first_tb) {
+ tb_invalidate_phys_page(addr, 0);
+ }
+ p->flags = flags;
+ }
+}
+
+int page_check_range(target_ulong start, target_ulong len, int flags)
+{
+ PageDesc *p;
+ target_ulong end;
+ target_ulong addr;
+
+ /* This function should never be called with addresses outside the
+ guest address space. If this assert fires, it probably indicates
+ a missing call to h2g_valid. */
+#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
+ assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
+#endif
+
+ if (len == 0) {
+ return 0;
+ }
+ if (start + len - 1 < start) {
+ /* We've wrapped around. */
+ return -1;
+ }
+
+ /* must do before we loose bits in the next step */
+ end = TARGET_PAGE_ALIGN(start + len);
+ start = start & TARGET_PAGE_MASK;
+
+ for (addr = start, len = end - start;
+ len != 0;
+ len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
+ p = page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ return -1;
+ }
+ if (!(p->flags & PAGE_VALID)) {
+ return -1;
+ }
+
+ if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
+ return -1;
+ }
+ if (flags & PAGE_WRITE) {
+ if (!(p->flags & PAGE_WRITE_ORG)) {
+ return -1;
+ }
+ /* unprotect the page if it was put read-only because it
+ contains translated code */
+ if (!(p->flags & PAGE_WRITE)) {
+ if (!page_unprotect(addr, 0)) {
+ return -1;
+ }
+ }
+ }
+ }
+ return 0;
+}
+
+/* called from signal handler: invalidate the code and unprotect the
+ * page. Return 0 if the fault was not handled, 1 if it was handled,
+ * and 2 if it was handled but the caller must cause the TB to be
+ * immediately exited. (We can only return 2 if the 'pc' argument is
+ * non-zero.)
+ */
+int page_unprotect(target_ulong address, uintptr_t pc)
+{
+ unsigned int prot;
+ bool current_tb_invalidated;
+ PageDesc *p;
+ target_ulong host_start, host_end, addr;
+
+ /* Technically this isn't safe inside a signal handler. However we
+ know this only ever happens in a synchronous SEGV handler, so in
+ practice it seems to be ok. */
+ mmap_lock();
+
+ p = page_find(address >> TARGET_PAGE_BITS);
+ if (!p) {
+ mmap_unlock();
+ return 0;
+ }
+
+ /* if the page was really writable, then we change its
+ protection back to writable */
+ if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
+ host_start = address & qemu_host_page_mask;
+ host_end = host_start + qemu_host_page_size;
+
+ prot = 0;
+ current_tb_invalidated = false;
+ for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
+ p = page_find(addr >> TARGET_PAGE_BITS);
+ p->flags |= PAGE_WRITE;
+ prot |= p->flags;
+
+ /* and since the content will be modified, we must invalidate
+ the corresponding translated code. */
+ current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
+#ifdef DEBUG_TB_CHECK
+ tb_invalidate_check(addr);
+#endif
+ }
+ mprotect((void *)g2h(host_start), qemu_host_page_size,
+ prot & PAGE_BITS);
+
+ mmap_unlock();
+ /* If current TB was invalidated return to main loop */
+ return current_tb_invalidated ? 2 : 1;
+ }
+ mmap_unlock();
+ return 0;
+}
+#endif /* CONFIG_USER_ONLY */
diff --git a/accel/tcg/translate-all.h b/accel/tcg/translate-all.h
new file mode 100644
index 0000000000..ba8e4d63c4
--- /dev/null
+++ b/accel/tcg/translate-all.h
@@ -0,0 +1,36 @@
+/*
+ * Translated block handling
+ *
+ * Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+#ifndef TRANSLATE_ALL_H
+#define TRANSLATE_ALL_H
+
+#include "exec/exec-all.h"
+
+
+/* translate-all.c */
+void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len);
+void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
+ int is_cpu_write_access);
+void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end);
+void tb_check_watchpoint(CPUState *cpu);
+
+#ifdef CONFIG_USER_ONLY
+int page_unprotect(target_ulong address, uintptr_t pc);
+#endif
+
+#endif /* TRANSLATE_ALL_H */
diff --git a/accel/tcg/translate-common.c b/accel/tcg/translate-common.c
new file mode 100644
index 0000000000..40fe5a19bb
--- /dev/null
+++ b/accel/tcg/translate-common.c
@@ -0,0 +1,56 @@
+/*
+ * Host code generation common components
+ *
+ * Copyright (c) 2015 Peter Crosthwaite <crosthwaite.peter@gmail.com>
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu-common.h"
+#include "qom/cpu.h"
+#include "sysemu/cpus.h"
+#include "qemu/main-loop.h"
+
+uintptr_t qemu_real_host_page_size;
+intptr_t qemu_real_host_page_mask;
+
+#ifndef CONFIG_USER_ONLY
+/* mask must never be zero, except for A20 change call */
+static void tcg_handle_interrupt(CPUState *cpu, int mask)
+{
+ int old_mask;
+ g_assert(qemu_mutex_iothread_locked());
+
+ old_mask = cpu->interrupt_request;
+ cpu->interrupt_request |= mask;
+
+ /*
+ * If called from iothread context, wake the target cpu in
+ * case its halted.
+ */
+ if (!qemu_cpu_is_self(cpu)) {
+ qemu_cpu_kick(cpu);
+ } else {
+ cpu->icount_decr.u16.high = -1;
+ if (use_icount &&
+ !cpu->can_do_io
+ && (mask & ~old_mask) != 0) {
+ cpu_abort(cpu, "Raised interrupt while not in I/O function");
+ }
+ }
+}
+
+CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
+#endif