diff options
author | Yang Zhong <yang.zhong@intel.com> | 2017-06-02 14:06:44 +0800 |
---|---|---|
committer | Paolo Bonzini <pbonzini@redhat.com> | 2017-06-15 11:04:06 +0200 |
commit | d9bb58e51068dfc48746c6af0179926c8dc05bce (patch) | |
tree | bd0c3683d7acdf7b2f67ac38b7d7571dbd103694 /accel/tcg/cputlb.c | |
parent | a9ded6017ea39ea845fb1acf5187528bd74acb04 (diff) |
tcg: move tcg related files into accel/tcg/ subdirectory
move cputlb.c, cpu-exec-common.c and cpu-exec.c related tcg exec
file into accel/tcg/ subdirectory.
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <1496383606-18060-3-git-send-email-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'accel/tcg/cputlb.c')
-rw-r--r-- | accel/tcg/cputlb.c | 1051 |
1 files changed, 1051 insertions, 0 deletions
diff --git a/accel/tcg/cputlb.c b/accel/tcg/cputlb.c new file mode 100644 index 0000000000..743776ae19 --- /dev/null +++ b/accel/tcg/cputlb.c @@ -0,0 +1,1051 @@ +/* + * Common CPU TLB handling + * + * Copyright (c) 2003 Fabrice Bellard + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +#include "qemu/osdep.h" +#include "qemu/main-loop.h" +#include "cpu.h" +#include "exec/exec-all.h" +#include "exec/memory.h" +#include "exec/address-spaces.h" +#include "exec/cpu_ldst.h" +#include "exec/cputlb.h" +#include "exec/memory-internal.h" +#include "exec/ram_addr.h" +#include "tcg/tcg.h" +#include "qemu/error-report.h" +#include "exec/log.h" +#include "exec/helper-proto.h" +#include "qemu/atomic.h" + +/* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ +/* #define DEBUG_TLB */ +/* #define DEBUG_TLB_LOG */ + +#ifdef DEBUG_TLB +# define DEBUG_TLB_GATE 1 +# ifdef DEBUG_TLB_LOG +# define DEBUG_TLB_LOG_GATE 1 +# else +# define DEBUG_TLB_LOG_GATE 0 +# endif +#else +# define DEBUG_TLB_GATE 0 +# define DEBUG_TLB_LOG_GATE 0 +#endif + +#define tlb_debug(fmt, ...) do { \ + if (DEBUG_TLB_LOG_GATE) { \ + qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ + ## __VA_ARGS__); \ + } else if (DEBUG_TLB_GATE) { \ + fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ + } \ +} while (0) + +#define assert_cpu_is_self(this_cpu) do { \ + if (DEBUG_TLB_GATE) { \ + g_assert(!cpu->created || qemu_cpu_is_self(cpu)); \ + } \ + } while (0) + +/* run_on_cpu_data.target_ptr should always be big enough for a + * target_ulong even on 32 bit builds */ +QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); + +/* We currently can't handle more than 16 bits in the MMUIDX bitmask. + */ +QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); +#define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) + +/* flush_all_helper: run fn across all cpus + * + * If the wait flag is set then the src cpu's helper will be queued as + * "safe" work and the loop exited creating a synchronisation point + * where all queued work will be finished before execution starts + * again. + */ +static void flush_all_helper(CPUState *src, run_on_cpu_func fn, + run_on_cpu_data d) +{ + CPUState *cpu; + + CPU_FOREACH(cpu) { + if (cpu != src) { + async_run_on_cpu(cpu, fn, d); + } + } +} + +/* statistics */ +int tlb_flush_count; + +/* This is OK because CPU architectures generally permit an + * implementation to drop entries from the TLB at any time, so + * flushing more entries than required is only an efficiency issue, + * not a correctness issue. + */ +static void tlb_flush_nocheck(CPUState *cpu) +{ + CPUArchState *env = cpu->env_ptr; + + /* The QOM tests will trigger tlb_flushes without setting up TCG + * so we bug out here in that case. + */ + if (!tcg_enabled()) { + return; + } + + assert_cpu_is_self(cpu); + tlb_debug("(count: %d)\n", tlb_flush_count++); + + tb_lock(); + + memset(env->tlb_table, -1, sizeof(env->tlb_table)); + memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table)); + memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache)); + + env->vtlb_index = 0; + env->tlb_flush_addr = -1; + env->tlb_flush_mask = 0; + + tb_unlock(); + + atomic_mb_set(&cpu->pending_tlb_flush, 0); +} + +static void tlb_flush_global_async_work(CPUState *cpu, run_on_cpu_data data) +{ + tlb_flush_nocheck(cpu); +} + +void tlb_flush(CPUState *cpu) +{ + if (cpu->created && !qemu_cpu_is_self(cpu)) { + if (atomic_mb_read(&cpu->pending_tlb_flush) != ALL_MMUIDX_BITS) { + atomic_mb_set(&cpu->pending_tlb_flush, ALL_MMUIDX_BITS); + async_run_on_cpu(cpu, tlb_flush_global_async_work, + RUN_ON_CPU_NULL); + } + } else { + tlb_flush_nocheck(cpu); + } +} + +void tlb_flush_all_cpus(CPUState *src_cpu) +{ + const run_on_cpu_func fn = tlb_flush_global_async_work; + flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL); + fn(src_cpu, RUN_ON_CPU_NULL); +} + +void tlb_flush_all_cpus_synced(CPUState *src_cpu) +{ + const run_on_cpu_func fn = tlb_flush_global_async_work; + flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL); + async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_NULL); +} + +static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) +{ + CPUArchState *env = cpu->env_ptr; + unsigned long mmu_idx_bitmask = data.host_int; + int mmu_idx; + + assert_cpu_is_self(cpu); + + tb_lock(); + + tlb_debug("start: mmu_idx:0x%04lx\n", mmu_idx_bitmask); + + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + + if (test_bit(mmu_idx, &mmu_idx_bitmask)) { + tlb_debug("%d\n", mmu_idx); + + memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0])); + memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0])); + } + } + + memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache)); + + tlb_debug("done\n"); + + tb_unlock(); +} + +void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) +{ + tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); + + if (!qemu_cpu_is_self(cpu)) { + uint16_t pending_flushes = idxmap; + pending_flushes &= ~atomic_mb_read(&cpu->pending_tlb_flush); + + if (pending_flushes) { + tlb_debug("reduced mmu_idx: 0x%" PRIx16 "\n", pending_flushes); + + atomic_or(&cpu->pending_tlb_flush, pending_flushes); + async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, + RUN_ON_CPU_HOST_INT(pending_flushes)); + } + } else { + tlb_flush_by_mmuidx_async_work(cpu, + RUN_ON_CPU_HOST_INT(idxmap)); + } +} + +void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) +{ + const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; + + tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); + + flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); + fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); +} + +void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, + uint16_t idxmap) +{ + const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; + + tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); + + flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); + async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); +} + + + +static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) +{ + if (addr == (tlb_entry->addr_read & + (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || + addr == (tlb_entry->addr_write & + (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || + addr == (tlb_entry->addr_code & + (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { + memset(tlb_entry, -1, sizeof(*tlb_entry)); + } +} + +static void tlb_flush_page_async_work(CPUState *cpu, run_on_cpu_data data) +{ + CPUArchState *env = cpu->env_ptr; + target_ulong addr = (target_ulong) data.target_ptr; + int i; + int mmu_idx; + + assert_cpu_is_self(cpu); + + tlb_debug("page :" TARGET_FMT_lx "\n", addr); + + /* Check if we need to flush due to large pages. */ + if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { + tlb_debug("forcing full flush (" + TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", + env->tlb_flush_addr, env->tlb_flush_mask); + + tlb_flush(cpu); + return; + } + + addr &= TARGET_PAGE_MASK; + i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); + } + + /* check whether there are entries that need to be flushed in the vtlb */ + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + int k; + for (k = 0; k < CPU_VTLB_SIZE; k++) { + tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr); + } + } + + tb_flush_jmp_cache(cpu, addr); +} + +void tlb_flush_page(CPUState *cpu, target_ulong addr) +{ + tlb_debug("page :" TARGET_FMT_lx "\n", addr); + + if (!qemu_cpu_is_self(cpu)) { + async_run_on_cpu(cpu, tlb_flush_page_async_work, + RUN_ON_CPU_TARGET_PTR(addr)); + } else { + tlb_flush_page_async_work(cpu, RUN_ON_CPU_TARGET_PTR(addr)); + } +} + +/* As we are going to hijack the bottom bits of the page address for a + * mmuidx bit mask we need to fail to build if we can't do that + */ +QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN); + +static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu, + run_on_cpu_data data) +{ + CPUArchState *env = cpu->env_ptr; + target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr; + target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK; + unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS; + int page = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + int mmu_idx; + int i; + + assert_cpu_is_self(cpu); + + tlb_debug("page:%d addr:"TARGET_FMT_lx" mmu_idx:0x%lx\n", + page, addr, mmu_idx_bitmap); + + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + if (test_bit(mmu_idx, &mmu_idx_bitmap)) { + tlb_flush_entry(&env->tlb_table[mmu_idx][page], addr); + + /* check whether there are vltb entries that need to be flushed */ + for (i = 0; i < CPU_VTLB_SIZE; i++) { + tlb_flush_entry(&env->tlb_v_table[mmu_idx][i], addr); + } + } + } + + tb_flush_jmp_cache(cpu, addr); +} + +static void tlb_check_page_and_flush_by_mmuidx_async_work(CPUState *cpu, + run_on_cpu_data data) +{ + CPUArchState *env = cpu->env_ptr; + target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr; + target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK; + unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS; + + tlb_debug("addr:"TARGET_FMT_lx" mmu_idx: %04lx\n", addr, mmu_idx_bitmap); + + /* Check if we need to flush due to large pages. */ + if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { + tlb_debug("forced full flush (" + TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", + env->tlb_flush_addr, env->tlb_flush_mask); + + tlb_flush_by_mmuidx_async_work(cpu, + RUN_ON_CPU_HOST_INT(mmu_idx_bitmap)); + } else { + tlb_flush_page_by_mmuidx_async_work(cpu, data); + } +} + +void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) +{ + target_ulong addr_and_mmu_idx; + + tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); + + /* This should already be page aligned */ + addr_and_mmu_idx = addr & TARGET_PAGE_MASK; + addr_and_mmu_idx |= idxmap; + + if (!qemu_cpu_is_self(cpu)) { + async_run_on_cpu(cpu, tlb_check_page_and_flush_by_mmuidx_async_work, + RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); + } else { + tlb_check_page_and_flush_by_mmuidx_async_work( + cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); + } +} + +void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, + uint16_t idxmap) +{ + const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work; + target_ulong addr_and_mmu_idx; + + tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); + + /* This should already be page aligned */ + addr_and_mmu_idx = addr & TARGET_PAGE_MASK; + addr_and_mmu_idx |= idxmap; + + flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); + fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); +} + +void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, + target_ulong addr, + uint16_t idxmap) +{ + const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work; + target_ulong addr_and_mmu_idx; + + tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); + + /* This should already be page aligned */ + addr_and_mmu_idx = addr & TARGET_PAGE_MASK; + addr_and_mmu_idx |= idxmap; + + flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); + async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); +} + +void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) +{ + const run_on_cpu_func fn = tlb_flush_page_async_work; + + flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr)); + fn(src, RUN_ON_CPU_TARGET_PTR(addr)); +} + +void tlb_flush_page_all_cpus_synced(CPUState *src, + target_ulong addr) +{ + const run_on_cpu_func fn = tlb_flush_page_async_work; + + flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr)); + async_safe_run_on_cpu(src, fn, RUN_ON_CPU_TARGET_PTR(addr)); +} + +/* update the TLBs so that writes to code in the virtual page 'addr' + can be detected */ +void tlb_protect_code(ram_addr_t ram_addr) +{ + cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE, + DIRTY_MEMORY_CODE); +} + +/* update the TLB so that writes in physical page 'phys_addr' are no longer + tested for self modifying code */ +void tlb_unprotect_code(ram_addr_t ram_addr) +{ + cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); +} + + +/* + * Dirty write flag handling + * + * When the TCG code writes to a location it looks up the address in + * the TLB and uses that data to compute the final address. If any of + * the lower bits of the address are set then the slow path is forced. + * There are a number of reasons to do this but for normal RAM the + * most usual is detecting writes to code regions which may invalidate + * generated code. + * + * Because we want other vCPUs to respond to changes straight away we + * update the te->addr_write field atomically. If the TLB entry has + * been changed by the vCPU in the mean time we skip the update. + * + * As this function uses atomic accesses we also need to ensure + * updates to tlb_entries follow the same access rules. We don't need + * to worry about this for oversized guests as MTTCG is disabled for + * them. + */ + +static void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start, + uintptr_t length) +{ +#if TCG_OVERSIZED_GUEST + uintptr_t addr = tlb_entry->addr_write; + + if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) { + addr &= TARGET_PAGE_MASK; + addr += tlb_entry->addend; + if ((addr - start) < length) { + tlb_entry->addr_write |= TLB_NOTDIRTY; + } + } +#else + /* paired with atomic_mb_set in tlb_set_page_with_attrs */ + uintptr_t orig_addr = atomic_mb_read(&tlb_entry->addr_write); + uintptr_t addr = orig_addr; + + if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) { + addr &= TARGET_PAGE_MASK; + addr += atomic_read(&tlb_entry->addend); + if ((addr - start) < length) { + uintptr_t notdirty_addr = orig_addr | TLB_NOTDIRTY; + atomic_cmpxchg(&tlb_entry->addr_write, orig_addr, notdirty_addr); + } + } +#endif +} + +/* For atomic correctness when running MTTCG we need to use the right + * primitives when copying entries */ +static inline void copy_tlb_helper(CPUTLBEntry *d, CPUTLBEntry *s, + bool atomic_set) +{ +#if TCG_OVERSIZED_GUEST + *d = *s; +#else + if (atomic_set) { + d->addr_read = s->addr_read; + d->addr_code = s->addr_code; + atomic_set(&d->addend, atomic_read(&s->addend)); + /* Pairs with flag setting in tlb_reset_dirty_range */ + atomic_mb_set(&d->addr_write, atomic_read(&s->addr_write)); + } else { + d->addr_read = s->addr_read; + d->addr_write = atomic_read(&s->addr_write); + d->addr_code = s->addr_code; + d->addend = atomic_read(&s->addend); + } +#endif +} + +/* This is a cross vCPU call (i.e. another vCPU resetting the flags of + * the target vCPU). As such care needs to be taken that we don't + * dangerously race with another vCPU update. The only thing actually + * updated is the target TLB entry ->addr_write flags. + */ +void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) +{ + CPUArchState *env; + + int mmu_idx; + + env = cpu->env_ptr; + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + unsigned int i; + + for (i = 0; i < CPU_TLB_SIZE; i++) { + tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i], + start1, length); + } + + for (i = 0; i < CPU_VTLB_SIZE; i++) { + tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i], + start1, length); + } + } +} + +static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) +{ + if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { + tlb_entry->addr_write = vaddr; + } +} + +/* update the TLB corresponding to virtual page vaddr + so that it is no longer dirty */ +void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) +{ + CPUArchState *env = cpu->env_ptr; + int i; + int mmu_idx; + + assert_cpu_is_self(cpu); + + vaddr &= TARGET_PAGE_MASK; + i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr); + } + + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + int k; + for (k = 0; k < CPU_VTLB_SIZE; k++) { + tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr); + } + } +} + +/* Our TLB does not support large pages, so remember the area covered by + large pages and trigger a full TLB flush if these are invalidated. */ +static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr, + target_ulong size) +{ + target_ulong mask = ~(size - 1); + + if (env->tlb_flush_addr == (target_ulong)-1) { + env->tlb_flush_addr = vaddr & mask; + env->tlb_flush_mask = mask; + return; + } + /* Extend the existing region to include the new page. + This is a compromise between unnecessary flushes and the cost + of maintaining a full variable size TLB. */ + mask &= env->tlb_flush_mask; + while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) { + mask <<= 1; + } + env->tlb_flush_addr &= mask; + env->tlb_flush_mask = mask; +} + +/* Add a new TLB entry. At most one entry for a given virtual address + * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the + * supplied size is only used by tlb_flush_page. + * + * Called from TCG-generated code, which is under an RCU read-side + * critical section. + */ +void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, + hwaddr paddr, MemTxAttrs attrs, int prot, + int mmu_idx, target_ulong size) +{ + CPUArchState *env = cpu->env_ptr; + MemoryRegionSection *section; + unsigned int index; + target_ulong address; + target_ulong code_address; + uintptr_t addend; + CPUTLBEntry *te, *tv, tn; + hwaddr iotlb, xlat, sz; + unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE; + int asidx = cpu_asidx_from_attrs(cpu, attrs); + + assert_cpu_is_self(cpu); + assert(size >= TARGET_PAGE_SIZE); + if (size != TARGET_PAGE_SIZE) { + tlb_add_large_page(env, vaddr, size); + } + + sz = size; + section = address_space_translate_for_iotlb(cpu, asidx, paddr, &xlat, &sz); + assert(sz >= TARGET_PAGE_SIZE); + + tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx + " prot=%x idx=%d\n", + vaddr, paddr, prot, mmu_idx); + + address = vaddr; + if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) { + /* IO memory case */ + address |= TLB_MMIO; + addend = 0; + } else { + /* TLB_MMIO for rom/romd handled below */ + addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; + } + + code_address = address; + iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat, + prot, &address); + + index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + te = &env->tlb_table[mmu_idx][index]; + /* do not discard the translation in te, evict it into a victim tlb */ + tv = &env->tlb_v_table[mmu_idx][vidx]; + + /* addr_write can race with tlb_reset_dirty_range */ + copy_tlb_helper(tv, te, true); + + env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index]; + + /* refill the tlb */ + env->iotlb[mmu_idx][index].addr = iotlb - vaddr; + env->iotlb[mmu_idx][index].attrs = attrs; + + /* Now calculate the new entry */ + tn.addend = addend - vaddr; + if (prot & PAGE_READ) { + tn.addr_read = address; + } else { + tn.addr_read = -1; + } + + if (prot & PAGE_EXEC) { + tn.addr_code = code_address; + } else { + tn.addr_code = -1; + } + + tn.addr_write = -1; + if (prot & PAGE_WRITE) { + if ((memory_region_is_ram(section->mr) && section->readonly) + || memory_region_is_romd(section->mr)) { + /* Write access calls the I/O callback. */ + tn.addr_write = address | TLB_MMIO; + } else if (memory_region_is_ram(section->mr) + && cpu_physical_memory_is_clean( + memory_region_get_ram_addr(section->mr) + xlat)) { + tn.addr_write = address | TLB_NOTDIRTY; + } else { + tn.addr_write = address; + } + } + + /* Pairs with flag setting in tlb_reset_dirty_range */ + copy_tlb_helper(te, &tn, true); + /* atomic_mb_set(&te->addr_write, write_address); */ +} + +/* Add a new TLB entry, but without specifying the memory + * transaction attributes to be used. + */ +void tlb_set_page(CPUState *cpu, target_ulong vaddr, + hwaddr paddr, int prot, + int mmu_idx, target_ulong size) +{ + tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, + prot, mmu_idx, size); +} + +static void report_bad_exec(CPUState *cpu, target_ulong addr) +{ + /* Accidentally executing outside RAM or ROM is quite common for + * several user-error situations, so report it in a way that + * makes it clear that this isn't a QEMU bug and provide suggestions + * about what a user could do to fix things. + */ + error_report("Trying to execute code outside RAM or ROM at 0x" + TARGET_FMT_lx, addr); + error_printf("This usually means one of the following happened:\n\n" + "(1) You told QEMU to execute a kernel for the wrong machine " + "type, and it crashed on startup (eg trying to run a " + "raspberry pi kernel on a versatilepb QEMU machine)\n" + "(2) You didn't give QEMU a kernel or BIOS filename at all, " + "and QEMU executed a ROM full of no-op instructions until " + "it fell off the end\n" + "(3) Your guest kernel has a bug and crashed by jumping " + "off into nowhere\n\n" + "This is almost always one of the first two, so check your " + "command line and that you are using the right type of kernel " + "for this machine.\n" + "If you think option (3) is likely then you can try debugging " + "your guest with the -d debug options; in particular " + "-d guest_errors will cause the log to include a dump of the " + "guest register state at this point.\n\n" + "Execution cannot continue; stopping here.\n\n"); + + /* Report also to the logs, with more detail including register dump */ + qemu_log_mask(LOG_GUEST_ERROR, "qemu: fatal: Trying to execute code " + "outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr); + log_cpu_state_mask(LOG_GUEST_ERROR, cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); +} + +static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) +{ + ram_addr_t ram_addr; + + ram_addr = qemu_ram_addr_from_host(ptr); + if (ram_addr == RAM_ADDR_INVALID) { + error_report("Bad ram pointer %p", ptr); + abort(); + } + return ram_addr; +} + +/* NOTE: this function can trigger an exception */ +/* NOTE2: the returned address is not exactly the physical address: it + * is actually a ram_addr_t (in system mode; the user mode emulation + * version of this function returns a guest virtual address). + */ +tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) +{ + int mmu_idx, page_index, pd; + void *p; + MemoryRegion *mr; + CPUState *cpu = ENV_GET_CPU(env1); + CPUIOTLBEntry *iotlbentry; + + page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + mmu_idx = cpu_mmu_index(env1, true); + if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code != + (addr & TARGET_PAGE_MASK))) { + cpu_ldub_code(env1, addr); + } + iotlbentry = &env1->iotlb[mmu_idx][page_index]; + pd = iotlbentry->addr & ~TARGET_PAGE_MASK; + mr = iotlb_to_region(cpu, pd, iotlbentry->attrs); + if (memory_region_is_unassigned(mr)) { + cpu_unassigned_access(cpu, addr, false, true, 0, 4); + /* The CPU's unassigned access hook might have longjumped out + * with an exception. If it didn't (or there was no hook) then + * we can't proceed further. + */ + report_bad_exec(cpu, addr); + exit(1); + } + p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend); + return qemu_ram_addr_from_host_nofail(p); +} + +static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry, + target_ulong addr, uintptr_t retaddr, int size) +{ + CPUState *cpu = ENV_GET_CPU(env); + hwaddr physaddr = iotlbentry->addr; + MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs); + uint64_t val; + bool locked = false; + + physaddr = (physaddr & TARGET_PAGE_MASK) + addr; + cpu->mem_io_pc = retaddr; + if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { + cpu_io_recompile(cpu, retaddr); + } + + cpu->mem_io_vaddr = addr; + + if (mr->global_locking) { + qemu_mutex_lock_iothread(); + locked = true; + } + memory_region_dispatch_read(mr, physaddr, &val, size, iotlbentry->attrs); + if (locked) { + qemu_mutex_unlock_iothread(); + } + + return val; +} + +static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry, + uint64_t val, target_ulong addr, + uintptr_t retaddr, int size) +{ + CPUState *cpu = ENV_GET_CPU(env); + hwaddr physaddr = iotlbentry->addr; + MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs); + bool locked = false; + + physaddr = (physaddr & TARGET_PAGE_MASK) + addr; + if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { + cpu_io_recompile(cpu, retaddr); + } + cpu->mem_io_vaddr = addr; + cpu->mem_io_pc = retaddr; + + if (mr->global_locking) { + qemu_mutex_lock_iothread(); + locked = true; + } + memory_region_dispatch_write(mr, physaddr, val, size, iotlbentry->attrs); + if (locked) { + qemu_mutex_unlock_iothread(); + } +} + +/* Return true if ADDR is present in the victim tlb, and has been copied + back to the main tlb. */ +static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, + size_t elt_ofs, target_ulong page) +{ + size_t vidx; + for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { + CPUTLBEntry *vtlb = &env->tlb_v_table[mmu_idx][vidx]; + target_ulong cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs); + + if (cmp == page) { + /* Found entry in victim tlb, swap tlb and iotlb. */ + CPUTLBEntry tmptlb, *tlb = &env->tlb_table[mmu_idx][index]; + + copy_tlb_helper(&tmptlb, tlb, false); + copy_tlb_helper(tlb, vtlb, true); + copy_tlb_helper(vtlb, &tmptlb, true); + + CPUIOTLBEntry tmpio, *io = &env->iotlb[mmu_idx][index]; + CPUIOTLBEntry *vio = &env->iotlb_v[mmu_idx][vidx]; + tmpio = *io; *io = *vio; *vio = tmpio; + return true; + } + } + return false; +} + +/* Macro to call the above, with local variables from the use context. */ +#define VICTIM_TLB_HIT(TY, ADDR) \ + victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \ + (ADDR) & TARGET_PAGE_MASK) + +/* Probe for whether the specified guest write access is permitted. + * If it is not permitted then an exception will be taken in the same + * way as if this were a real write access (and we will not return). + * Otherwise the function will return, and there will be a valid + * entry in the TLB for this access. + */ +void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx, + uintptr_t retaddr) +{ + int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; + + if ((addr & TARGET_PAGE_MASK) + != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { + /* TLB entry is for a different page */ + if (!VICTIM_TLB_HIT(addr_write, addr)) { + tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); + } + } +} + +/* Probe for a read-modify-write atomic operation. Do not allow unaligned + * operations, or io operations to proceed. Return the host address. */ +static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, + TCGMemOpIdx oi, uintptr_t retaddr) +{ + size_t mmu_idx = get_mmuidx(oi); + size_t index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + CPUTLBEntry *tlbe = &env->tlb_table[mmu_idx][index]; + target_ulong tlb_addr = tlbe->addr_write; + TCGMemOp mop = get_memop(oi); + int a_bits = get_alignment_bits(mop); + int s_bits = mop & MO_SIZE; + + /* Adjust the given return address. */ + retaddr -= GETPC_ADJ; + + /* Enforce guest required alignment. */ + if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { + /* ??? Maybe indicate atomic op to cpu_unaligned_access */ + cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, + mmu_idx, retaddr); + } + + /* Enforce qemu required alignment. */ + if (unlikely(addr & ((1 << s_bits) - 1))) { + /* We get here if guest alignment was not requested, + or was not enforced by cpu_unaligned_access above. + We might widen the access and emulate, but for now + mark an exception and exit the cpu loop. */ + goto stop_the_world; + } + + /* Check TLB entry and enforce page permissions. */ + if ((addr & TARGET_PAGE_MASK) + != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { + if (!VICTIM_TLB_HIT(addr_write, addr)) { + tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); + } + tlb_addr = tlbe->addr_write; + } + + /* Check notdirty */ + if (unlikely(tlb_addr & TLB_NOTDIRTY)) { + tlb_set_dirty(ENV_GET_CPU(env), addr); + tlb_addr = tlb_addr & ~TLB_NOTDIRTY; + } + + /* Notice an IO access */ + if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { + /* There's really nothing that can be done to + support this apart from stop-the-world. */ + goto stop_the_world; + } + + /* Let the guest notice RMW on a write-only page. */ + if (unlikely(tlbe->addr_read != tlb_addr)) { + tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_LOAD, mmu_idx, retaddr); + /* Since we don't support reads and writes to different addresses, + and we do have the proper page loaded for write, this shouldn't + ever return. But just in case, handle via stop-the-world. */ + goto stop_the_world; + } + + return (void *)((uintptr_t)addr + tlbe->addend); + + stop_the_world: + cpu_loop_exit_atomic(ENV_GET_CPU(env), retaddr); +} + +#ifdef TARGET_WORDS_BIGENDIAN +# define TGT_BE(X) (X) +# define TGT_LE(X) BSWAP(X) +#else +# define TGT_BE(X) BSWAP(X) +# define TGT_LE(X) (X) +#endif + +#define MMUSUFFIX _mmu + +#define DATA_SIZE 1 +#include "softmmu_template.h" + +#define DATA_SIZE 2 +#include "softmmu_template.h" + +#define DATA_SIZE 4 +#include "softmmu_template.h" + +#define DATA_SIZE 8 +#include "softmmu_template.h" + +/* First set of helpers allows passing in of OI and RETADDR. This makes + them callable from other helpers. */ + +#define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr +#define ATOMIC_NAME(X) \ + HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu)) +#define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr) + +#define DATA_SIZE 1 +#include "atomic_template.h" + +#define DATA_SIZE 2 +#include "atomic_template.h" + +#define DATA_SIZE 4 +#include "atomic_template.h" + +#ifdef CONFIG_ATOMIC64 +#define DATA_SIZE 8 +#include "atomic_template.h" +#endif + +#ifdef CONFIG_ATOMIC128 +#define DATA_SIZE 16 +#include "atomic_template.h" +#endif + +/* Second set of helpers are directly callable from TCG as helpers. */ + +#undef EXTRA_ARGS +#undef ATOMIC_NAME +#undef ATOMIC_MMU_LOOKUP +#define EXTRA_ARGS , TCGMemOpIdx oi +#define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END)) +#define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, GETPC()) + +#define DATA_SIZE 1 +#include "atomic_template.h" + +#define DATA_SIZE 2 +#include "atomic_template.h" + +#define DATA_SIZE 4 +#include "atomic_template.h" + +#ifdef CONFIG_ATOMIC64 +#define DATA_SIZE 8 +#include "atomic_template.h" +#endif + +/* Code access functions. */ + +#undef MMUSUFFIX +#define MMUSUFFIX _cmmu +#undef GETPC +#define GETPC() ((uintptr_t)0) +#define SOFTMMU_CODE_ACCESS + +#define DATA_SIZE 1 +#include "softmmu_template.h" + +#define DATA_SIZE 2 +#include "softmmu_template.h" + +#define DATA_SIZE 4 +#include "softmmu_template.h" + +#define DATA_SIZE 8 +#include "softmmu_template.h" |