aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPeter Maydell <peter.maydell@linaro.org>2019-02-01 16:39:17 +0000
committerPeter Maydell <peter.maydell@linaro.org>2019-02-01 16:39:17 +0000
commite83d74286cad2b9b967e1ba0ce5c8d16cba9679f (patch)
treebd57034a1550568ec8f9d6aa4457fd38531e9c17
parenta1bc3e7dc8f89facee6d3c25fb8465f8feccef1f (diff)
parent7743b70ffe7a8ce168adce2cf50ad156b1fefb8c (diff)
Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20190201' into staging
target-arm queue: * New machine mps2-an521 -- this is a model of the AN521 FPGA image for the MPS2 devboard * Fix various places where we failed to UNDEF invalid A64 instructions * Don't UNDEF a valid FCMLA on 32-bit inputs * Fix some bugs in the newly-added PAuth implementation * microbit: Implement NVMC non-volatile memory controller # gpg: Signature made Fri 01 Feb 2019 16:06:03 GMT # gpg: using RSA key E1A5C593CD419DE28E8315CF3C2525ED14360CDE # gpg: issuer "peter.maydell@linaro.org" # gpg: Good signature from "Peter Maydell <peter.maydell@linaro.org>" [ultimate] # gpg: aka "Peter Maydell <pmaydell@gmail.com>" [ultimate] # gpg: aka "Peter Maydell <pmaydell@chiark.greenend.org.uk>" [ultimate] # Primary key fingerprint: E1A5 C593 CD41 9DE2 8E83 15CF 3C25 25ED 1436 0CDE * remotes/pmaydell/tags/pull-target-arm-20190201: (47 commits) tests/microbit-test: Add tests for nRF51 NVMC arm: Instantiate NRF51 special NVM's and NVMC hw/nvram/nrf51_nvm: Add nRF51 non-volatile memories target/arm: fix decoding of B{,L}RA{A,B} target/arm: fix AArch64 virtual address space size linux-user: Initialize aarch64 pac keys aarch64-linux-user: Enable HWCAP bits for PAuth aarch64-linux-user: Update HWCAP bits from linux 5.0-rc1 target/arm: Always enable pac keys for user-only arm: Clarify the logic of set_pc() target/arm: Enable API, APK bits in SCR, HCR target/arm: Add a timer to predict PMU counter overflow target/arm: Send interrupts on PMU counter overflow target/arm/translate-a64: Fix mishandling of size in FCMLA decode target/arm/translate-a64: Fix FCMLA decoding error exec.c: Don't reallocate IOMMUNotifiers that are in use target/arm/translate-a64: Don't underdecode SDOT and UDOT target/arm/translate-a64: Don't underdecode FP insns target/arm/translate-a64: Don't underdecode add/sub extended register target/arm/translate-a64: Don't underdecode SIMD ld/st single ... Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
-rw-r--r--MAINTAINERS6
-rw-r--r--default-configs/arm-softmmu.mak3
-rw-r--r--exec.c10
-rw-r--r--hw/arm/Makefile.objs2
-rw-r--r--hw/arm/armsse.c1241
-rw-r--r--hw/arm/armv7m.c23
-rw-r--r--hw/arm/boot.c4
-rw-r--r--hw/arm/iotkit.c759
-rw-r--r--hw/arm/mps2-tz.c121
-rw-r--r--hw/arm/nrf51_soc.c44
-rw-r--r--hw/intc/armv7m_nvic.c3
-rw-r--r--hw/misc/Makefile.objs1
-rw-r--r--hw/misc/armsse-cpuid.c134
-rw-r--r--hw/misc/iotkit-secctl.c5
-rw-r--r--hw/misc/iotkit-sysinfo.c15
-rw-r--r--hw/misc/trace-events4
-rw-r--r--hw/nvram/Makefile.objs1
-rw-r--r--hw/nvram/nrf51_nvm.c388
-rw-r--r--include/hw/arm/armsse.h (renamed from include/hw/arm/iotkit.h)113
-rw-r--r--include/hw/arm/armv7m.h1
-rw-r--r--include/hw/arm/nrf51_soc.h2
-rw-r--r--include/hw/misc/armsse-cpuid.h41
-rw-r--r--include/hw/misc/iotkit-secctl.h6
-rw-r--r--include/hw/misc/iotkit-sysinfo.h6
-rw-r--r--include/hw/nvram/nrf51_nvm.h64
-rw-r--r--include/qom/cpu.h16
-rw-r--r--linux-user/aarch64/cpu_loop.c31
-rw-r--r--linux-user/aarch64/target_syscall.h2
-rw-r--r--linux-user/elfload.c10
-rw-r--r--target/arm/arm-powerctl.c3
-rw-r--r--target/arm/cpu.c41
-rw-r--r--target/arm/cpu.h12
-rw-r--r--target/arm/cpu64.c75
-rw-r--r--target/arm/helper.c139
-rw-r--r--target/arm/translate-a64.c59
-rw-r--r--tests/microbit-test.c108
36 files changed, 2552 insertions, 941 deletions
diff --git a/MAINTAINERS b/MAINTAINERS
index 37ceda468f..612692b284 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -624,14 +624,16 @@ F: hw/arm/mps2.c
F: hw/arm/mps2-tz.c
F: hw/misc/mps2-*.c
F: include/hw/misc/mps2-*.h
-F: hw/arm/iotkit.c
-F: include/hw/arm/iotkit.h
+F: hw/arm/armsse.c
+F: include/hw/arm/armsse.h
F: hw/misc/iotkit-secctl.c
F: include/hw/misc/iotkit-secctl.h
F: hw/misc/iotkit-sysctl.c
F: include/hw/misc/iotkit-sysctl.h
F: hw/misc/iotkit-sysinfo.c
F: include/hw/misc/iotkit-sysinfo.h
+F: hw/misc/armsse-cpuid.c
+F: include/hw/misc/armsse-cpuid.h
Musicpal
M: Jan Kiszka <jan.kiszka@web.de>
diff --git a/default-configs/arm-softmmu.mak b/default-configs/arm-softmmu.mak
index 2420491aac..be88870799 100644
--- a/default-configs/arm-softmmu.mak
+++ b/default-configs/arm-softmmu.mak
@@ -114,10 +114,11 @@ CONFIG_MPS2_SCC=y
CONFIG_TZ_MPC=y
CONFIG_TZ_MSC=y
CONFIG_TZ_PPC=y
-CONFIG_IOTKIT=y
+CONFIG_ARMSSE=y
CONFIG_IOTKIT_SECCTL=y
CONFIG_IOTKIT_SYSCTL=y
CONFIG_IOTKIT_SYSINFO=y
+CONFIG_ARMSSE_CPUID=y
CONFIG_VERSATILE=y
CONFIG_VERSATILE_PCI=y
diff --git a/exec.c b/exec.c
index da3e635f91..25f3938a27 100644
--- a/exec.c
+++ b/exec.c
@@ -665,7 +665,7 @@ static void tcg_register_iommu_notifier(CPUState *cpu,
int i;
for (i = 0; i < cpu->iommu_notifiers->len; i++) {
- notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
+ notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
break;
}
@@ -673,7 +673,8 @@ static void tcg_register_iommu_notifier(CPUState *cpu,
if (i == cpu->iommu_notifiers->len) {
/* Not found, add a new entry at the end of the array */
cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
- notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
+ notifier = g_new0(TCGIOMMUNotifier, 1);
+ g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
notifier->mr = mr;
notifier->iommu_idx = iommu_idx;
@@ -705,8 +706,9 @@ static void tcg_iommu_free_notifier_list(CPUState *cpu)
TCGIOMMUNotifier *notifier;
for (i = 0; i < cpu->iommu_notifiers->len; i++) {
- notifier = &g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier, i);
+ notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
+ g_free(notifier);
}
g_array_free(cpu->iommu_notifiers, true);
}
@@ -976,7 +978,7 @@ void cpu_exec_realizefn(CPUState *cpu, Error **errp)
vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
}
- cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier));
+ cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
#endif
}
diff --git a/hw/arm/Makefile.objs b/hw/arm/Makefile.objs
index 50c7b4a927..22b7f0ed0b 100644
--- a/hw/arm/Makefile.objs
+++ b/hw/arm/Makefile.objs
@@ -34,7 +34,7 @@ obj-$(CONFIG_ASPEED_SOC) += aspeed_soc.o aspeed.o
obj-$(CONFIG_MPS2) += mps2.o
obj-$(CONFIG_MPS2) += mps2-tz.o
obj-$(CONFIG_MSF2) += msf2-soc.o msf2-som.o
-obj-$(CONFIG_IOTKIT) += iotkit.o
+obj-$(CONFIG_ARMSSE) += armsse.o
obj-$(CONFIG_FSL_IMX7) += fsl-imx7.o mcimx7d-sabre.o
obj-$(CONFIG_ARM_SMMUV3) += smmu-common.o smmuv3.o
obj-$(CONFIG_FSL_IMX6UL) += fsl-imx6ul.o mcimx6ul-evk.o
diff --git a/hw/arm/armsse.c b/hw/arm/armsse.c
new file mode 100644
index 0000000000..5d53071a5a
--- /dev/null
+++ b/hw/arm/armsse.c
@@ -0,0 +1,1241 @@
+/*
+ * Arm SSE (Subsystems for Embedded): IoTKit
+ *
+ * Copyright (c) 2018 Linaro Limited
+ * Written by Peter Maydell
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 or
+ * (at your option) any later version.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/log.h"
+#include "qapi/error.h"
+#include "trace.h"
+#include "hw/sysbus.h"
+#include "hw/registerfields.h"
+#include "hw/arm/armsse.h"
+#include "hw/arm/arm.h"
+
+/* Format of the System Information block SYS_CONFIG register */
+typedef enum SysConfigFormat {
+ IoTKitFormat,
+ SSE200Format,
+} SysConfigFormat;
+
+struct ARMSSEInfo {
+ const char *name;
+ int sram_banks;
+ int num_cpus;
+ uint32_t sys_version;
+ SysConfigFormat sys_config_format;
+ bool has_mhus;
+ bool has_ppus;
+ bool has_cachectrl;
+ bool has_cpusecctrl;
+ bool has_cpuid;
+};
+
+static const ARMSSEInfo armsse_variants[] = {
+ {
+ .name = TYPE_IOTKIT,
+ .sram_banks = 1,
+ .num_cpus = 1,
+ .sys_version = 0x41743,
+ .sys_config_format = IoTKitFormat,
+ .has_mhus = false,
+ .has_ppus = false,
+ .has_cachectrl = false,
+ .has_cpusecctrl = false,
+ .has_cpuid = false,
+ },
+ {
+ .name = TYPE_SSE200,
+ .sram_banks = 4,
+ .num_cpus = 2,
+ .sys_version = 0x22041743,
+ .sys_config_format = SSE200Format,
+ .has_mhus = true,
+ .has_ppus = true,
+ .has_cachectrl = true,
+ .has_cpusecctrl = true,
+ .has_cpuid = true,
+ },
+};
+
+static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
+{
+ /* Return the SYS_CONFIG value for this SSE */
+ uint32_t sys_config;
+
+ switch (info->sys_config_format) {
+ case IoTKitFormat:
+ sys_config = 0;
+ sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
+ sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
+ break;
+ case SSE200Format:
+ sys_config = 0;
+ sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
+ sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
+ sys_config = deposit32(sys_config, 24, 4, 2);
+ if (info->num_cpus > 1) {
+ sys_config = deposit32(sys_config, 10, 1, 1);
+ sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
+ sys_config = deposit32(sys_config, 28, 4, 2);
+ }
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ return sys_config;
+}
+
+/* Clock frequency in HZ of the 32KHz "slow clock" */
+#define S32KCLK (32 * 1000)
+
+/* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
+static bool irq_is_common[32] = {
+ [0 ... 5] = true,
+ /* 6, 7: per-CPU MHU interrupts */
+ [8 ... 12] = true,
+ /* 13: per-CPU icache interrupt */
+ /* 14: reserved */
+ [15 ... 20] = true,
+ /* 21: reserved */
+ [22 ... 26] = true,
+ /* 27: reserved */
+ /* 28, 29: per-CPU CTI interrupts */
+ /* 30, 31: reserved */
+};
+
+/* Create an alias region of @size bytes starting at @base
+ * which mirrors the memory starting at @orig.
+ */
+static void make_alias(ARMSSE *s, MemoryRegion *mr, const char *name,
+ hwaddr base, hwaddr size, hwaddr orig)
+{
+ memory_region_init_alias(mr, NULL, name, &s->container, orig, size);
+ /* The alias is even lower priority than unimplemented_device regions */
+ memory_region_add_subregion_overlap(&s->container, base, mr, -1500);
+}
+
+static void irq_status_forwarder(void *opaque, int n, int level)
+{
+ qemu_irq destirq = opaque;
+
+ qemu_set_irq(destirq, level);
+}
+
+static void nsccfg_handler(void *opaque, int n, int level)
+{
+ ARMSSE *s = ARMSSE(opaque);
+
+ s->nsccfg = level;
+}
+
+static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
+{
+ /* Each of the 4 AHB and 4 APB PPCs that might be present in a
+ * system using the ARMSSE has a collection of control lines which
+ * are provided by the security controller and which we want to
+ * expose as control lines on the ARMSSE device itself, so the
+ * code using the ARMSSE can wire them up to the PPCs.
+ */
+ SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
+ DeviceState *armssedev = DEVICE(s);
+ DeviceState *dev_secctl = DEVICE(&s->secctl);
+ DeviceState *dev_splitter = DEVICE(splitter);
+ char *name;
+
+ name = g_strdup_printf("%s_nonsec", ppcname);
+ qdev_pass_gpios(dev_secctl, armssedev, name);
+ g_free(name);
+ name = g_strdup_printf("%s_ap", ppcname);
+ qdev_pass_gpios(dev_secctl, armssedev, name);
+ g_free(name);
+ name = g_strdup_printf("%s_irq_enable", ppcname);
+ qdev_pass_gpios(dev_secctl, armssedev, name);
+ g_free(name);
+ name = g_strdup_printf("%s_irq_clear", ppcname);
+ qdev_pass_gpios(dev_secctl, armssedev, name);
+ g_free(name);
+
+ /* irq_status is a little more tricky, because we need to
+ * split it so we can send it both to the security controller
+ * and to our OR gate for the NVIC interrupt line.
+ * Connect up the splitter's outputs, and create a GPIO input
+ * which will pass the line state to the input splitter.
+ */
+ name = g_strdup_printf("%s_irq_status", ppcname);
+ qdev_connect_gpio_out(dev_splitter, 0,
+ qdev_get_gpio_in_named(dev_secctl,
+ name, 0));
+ qdev_connect_gpio_out(dev_splitter, 1,
+ qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
+ s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
+ qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
+ s->irq_status_in[ppcnum], name, 1);
+ g_free(name);
+}
+
+static void armsse_forward_sec_resp_cfg(ARMSSE *s)
+{
+ /* Forward the 3rd output from the splitter device as a
+ * named GPIO output of the armsse object.
+ */
+ DeviceState *dev = DEVICE(s);
+ DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
+
+ qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
+ s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
+ s->sec_resp_cfg, 1);
+ qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
+}
+
+static void armsse_init(Object *obj)
+{
+ ARMSSE *s = ARMSSE(obj);
+ ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
+ const ARMSSEInfo *info = asc->info;
+ int i;
+
+ assert(info->sram_banks <= MAX_SRAM_BANKS);
+ assert(info->num_cpus <= SSE_MAX_CPUS);
+
+ memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
+
+ for (i = 0; i < info->num_cpus; i++) {
+ /*
+ * We put each CPU in its own cluster as they are logically
+ * distinct and may be configured differently.
+ */
+ char *name;
+
+ name = g_strdup_printf("cluster%d", i);
+ object_initialize_child(obj, name, &s->cluster[i],
+ sizeof(s->cluster[i]), TYPE_CPU_CLUSTER,
+ &error_abort, NULL);
+ qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
+ g_free(name);
+
+ name = g_strdup_printf("armv7m%d", i);
+ sysbus_init_child_obj(OBJECT(&s->cluster[i]), name,
+ &s->armv7m[i], sizeof(s->armv7m), TYPE_ARMV7M);
+ qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
+ ARM_CPU_TYPE_NAME("cortex-m33"));
+ g_free(name);
+ name = g_strdup_printf("arm-sse-cpu-container%d", i);
+ memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
+ g_free(name);
+ if (i > 0) {
+ name = g_strdup_printf("arm-sse-container-alias%d", i);
+ memory_region_init_alias(&s->container_alias[i - 1], obj,
+ name, &s->container, 0, UINT64_MAX);
+ g_free(name);
+ }
+ }
+
+ sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl),
+ TYPE_IOTKIT_SECCTL);
+ sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
+ TYPE_TZ_PPC);
+ sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
+ TYPE_TZ_PPC);
+ for (i = 0; i < info->sram_banks; i++) {
+ char *name = g_strdup_printf("mpc%d", i);
+ sysbus_init_child_obj(obj, name, &s->mpc[i],
+ sizeof(s->mpc[i]), TYPE_TZ_MPC);
+ g_free(name);
+ }
+ object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
+ sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ,
+ &error_abort, NULL);
+
+ for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
+ char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
+ SplitIRQ *splitter = &s->mpc_irq_splitter[i];
+
+ object_initialize_child(obj, name, splitter, sizeof(*splitter),
+ TYPE_SPLIT_IRQ, &error_abort, NULL);
+ g_free(name);
+ }
+ sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0),
+ TYPE_CMSDK_APB_TIMER);
+ sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1),
+ TYPE_CMSDK_APB_TIMER);
+ sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
+ TYPE_CMSDK_APB_TIMER);
+ sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
+ TYPE_CMSDK_APB_DUALTIMER);
+ sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog,
+ sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG);
+ sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog,
+ sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG);
+ sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog,
+ sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG);
+ sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl,
+ sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL);
+ sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo,
+ sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO);
+ if (info->has_mhus) {
+ sysbus_init_child_obj(obj, "mhu0", &s->mhu[0], sizeof(s->mhu[0]),
+ TYPE_UNIMPLEMENTED_DEVICE);
+ sysbus_init_child_obj(obj, "mhu1", &s->mhu[1], sizeof(s->mhu[1]),
+ TYPE_UNIMPLEMENTED_DEVICE);
+ }
+ if (info->has_ppus) {
+ for (i = 0; i < info->num_cpus; i++) {
+ char *name = g_strdup_printf("CPU%dCORE_PPU", i);
+ int ppuidx = CPU0CORE_PPU + i;
+
+ sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
+ sizeof(s->ppu[ppuidx]),
+ TYPE_UNIMPLEMENTED_DEVICE);
+ g_free(name);
+ }
+ sysbus_init_child_obj(obj, "DBG_PPU", &s->ppu[DBG_PPU],
+ sizeof(s->ppu[DBG_PPU]),
+ TYPE_UNIMPLEMENTED_DEVICE);
+ for (i = 0; i < info->sram_banks; i++) {
+ char *name = g_strdup_printf("RAM%d_PPU", i);
+ int ppuidx = RAM0_PPU + i;
+
+ sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
+ sizeof(s->ppu[ppuidx]),
+ TYPE_UNIMPLEMENTED_DEVICE);
+ g_free(name);
+ }
+ }
+ if (info->has_cachectrl) {
+ for (i = 0; i < info->num_cpus; i++) {
+ char *name = g_strdup_printf("cachectrl%d", i);
+
+ sysbus_init_child_obj(obj, name, &s->cachectrl[i],
+ sizeof(s->cachectrl[i]),
+ TYPE_UNIMPLEMENTED_DEVICE);
+ g_free(name);
+ }
+ }
+ if (info->has_cpusecctrl) {
+ for (i = 0; i < info->num_cpus; i++) {
+ char *name = g_strdup_printf("cpusecctrl%d", i);
+
+ sysbus_init_child_obj(obj, name, &s->cpusecctrl[i],
+ sizeof(s->cpusecctrl[i]),
+ TYPE_UNIMPLEMENTED_DEVICE);
+ g_free(name);
+ }
+ }
+ if (info->has_cpuid) {
+ for (i = 0; i < info->num_cpus; i++) {
+ char *name = g_strdup_printf("cpuid%d", i);
+
+ sysbus_init_child_obj(obj, name, &s->cpuid[i],
+ sizeof(s->cpuid[i]),
+ TYPE_ARMSSE_CPUID);
+ g_free(name);
+ }
+ }
+ object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate,
+ sizeof(s->nmi_orgate), TYPE_OR_IRQ,
+ &error_abort, NULL);
+ object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
+ sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ,
+ &error_abort, NULL);
+ object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
+ sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ,
+ &error_abort, NULL);
+ for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
+ char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
+ SplitIRQ *splitter = &s->ppc_irq_splitter[i];
+
+ object_initialize_child(obj, name, splitter, sizeof(*splitter),
+ TYPE_SPLIT_IRQ, &error_abort, NULL);
+ g_free(name);
+ }
+ if (info->num_cpus > 1) {
+ for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
+ if (irq_is_common[i]) {
+ char *name = g_strdup_printf("cpu-irq-splitter%d", i);
+ SplitIRQ *splitter = &s->cpu_irq_splitter[i];
+
+ object_initialize_child(obj, name, splitter, sizeof(*splitter),
+ TYPE_SPLIT_IRQ, &error_abort, NULL);
+ g_free(name);
+ }
+ }
+ }
+}
+
+static void armsse_exp_irq(void *opaque, int n, int level)
+{
+ qemu_irq *irqarray = opaque;
+
+ qemu_set_irq(irqarray[n], level);
+}
+
+static void armsse_mpcexp_status(void *opaque, int n, int level)
+{
+ ARMSSE *s = ARMSSE(opaque);
+ qemu_set_irq(s->mpcexp_status_in[n], level);
+}
+
+static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
+{
+ /*
+ * Return a qemu_irq which can be used to signal IRQ n to
+ * all CPUs in the SSE.
+ */
+ ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
+ const ARMSSEInfo *info = asc->info;
+
+ assert(irq_is_common[irqno]);
+
+ if (info->num_cpus == 1) {
+ /* Only one CPU -- just connect directly to it */
+ return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
+ } else {
+ /* Connect to the splitter which feeds all CPUs */
+ return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
+ }
+}
+
+static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
+{
+ /* Map a PPU unimplemented device stub */
+ DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
+
+ qdev_prop_set_string(dev, "name", name);
+ qdev_prop_set_uint64(dev, "size", 0x1000);
+ qdev_init_nofail(dev);
+ sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
+}
+
+static void armsse_realize(DeviceState *dev, Error **errp)
+{
+ ARMSSE *s = ARMSSE(dev);
+ ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
+ const ARMSSEInfo *info = asc->info;
+ int i;
+ MemoryRegion *mr;
+ Error *err = NULL;
+ SysBusDevice *sbd_apb_ppc0;
+ SysBusDevice *sbd_secctl;
+ DeviceState *dev_apb_ppc0;
+ DeviceState *dev_apb_ppc1;
+ DeviceState *dev_secctl;
+ DeviceState *dev_splitter;
+ uint32_t addr_width_max;
+
+ if (!s->board_memory) {
+ error_setg(errp, "memory property was not set");
+ return;
+ }
+
+ if (!s->mainclk_frq) {
+ error_setg(errp, "MAINCLK property was not set");
+ return;
+ }
+
+ /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
+ assert(is_power_of_2(info->sram_banks));
+ addr_width_max = 24 - ctz32(info->sram_banks);
+ if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
+ error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
+ addr_width_max);
+ return;
+ }
+
+ /* Handling of which devices should be available only to secure
+ * code is usually done differently for M profile than for A profile.
+ * Instead of putting some devices only into the secure address space,
+ * devices exist in both address spaces but with hard-wired security
+ * permissions that will cause the CPU to fault for non-secure accesses.
+ *
+ * The ARMSSE has an IDAU (Implementation Defined Access Unit),
+ * which specifies hard-wired security permissions for different
+ * areas of the physical address space. For the ARMSSE IDAU, the
+ * top 4 bits of the physical address are the IDAU region ID, and
+ * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
+ * region, otherwise it is an S region.
+ *
+ * The various devices and RAMs are generally all mapped twice,
+ * once into a region that the IDAU defines as secure and once
+ * into a non-secure region. They sit behind either a Memory
+ * Protection Controller (for RAM) or a Peripheral Protection
+ * Controller (for devices), which allow a more fine grained
+ * configuration of whether non-secure accesses are permitted.
+ *
+ * (The other place that guest software can configure security
+ * permissions is in the architected SAU (Security Attribution
+ * Unit), which is entirely inside the CPU. The IDAU can upgrade
+ * the security attributes for a region to more restrictive than
+ * the SAU specifies, but cannot downgrade them.)
+ *
+ * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
+ * 0x20000000..0x2007ffff 32KB FPGA block RAM
+ * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
+ * 0x40000000..0x4000ffff base peripheral region 1
+ * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
+ * 0x40020000..0x4002ffff system control element peripherals
+ * 0x40080000..0x400fffff base peripheral region 2
+ * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
+ */
+
+ memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
+
+ for (i = 0; i < info->num_cpus; i++) {
+ DeviceState *cpudev = DEVICE(&s->armv7m[i]);
+ Object *cpuobj = OBJECT(&s->armv7m[i]);
+ int j;
+ char *gpioname;
+
+ qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
+ /*
+ * In real hardware the initial Secure VTOR is set from the INITSVTOR0
+ * register in the IoT Kit System Control Register block, and the
+ * initial value of that is in turn specifiable by the FPGA that
+ * instantiates the IoT Kit. In QEMU we don't implement this wrinkle,
+ * and simply set the CPU's init-svtor to the IoT Kit default value.
+ * In SSE-200 the situation is similar, except that the default value
+ * is a reset-time signal input. Typically a board using the SSE-200
+ * will have a system control processor whose boot firmware initializes
+ * the INITSVTOR* registers before powering up the CPUs in any case,
+ * so the hardware's default value doesn't matter. QEMU doesn't emulate
+ * the control processor, so instead we behave in the way that the
+ * firmware does. All boards currently known about have firmware that
+ * sets the INITSVTOR0 and INITSVTOR1 registers to 0x10000000, like the
+ * IoTKit default. We can make this more configurable if necessary.
+ */
+ qdev_prop_set_uint32(cpudev, "init-svtor", 0x10000000);
+ /*
+ * Start all CPUs except CPU0 powered down. In real hardware it is
+ * a configurable property of the SSE-200 which CPUs start powered up
+ * (via the CPUWAIT0_RST and CPUWAIT1_RST parameters), but since all
+ * the boards we care about start CPU0 and leave CPU1 powered off,
+ * we hard-code that for now. We can add QOM properties for this
+ * later if necessary.
+ */
+ if (i > 0) {
+ object_property_set_bool(cpuobj, true, "start-powered-off", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ }
+
+ if (i > 0) {
+ memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
+ &s->container_alias[i - 1], -1);
+ } else {
+ memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
+ &s->container, -1);
+ }
+ object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]),
+ "memory", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_link(cpuobj, OBJECT(s), "idau", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(cpuobj, true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ /*
+ * The cluster must be realized after the armv7m container, as
+ * the container's CPU object is only created on realize, and the
+ * CPU must exist and have been parented into the cluster before
+ * the cluster is realized.
+ */
+ object_property_set_bool(OBJECT(&s->cluster[i]),
+ true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
+ s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
+ for (j = 0; j < s->exp_numirq; j++) {
+ s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, i + 32);
+ }
+ if (i == 0) {
+ gpioname = g_strdup("EXP_IRQ");
+ } else {
+ gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
+ }
+ qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
+ s->exp_irqs[i],
+ gpioname, s->exp_numirq);
+ g_free(gpioname);
+ }
+
+ /* Wire up the splitters that connect common IRQs to all CPUs */
+ if (info->num_cpus > 1) {
+ for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
+ if (irq_is_common[i]) {
+ Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
+ DeviceState *devs = DEVICE(splitter);
+ int cpunum;
+
+ object_property_set_int(splitter, info->num_cpus,
+ "num-lines", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(splitter, true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
+ DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
+
+ qdev_connect_gpio_out(devs, cpunum,
+ qdev_get_gpio_in(cpudev, i));
+ }
+ }
+ }
+ }
+
+ /* Set up the big aliases first */
+ make_alias(s, &s->alias1, "alias 1", 0x10000000, 0x10000000, 0x00000000);
+ make_alias(s, &s->alias2, "alias 2", 0x30000000, 0x10000000, 0x20000000);
+ /* The 0x50000000..0x5fffffff region is not a pure alias: it has
+ * a few extra devices that only appear there (generally the
+ * control interfaces for the protection controllers).
+ * We implement this by mapping those devices over the top of this
+ * alias MR at a higher priority.
+ */
+ make_alias(s, &s->alias3, "alias 3", 0x50000000, 0x10000000, 0x40000000);
+
+
+ /* Security controller */
+ object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
+ dev_secctl = DEVICE(&s->secctl);
+ sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
+ sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
+
+ s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
+ qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
+
+ /* The sec_resp_cfg output from the security controller must be split into
+ * multiple lines, one for each of the PPCs within the ARMSSE and one
+ * that will be an output from the ARMSSE to the system.
+ */
+ object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
+ "num-lines", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
+ "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ dev_splitter = DEVICE(&s->sec_resp_splitter);
+ qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
+ qdev_get_gpio_in(dev_splitter, 0));
+
+ /* Each SRAM bank lives behind its own Memory Protection Controller */
+ for (i = 0; i < info->sram_banks; i++) {
+ char *ramname = g_strdup_printf("armsse.sram%d", i);
+ SysBusDevice *sbd_mpc;
+ uint32_t sram_bank_size = 1 << s->sram_addr_width;
+
+ memory_region_init_ram(&s->sram[i], NULL, ramname,
+ sram_bank_size, &err);
+ g_free(ramname);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]),
+ "downstream", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ /* Map the upstream end of the MPC into the right place... */
+ sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
+ memory_region_add_subregion(&s->container,
+ 0x20000000 + i * sram_bank_size,
+ sysbus_mmio_get_region(sbd_mpc, 1));
+ /* ...and its register interface */
+ memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
+ sysbus_mmio_get_region(sbd_mpc, 0));
+ }
+
+ /* We must OR together lines from the MPC splitters to go to the NVIC */
+ object_property_set_int(OBJECT(&s->mpc_irq_orgate),
+ IOTS_NUM_EXP_MPC + info->sram_banks,
+ "num-lines", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
+ "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
+ armsse_get_common_irq_in(s, 9));
+
+ /* Devices behind APB PPC0:
+ * 0x40000000: timer0
+ * 0x40001000: timer1
+ * 0x40002000: dual timer
+ * 0x40003000: MHU0 (SSE-200 only)
+ * 0x40004000: MHU1 (SSE-200 only)
+ * We must configure and realize each downstream device and connect
+ * it to the appropriate PPC port; then we can realize the PPC and
+ * map its upstream ends to the right place in the container.
+ */
+ qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
+ object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
+ armsse_get_common_irq_in(s, 3));
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
+ object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
+ object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
+ armsse_get_common_irq_in(s, 4));
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
+ object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+
+ qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
+ object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
+ armsse_get_common_irq_in(s, 5));
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
+ object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ if (info->has_mhus) {
+ for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
+ char *name = g_strdup_printf("MHU%d", i);
+ char *port = g_strdup_printf("port[%d]", i + 3);
+
+ qdev_prop_set_string(DEVICE(&s->mhu[i]), "name", name);
+ qdev_prop_set_uint64(DEVICE(&s->mhu[i]), "size", 0x1000);
+ object_property_set_bool(OBJECT(&s->mhu[i]), true,
+ "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->mhu[i]), 0);
+ object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr),
+ port, &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ g_free(name);
+ g_free(port);
+ }
+ }
+
+ object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
+ dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
+
+ mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
+ memory_region_add_subregion(&s->container, 0x40000000, mr);
+ mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
+ memory_region_add_subregion(&s->container, 0x40001000, mr);
+ mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
+ memory_region_add_subregion(&s->container, 0x40002000, mr);
+ if (info->has_mhus) {
+ mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
+ memory_region_add_subregion(&s->container, 0x40003000, mr);
+ mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
+ memory_region_add_subregion(&s->container, 0x40004000, mr);
+ }
+ for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
+ qdev_get_gpio_in_named(dev_apb_ppc0,
+ "cfg_nonsec", i));
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
+ qdev_get_gpio_in_named(dev_apb_ppc0,
+ "cfg_ap", i));
+ }
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
+ qdev_get_gpio_in_named(dev_apb_ppc0,
+ "irq_enable", 0));
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
+ qdev_get_gpio_in_named(dev_apb_ppc0,
+ "irq_clear", 0));
+ qdev_connect_gpio_out(dev_splitter, 0,
+ qdev_get_gpio_in_named(dev_apb_ppc0,
+ "cfg_sec_resp", 0));
+
+ /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
+ * ones) are sent individually to the security controller, and also
+ * ORed together to give a single combined PPC interrupt to the NVIC.
+ */
+ object_property_set_int(OBJECT(&s->ppc_irq_orgate),
+ NUM_PPCS, "num-lines", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
+ "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
+ armsse_get_common_irq_in(s, 10));
+
+ /*
+ * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
+ * private per-CPU region (all these devices are SSE-200 only):
+ * 0x50010000: L1 icache control registers
+ * 0x50011000: CPUSECCTRL (CPU local security control registers)
+ * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
+ */
+ if (info->has_cachectrl) {
+ for (i = 0; i < info->num_cpus; i++) {
+ char *name = g_strdup_printf("cachectrl%d", i);
+ MemoryRegion *mr;
+
+ qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
+ g_free(name);
+ qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
+ object_property_set_bool(OBJECT(&s->cachectrl[i]), true,
+ "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
+ memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
+ }
+ }
+ if (info->has_cpusecctrl) {
+ for (i = 0; i < info->num_cpus; i++) {
+ char *name = g_strdup_printf("CPUSECCTRL%d", i);
+ MemoryRegion *mr;
+
+ qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
+ g_free(name);
+ qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
+ object_property_set_bool(OBJECT(&s->cpusecctrl[i]), true,
+ "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
+ memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
+ }
+ }
+ if (info->has_cpuid) {
+ for (i = 0; i < info->num_cpus; i++) {
+ MemoryRegion *mr;
+
+ qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
+ object_property_set_bool(OBJECT(&s->cpuid[i]), true,
+ "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
+ memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
+ }
+ }
+
+ /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
+ /* Devices behind APB PPC1:
+ * 0x4002f000: S32K timer
+ */
+ qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
+ object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
+ armsse_get_common_irq_in(s, 2));
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
+ object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
+ memory_region_add_subregion(&s->container, 0x4002f000, mr);
+
+ dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
+ qdev_get_gpio_in_named(dev_apb_ppc1,
+ "cfg_nonsec", 0));
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
+ qdev_get_gpio_in_named(dev_apb_ppc1,
+ "cfg_ap", 0));
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
+ qdev_get_gpio_in_named(dev_apb_ppc1,
+ "irq_enable", 0));
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
+ qdev_get_gpio_in_named(dev_apb_ppc1,
+ "irq_clear", 0));
+ qdev_connect_gpio_out(dev_splitter, 1,
+ qdev_get_gpio_in_named(dev_apb_ppc1,
+ "cfg_sec_resp", 0));
+
+ object_property_set_int(OBJECT(&s->sysinfo), info->sys_version,
+ "SYS_VERSION", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_int(OBJECT(&s->sysinfo),
+ armsse_sys_config_value(s, info),
+ "SYS_CONFIG", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ /* System information registers */
+ sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
+ /* System control registers */
+ object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
+
+ if (info->has_ppus) {
+ /* CPUnCORE_PPU for each CPU */
+ for (i = 0; i < info->num_cpus; i++) {
+ char *name = g_strdup_printf("CPU%dCORE_PPU", i);
+
+ map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
+ /*
+ * We don't support CPU debug so don't create the
+ * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
+ */
+ g_free(name);
+ }
+ map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
+
+ for (i = 0; i < info->sram_banks; i++) {
+ char *name = g_strdup_printf("RAM%d_PPU", i);
+
+ map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
+ g_free(name);
+ }
+ }
+
+ /* This OR gate wires together outputs from the secure watchdogs to NMI */
+ object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
+ qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
+
+ qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
+ object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
+ qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
+ sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
+
+ /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
+
+ qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
+ object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
+ armsse_get_common_irq_in(s, 1));
+ sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
+
+ qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
+ object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
+ qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
+ sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
+
+ for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
+ Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
+
+ object_property_set_int(splitter, 2, "num-lines", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(splitter, true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ }
+
+ for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
+ char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
+
+ armsse_forward_ppc(s, ppcname, i);
+ g_free(ppcname);
+ }
+
+ for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
+ char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
+
+ armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
+ g_free(ppcname);
+ }
+
+ for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
+ /* Wire up IRQ splitter for internal PPCs */
+ DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
+ char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
+ i - NUM_EXTERNAL_PPCS);
+ TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
+
+ qdev_connect_gpio_out(devs, 0,
+ qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
+ qdev_connect_gpio_out(devs, 1,
+ qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
+ qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
+ qdev_get_gpio_in(devs, 0));
+ g_free(gpioname);
+ }
+
+ /* Wire up the splitters for the MPC IRQs */
+ for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
+ SplitIRQ *splitter = &s->mpc_irq_splitter[i];
+ DeviceState *dev_splitter = DEVICE(splitter);
+
+ object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(OBJECT(splitter), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ if (i < IOTS_NUM_EXP_MPC) {
+ /* Splitter input is from GPIO input line */
+ s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
+ qdev_connect_gpio_out(dev_splitter, 0,
+ qdev_get_gpio_in_named(dev_secctl,
+ "mpcexp_status", i));
+ } else {
+ /* Splitter input is from our own MPC */
+ qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
+ "irq", 0,
+ qdev_get_gpio_in(dev_splitter, 0));
+ qdev_connect_gpio_out(dev_splitter, 0,
+ qdev_get_gpio_in_named(dev_secctl,
+ "mpc_status", 0));
+ }
+
+ qdev_connect_gpio_out(dev_splitter, 1,
+ qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
+ }
+ /* Create GPIO inputs which will pass the line state for our
+ * mpcexp_irq inputs to the correct splitter devices.
+ */
+ qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
+ IOTS_NUM_EXP_MPC);
+
+ armsse_forward_sec_resp_cfg(s);
+
+ /* Forward the MSC related signals */
+ qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
+ qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
+ qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
+ qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
+ armsse_get_common_irq_in(s, 11));
+
+ /*
+ * Expose our container region to the board model; this corresponds
+ * to the AHB Slave Expansion ports which allow bus master devices
+ * (eg DMA controllers) in the board model to make transactions into
+ * devices in the ARMSSE.
+ */
+ sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
+
+ system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
+}
+
+static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
+ int *iregion, bool *exempt, bool *ns, bool *nsc)
+{
+ /*
+ * For ARMSSE systems the IDAU responses are simple logical functions
+ * of the address bits. The NSC attribute is guest-adjustable via the
+ * NSCCFG register in the security controller.
+ */
+ ARMSSE *s = ARMSSE(ii);
+ int region = extract32(address, 28, 4);
+
+ *ns = !(region & 1);
+ *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
+ /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
+ *exempt = (address & 0xeff00000) == 0xe0000000;
+ *iregion = region;
+}
+
+static const VMStateDescription armsse_vmstate = {
+ .name = "iotkit",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .fields = (VMStateField[]) {
+ VMSTATE_UINT32(nsccfg, ARMSSE),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+static Property armsse_properties[] = {
+ DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
+ MemoryRegion *),
+ DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
+ DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
+ DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
+ DEFINE_PROP_END_OF_LIST()
+};
+
+static void armsse_reset(DeviceState *dev)
+{
+ ARMSSE *s = ARMSSE(dev);
+
+ s->nsccfg = 0;
+}
+
+static void armsse_class_init(ObjectClass *klass, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(klass);
+ IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
+ ARMSSEClass *asc = ARMSSE_CLASS(klass);
+
+ dc->realize = armsse_realize;
+ dc->vmsd = &armsse_vmstate;
+ dc->props = armsse_properties;
+ dc->reset = armsse_reset;
+ iic->check = armsse_idau_check;
+ asc->info = data;
+}
+
+static const TypeInfo armsse_info = {
+ .name = TYPE_ARMSSE,
+ .parent = TYPE_SYS_BUS_DEVICE,
+ .instance_size = sizeof(ARMSSE),
+ .instance_init = armsse_init,
+ .abstract = true,
+ .interfaces = (InterfaceInfo[]) {
+ { TYPE_IDAU_INTERFACE },
+ { }
+ }
+};
+
+static void armsse_register_types(void)
+{
+ int i;
+
+ type_register_static(&armsse_info);
+
+ for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
+ TypeInfo ti = {
+ .name = armsse_variants[i].name,
+ .parent = TYPE_ARMSSE,
+ .class_init = armsse_class_init,
+ .class_data = (void *)&armsse_variants[i],
+ };
+ type_register(&ti);
+ }
+}
+
+type_init(armsse_register_types);
diff --git a/hw/arm/armv7m.c b/hw/arm/armv7m.c
index f444652830..adae11e76e 100644
--- a/hw/arm/armv7m.c
+++ b/hw/arm/armv7m.c
@@ -158,7 +158,12 @@ static void armv7m_realize(DeviceState *dev, Error **errp)
memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
- s->cpu = ARM_CPU(object_new(s->cpu_type));
+ s->cpu = ARM_CPU(object_new_with_props(s->cpu_type, OBJECT(s), "cpu",
+ &err, NULL));
+ if (err != NULL) {
+ error_propagate(errp, err);
+ return;
+ }
object_property_set_link(OBJECT(s->cpu), OBJECT(&s->container), "memory",
&error_abort);
@@ -177,11 +182,21 @@ static void armv7m_realize(DeviceState *dev, Error **errp)
return;
}
}
+ if (object_property_find(OBJECT(s->cpu), "start-powered-off", NULL)) {
+ object_property_set_bool(OBJECT(s->cpu), s->start_powered_off,
+ "start-powered-off", &err);
+ if (err != NULL) {
+ error_propagate(errp, err);
+ return;
+ }
+ }
- /* Tell the CPU where the NVIC is; it will fail realize if it doesn't
- * have one.
+ /*
+ * Tell the CPU where the NVIC is; it will fail realize if it doesn't
+ * have one. Similarly, tell the NVIC where its CPU is.
*/
s->cpu->env.nvic = &s->nvic;
+ s->nvic.cpu = s->cpu;
object_property_set_bool(OBJECT(s->cpu), true, "realized", &err);
if (err != NULL) {
@@ -243,6 +258,8 @@ static Property armv7m_properties[] = {
DEFINE_PROP_LINK("idau", ARMv7MState, idau, TYPE_IDAU_INTERFACE, Object *),
DEFINE_PROP_UINT32("init-svtor", ARMv7MState, init_svtor, 0),
DEFINE_PROP_BOOL("enable-bitband", ARMv7MState, enable_bitband, false),
+ DEFINE_PROP_BOOL("start-powered-off", ARMv7MState, start_powered_off,
+ false),
DEFINE_PROP_END_OF_LIST(),
};
diff --git a/hw/arm/boot.c b/hw/arm/boot.c
index c7a67af7a9..05762d0fc1 100644
--- a/hw/arm/boot.c
+++ b/hw/arm/boot.c
@@ -697,10 +697,6 @@ static void do_cpu_reset(void *opaque)
g_assert_not_reached();
}
- if (!env->aarch64) {
- env->thumb = info->entry & 1;
- entry &= 0xfffffffe;
- }
cpu_set_pc(cs, entry);
} else {
/* If we are booting Linux then we need to check whether we are
diff --git a/hw/arm/iotkit.c b/hw/arm/iotkit.c
deleted file mode 100644
index 8742200fb4..0000000000
--- a/hw/arm/iotkit.c
+++ /dev/null
@@ -1,759 +0,0 @@
-/*
- * Arm IoT Kit
- *
- * Copyright (c) 2018 Linaro Limited
- * Written by Peter Maydell
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 or
- * (at your option) any later version.
- */
-
-#include "qemu/osdep.h"
-#include "qemu/log.h"
-#include "qapi/error.h"
-#include "trace.h"
-#include "hw/sysbus.h"
-#include "hw/registerfields.h"
-#include "hw/arm/iotkit.h"
-#include "hw/arm/arm.h"
-
-/* Clock frequency in HZ of the 32KHz "slow clock" */
-#define S32KCLK (32 * 1000)
-
-/* Create an alias region of @size bytes starting at @base
- * which mirrors the memory starting at @orig.
- */
-static void make_alias(IoTKit *s, MemoryRegion *mr, const char *name,
- hwaddr base, hwaddr size, hwaddr orig)
-{
- memory_region_init_alias(mr, NULL, name, &s->container, orig, size);
- /* The alias is even lower priority than unimplemented_device regions */
- memory_region_add_subregion_overlap(&s->container, base, mr, -1500);
-}
-
-static void irq_status_forwarder(void *opaque, int n, int level)
-{
- qemu_irq destirq = opaque;
-
- qemu_set_irq(destirq, level);
-}
-
-static void nsccfg_handler(void *opaque, int n, int level)
-{
- IoTKit *s = IOTKIT(opaque);
-
- s->nsccfg = level;
-}
-
-static void iotkit_forward_ppc(IoTKit *s, const char *ppcname, int ppcnum)
-{
- /* Each of the 4 AHB and 4 APB PPCs that might be present in a
- * system using the IoTKit has a collection of control lines which
- * are provided by the security controller and which we want to
- * expose as control lines on the IoTKit device itself, so the
- * code using the IoTKit can wire them up to the PPCs.
- */
- SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
- DeviceState *iotkitdev = DEVICE(s);
- DeviceState *dev_secctl = DEVICE(&s->secctl);
- DeviceState *dev_splitter = DEVICE(splitter);
- char *name;
-
- name = g_strdup_printf("%s_nonsec", ppcname);
- qdev_pass_gpios(dev_secctl, iotkitdev, name);
- g_free(name);
- name = g_strdup_printf("%s_ap", ppcname);
- qdev_pass_gpios(dev_secctl, iotkitdev, name);
- g_free(name);
- name = g_strdup_printf("%s_irq_enable", ppcname);
- qdev_pass_gpios(dev_secctl, iotkitdev, name);
- g_free(name);
- name = g_strdup_printf("%s_irq_clear", ppcname);
- qdev_pass_gpios(dev_secctl, iotkitdev, name);
- g_free(name);
-
- /* irq_status is a little more tricky, because we need to
- * split it so we can send it both to the security controller
- * and to our OR gate for the NVIC interrupt line.
- * Connect up the splitter's outputs, and create a GPIO input
- * which will pass the line state to the input splitter.
- */
- name = g_strdup_printf("%s_irq_status", ppcname);
- qdev_connect_gpio_out(dev_splitter, 0,
- qdev_get_gpio_in_named(dev_secctl,
- name, 0));
- qdev_connect_gpio_out(dev_splitter, 1,
- qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
- s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
- qdev_init_gpio_in_named_with_opaque(iotkitdev, irq_status_forwarder,
- s->irq_status_in[ppcnum], name, 1);
- g_free(name);
-}
-
-static void iotkit_forward_sec_resp_cfg(IoTKit *s)
-{
- /* Forward the 3rd output from the splitter device as a
- * named GPIO output of the iotkit object.
- */
- DeviceState *dev = DEVICE(s);
- DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
-
- qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
- s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
- s->sec_resp_cfg, 1);
- qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
-}
-
-static void iotkit_init(Object *obj)
-{
- IoTKit *s = IOTKIT(obj);
- int i;
-
- memory_region_init(&s->container, obj, "iotkit-container", UINT64_MAX);
-
- sysbus_init_child_obj(obj, "armv7m", &s->armv7m, sizeof(s->armv7m),
- TYPE_ARMV7M);
- qdev_prop_set_string(DEVICE(&s->armv7m), "cpu-type",
- ARM_CPU_TYPE_NAME("cortex-m33"));
-
- sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl),
- TYPE_IOTKIT_SECCTL);
- sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
- TYPE_TZ_PPC);
- sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
- TYPE_TZ_PPC);
- sysbus_init_child_obj(obj, "mpc", &s->mpc, sizeof(s->mpc), TYPE_TZ_MPC);
- object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
- sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ,
- &error_abort, NULL);
-
- for (i = 0; i < ARRAY_SIZE(s->mpc_irq_splitter); i++) {
- char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
- SplitIRQ *splitter = &s->mpc_irq_splitter[i];
-
- object_initialize_child(obj, name, splitter, sizeof(*splitter),
- TYPE_SPLIT_IRQ, &error_abort, NULL);
- g_free(name);
- }
- sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0),
- TYPE_CMSDK_APB_TIMER);
- sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1),
- TYPE_CMSDK_APB_TIMER);
- sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
- TYPE_CMSDK_APB_TIMER);
- sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
- TYPE_CMSDK_APB_DUALTIMER);
- sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog,
- sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG);
- sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog,
- sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG);
- sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog,
- sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG);
- sysbus_init_child_obj(obj, "iotkit-sysctl", &s->sysctl,
- sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL);
- sysbus_init_child_obj(obj, "iotkit-sysinfo", &s->sysinfo,
- sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO);
- object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate,
- sizeof(s->nmi_orgate), TYPE_OR_IRQ,
- &error_abort, NULL);
- object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
- sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ,
- &error_abort, NULL);
- object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
- sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ,
- &error_abort, NULL);
- for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
- char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
- SplitIRQ *splitter = &s->ppc_irq_splitter[i];
-
- object_initialize_child(obj, name, splitter, sizeof(*splitter),
- TYPE_SPLIT_IRQ, &error_abort, NULL);
- g_free(name);
- }
-}
-
-static void iotkit_exp_irq(void *opaque, int n, int level)
-{
- IoTKit *s = IOTKIT(opaque);
-
- qemu_set_irq(s->exp_irqs[n], level);
-}
-
-static void iotkit_mpcexp_status(void *opaque, int n, int level)
-{
- IoTKit *s = IOTKIT(opaque);
- qemu_set_irq(s->mpcexp_status_in[n], level);
-}
-
-static void iotkit_realize(DeviceState *dev, Error **errp)
-{
- IoTKit *s = IOTKIT(dev);
- int i;
- MemoryRegion *mr;
- Error *err = NULL;
- SysBusDevice *sbd_apb_ppc0;
- SysBusDevice *sbd_secctl;
- DeviceState *dev_apb_ppc0;
- DeviceState *dev_apb_ppc1;
- DeviceState *dev_secctl;
- DeviceState *dev_splitter;
-
- if (!s->board_memory) {
- error_setg(errp, "memory property was not set");
- return;
- }
-
- if (!s->mainclk_frq) {
- error_setg(errp, "MAINCLK property was not set");
- return;
- }
-
- /* Handling of which devices should be available only to secure
- * code is usually done differently for M profile than for A profile.
- * Instead of putting some devices only into the secure address space,
- * devices exist in both address spaces but with hard-wired security
- * permissions that will cause the CPU to fault for non-secure accesses.
- *
- * The IoTKit has an IDAU (Implementation Defined Access Unit),
- * which specifies hard-wired security permissions for different
- * areas of the physical address space. For the IoTKit IDAU, the
- * top 4 bits of the physical address are the IDAU region ID, and
- * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
- * region, otherwise it is an S region.
- *
- * The various devices and RAMs are generally all mapped twice,
- * once into a region that the IDAU defines as secure and once
- * into a non-secure region. They sit behind either a Memory
- * Protection Controller (for RAM) or a Peripheral Protection
- * Controller (for devices), which allow a more fine grained
- * configuration of whether non-secure accesses are permitted.
- *
- * (The other place that guest software can configure security
- * permissions is in the architected SAU (Security Attribution
- * Unit), which is entirely inside the CPU. The IDAU can upgrade
- * the security attributes for a region to more restrictive than
- * the SAU specifies, but cannot downgrade them.)
- *
- * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
- * 0x20000000..0x2007ffff 32KB FPGA block RAM
- * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
- * 0x40000000..0x4000ffff base peripheral region 1
- * 0x40010000..0x4001ffff CPU peripherals (none for IoTKit)
- * 0x40020000..0x4002ffff system control element peripherals
- * 0x40080000..0x400fffff base peripheral region 2
- * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
- */
-
- memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
-
- qdev_prop_set_uint32(DEVICE(&s->armv7m), "num-irq", s->exp_numirq + 32);
- /* In real hardware the initial Secure VTOR is set from the INITSVTOR0
- * register in the IoT Kit System Control Register block, and the
- * initial value of that is in turn specifiable by the FPGA that
- * instantiates the IoT Kit. In QEMU we don't implement this wrinkle,
- * and simply set the CPU's init-svtor to the IoT Kit default value.
- */
- qdev_prop_set_uint32(DEVICE(&s->armv7m), "init-svtor", 0x10000000);
- object_property_set_link(OBJECT(&s->armv7m), OBJECT(&s->container),
- "memory", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- object_property_set_link(OBJECT(&s->armv7m), OBJECT(s), "idau", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- object_property_set_bool(OBJECT(&s->armv7m), true, "realized", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
-
- /* Connect our EXP_IRQ GPIOs to the NVIC's lines 32 and up. */
- s->exp_irqs = g_new(qemu_irq, s->exp_numirq);
- for (i = 0; i < s->exp_numirq; i++) {
- s->exp_irqs[i] = qdev_get_gpio_in(DEVICE(&s->armv7m), i + 32);
- }
- qdev_init_gpio_in_named(dev, iotkit_exp_irq, "EXP_IRQ", s->exp_numirq);
-
- /* Set up the big aliases first */
- make_alias(s, &s->alias1, "alias 1", 0x10000000, 0x10000000, 0x00000000);
- make_alias(s, &s->alias2, "alias 2", 0x30000000, 0x10000000, 0x20000000);
- /* The 0x50000000..0x5fffffff region is not a pure alias: it has
- * a few extra devices that only appear there (generally the
- * control interfaces for the protection controllers).
- * We implement this by mapping those devices over the top of this
- * alias MR at a higher priority.
- */
- make_alias(s, &s->alias3, "alias 3", 0x50000000, 0x10000000, 0x40000000);
-
-
- /* Security controller */
- object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
- dev_secctl = DEVICE(&s->secctl);
- sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
- sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
-
- s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
- qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
-
- /* The sec_resp_cfg output from the security controller must be split into
- * multiple lines, one for each of the PPCs within the IoTKit and one
- * that will be an output from the IoTKit to the system.
- */
- object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
- "num-lines", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
- "realized", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- dev_splitter = DEVICE(&s->sec_resp_splitter);
- qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
- qdev_get_gpio_in(dev_splitter, 0));
-
- /* This RAM lives behind the Memory Protection Controller */
- memory_region_init_ram(&s->sram0, NULL, "iotkit.sram0", 0x00008000, &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- object_property_set_link(OBJECT(&s->mpc), OBJECT(&s->sram0),
- "downstream", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- object_property_set_bool(OBJECT(&s->mpc), true, "realized", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- /* Map the upstream end of the MPC into the right place... */
- memory_region_add_subregion(&s->container, 0x20000000,
- sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->mpc),
- 1));
- /* ...and its register interface */
- memory_region_add_subregion(&s->container, 0x50083000,
- sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->mpc),
- 0));
-
- /* We must OR together lines from the MPC splitters to go to the NVIC */
- object_property_set_int(OBJECT(&s->mpc_irq_orgate),
- IOTS_NUM_EXP_MPC + IOTS_NUM_MPC, "num-lines", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
- "realized", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
- qdev_get_gpio_in(DEVICE(&s->armv7m), 9));
-
- /* Devices behind APB PPC0:
- * 0x40000000: timer0
- * 0x40001000: timer1
- * 0x40002000: dual timer
- * We must configure and realize each downstream device and connect
- * it to the appropriate PPC port; then we can realize the PPC and
- * map its upstream ends to the right place in the container.
- */
- qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
- object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
- qdev_get_gpio_in(DEVICE(&s->armv7m), 3));
- mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
- object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
-
- qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
- object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
- qdev_get_gpio_in(DEVICE(&s->armv7m), 4));
- mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
- object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
-
-
- qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
- object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
- qdev_get_gpio_in(DEVICE(&s->armv7m), 5));
- mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
- object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
-
- object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
-
- sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
- dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
-
- mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
- memory_region_add_subregion(&s->container, 0x40000000, mr);
- mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
- memory_region_add_subregion(&s->container, 0x40001000, mr);
- mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
- memory_region_add_subregion(&s->container, 0x40002000, mr);
- for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
- qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
- qdev_get_gpio_in_named(dev_apb_ppc0,
- "cfg_nonsec", i));
- qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
- qdev_get_gpio_in_named(dev_apb_ppc0,
- "cfg_ap", i));
- }
- qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
- qdev_get_gpio_in_named(dev_apb_ppc0,
- "irq_enable", 0));
- qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
- qdev_get_gpio_in_named(dev_apb_ppc0,
- "irq_clear", 0));
- qdev_connect_gpio_out(dev_splitter, 0,
- qdev_get_gpio_in_named(dev_apb_ppc0,
- "cfg_sec_resp", 0));
-
- /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
- * ones) are sent individually to the security controller, and also
- * ORed together to give a single combined PPC interrupt to the NVIC.
- */
- object_property_set_int(OBJECT(&s->ppc_irq_orgate),
- NUM_PPCS, "num-lines", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
- "realized", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
- qdev_get_gpio_in(DEVICE(&s->armv7m), 10));
-
- /* 0x40010000 .. 0x4001ffff: private CPU region: unused in IoTKit */
-
- /* 0x40020000 .. 0x4002ffff : IoTKit system control peripheral region */
- /* Devices behind APB PPC1:
- * 0x4002f000: S32K timer
- */
- qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
- object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
- qdev_get_gpio_in(DEVICE(&s->armv7m), 2));
- mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
- object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
-
- object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
- memory_region_add_subregion(&s->container, 0x4002f000, mr);
-
- dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
- qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
- qdev_get_gpio_in_named(dev_apb_ppc1,
- "cfg_nonsec", 0));
- qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
- qdev_get_gpio_in_named(dev_apb_ppc1,
- "cfg_ap", 0));
- qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
- qdev_get_gpio_in_named(dev_apb_ppc1,
- "irq_enable", 0));
- qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
- qdev_get_gpio_in_named(dev_apb_ppc1,
- "irq_clear", 0));
- qdev_connect_gpio_out(dev_splitter, 1,
- qdev_get_gpio_in_named(dev_apb_ppc1,
- "cfg_sec_resp", 0));
-
- object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- /* System information registers */
- sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
- /* System control registers */
- object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
-
- /* This OR gate wires together outputs from the secure watchdogs to NMI */
- object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
- qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
-
- qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
- object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
- qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
- sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
-
- /* 0x40080000 .. 0x4008ffff : IoTKit second Base peripheral region */
-
- qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
- object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
- qdev_get_gpio_in(DEVICE(&s->armv7m), 1));
- sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
-
- qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
- object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
- qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
- sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
-
- for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
- Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
-
- object_property_set_int(splitter, 2, "num-lines", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- object_property_set_bool(splitter, true, "realized", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- }
-
- for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
- char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
-
- iotkit_forward_ppc(s, ppcname, i);
- g_free(ppcname);
- }
-
- for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
- char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
-
- iotkit_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
- g_free(ppcname);
- }
-
- for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
- /* Wire up IRQ splitter for internal PPCs */
- DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
- char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
- i - NUM_EXTERNAL_PPCS);
- TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
-
- qdev_connect_gpio_out(devs, 0,
- qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
- qdev_connect_gpio_out(devs, 1,
- qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
- qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
- qdev_get_gpio_in(devs, 0));
- g_free(gpioname);
- }
-
- /* Wire up the splitters for the MPC IRQs */
- for (i = 0; i < IOTS_NUM_EXP_MPC + IOTS_NUM_MPC; i++) {
- SplitIRQ *splitter = &s->mpc_irq_splitter[i];
- DeviceState *dev_splitter = DEVICE(splitter);
-
- object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- object_property_set_bool(OBJECT(splitter), true, "realized", &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
-
- if (i < IOTS_NUM_EXP_MPC) {
- /* Splitter input is from GPIO input line */
- s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
- qdev_connect_gpio_out(dev_splitter, 0,
- qdev_get_gpio_in_named(dev_secctl,
- "mpcexp_status", i));
- } else {
- /* Splitter input is from our own MPC */
- qdev_connect_gpio_out_named(DEVICE(&s->mpc), "irq", 0,
- qdev_get_gpio_in(dev_splitter, 0));
- qdev_connect_gpio_out(dev_splitter, 0,
- qdev_get_gpio_in_named(dev_secctl,
- "mpc_status", 0));
- }
-
- qdev_connect_gpio_out(dev_splitter, 1,
- qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
- }
- /* Create GPIO inputs which will pass the line state for our
- * mpcexp_irq inputs to the correct splitter devices.
- */
- qdev_init_gpio_in_named(dev, iotkit_mpcexp_status, "mpcexp_status",
- IOTS_NUM_EXP_MPC);
-
- iotkit_forward_sec_resp_cfg(s);
-
- /* Forward the MSC related signals */
- qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
- qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
- qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
- qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
- qdev_get_gpio_in(DEVICE(&s->armv7m), 11));
-
- /*
- * Expose our container region to the board model; this corresponds
- * to the AHB Slave Expansion ports which allow bus master devices
- * (eg DMA controllers) in the board model to make transactions into
- * devices in the IoTKit.
- */
- sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
-
- system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
-}
-
-static void iotkit_idau_check(IDAUInterface *ii, uint32_t address,
- int *iregion, bool *exempt, bool *ns, bool *nsc)
-{
- /* For IoTKit systems the IDAU responses are simple logical functions
- * of the address bits. The NSC attribute is guest-adjustable via the
- * NSCCFG register in the security controller.
- */
- IoTKit *s = IOTKIT(ii);
- int region = extract32(address, 28, 4);
-
- *ns = !(region & 1);
- *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
- /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
- *exempt = (address & 0xeff00000) == 0xe0000000;
- *iregion = region;
-}
-
-static const VMStateDescription iotkit_vmstate = {
- .name = "iotkit",
- .version_id = 1,
- .minimum_version_id = 1,
- .fields = (VMStateField[]) {
- VMSTATE_UINT32(nsccfg, IoTKit),
- VMSTATE_END_OF_LIST()
- }
-};
-
-static Property iotkit_properties[] = {
- DEFINE_PROP_LINK("memory", IoTKit, board_memory, TYPE_MEMORY_REGION,
- MemoryRegion *),
- DEFINE_PROP_UINT32("EXP_NUMIRQ", IoTKit, exp_numirq, 64),
- DEFINE_PROP_UINT32("MAINCLK", IoTKit, mainclk_frq, 0),
- DEFINE_PROP_END_OF_LIST()
-};
-
-static void iotkit_reset(DeviceState *dev)
-{
- IoTKit *s = IOTKIT(dev);
-
- s->nsccfg = 0;
-}
-
-static void iotkit_class_init(ObjectClass *klass, void *data)
-{
- DeviceClass *dc = DEVICE_CLASS(klass);
- IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
-
- dc->realize = iotkit_realize;
- dc->vmsd = &iotkit_vmstate;
- dc->props = iotkit_properties;
- dc->reset = iotkit_reset;
- iic->check = iotkit_idau_check;
-}
-
-static const TypeInfo iotkit_info = {
- .name = TYPE_IOTKIT,
- .parent = TYPE_SYS_BUS_DEVICE,
- .instance_size = sizeof(IoTKit),
- .instance_init = iotkit_init,
- .class_init = iotkit_class_init,
- .interfaces = (InterfaceInfo[]) {
- { TYPE_IDAU_INTERFACE },
- { }
- }
-};
-
-static void iotkit_register_types(void)
-{
- type_register_static(&iotkit_info);
-}
-
-type_init(iotkit_register_types);
diff --git a/hw/arm/mps2-tz.c b/hw/arm/mps2-tz.c
index 82b1d020a5..f5f0b0e0fa 100644
--- a/hw/arm/mps2-tz.c
+++ b/hw/arm/mps2-tz.c
@@ -15,6 +15,7 @@
* as seen by the guest depend significantly on the FPGA image.
* This source file covers the following FPGA images, for TrustZone cores:
* "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
+ * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
*
* Links to the TRM for the board itself and to the various Application
* Notes which document the FPGA images can be found here:
@@ -24,10 +25,16 @@
* http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
* Application Note AN505:
* http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
+ * Application Note AN521:
+ * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
*
* The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
* (ARM ECM0601256) for the details of some of the device layout:
* http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
+ * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
+ * most of the device layout:
+ * http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
+ *
*/
#include "qemu/osdep.h"
@@ -46,27 +53,31 @@
#include "hw/misc/mps2-fpgaio.h"
#include "hw/misc/tz-mpc.h"
#include "hw/misc/tz-msc.h"
-#include "hw/arm/iotkit.h"
+#include "hw/arm/armsse.h"
#include "hw/dma/pl080.h"
#include "hw/ssi/pl022.h"
#include "hw/devices.h"
#include "net/net.h"
#include "hw/core/split-irq.h"
+#define MPS2TZ_NUMIRQ 92
+
typedef enum MPS2TZFPGAType {
FPGA_AN505,
+ FPGA_AN521,
} MPS2TZFPGAType;
typedef struct {
MachineClass parent;
MPS2TZFPGAType fpga_type;
uint32_t scc_id;
+ const char *armsse_type;
} MPS2TZMachineClass;
typedef struct {
MachineState parent;
- IoTKit iotkit;
+ ARMSSE iotkit;
MemoryRegion psram;
MemoryRegion ssram[3];
MemoryRegion ssram1_m;
@@ -85,10 +96,12 @@ typedef struct {
SplitIRQ sec_resp_splitter;
qemu_or_irq uart_irq_orgate;
DeviceState *lan9118;
+ SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ];
} MPS2TZMachineState;
#define TYPE_MPS2TZ_MACHINE "mps2tz"
#define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
+#define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
#define MPS2TZ_MACHINE(obj) \
OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
@@ -111,6 +124,23 @@ static void make_ram_alias(MemoryRegion *mr, const char *name,
memory_region_add_subregion(get_system_memory(), base, mr);
}
+static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
+{
+ /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
+ MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
+
+ assert(irqno < MPS2TZ_NUMIRQ);
+
+ switch (mmc->fpga_type) {
+ case FPGA_AN505:
+ return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
+ case FPGA_AN521:
+ return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
+ default:
+ g_assert_not_reached();
+ }
+}
+
/* Most of the devices in the AN505 FPGA image sit behind
* Peripheral Protection Controllers. These data structures
* define the layout of which devices sit behind which PPCs.
@@ -161,7 +191,6 @@ static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
int txirqno = i * 2 + 1;
int combirqno = i + 10;
SysBusDevice *s;
- DeviceState *iotkitdev = DEVICE(&mms->iotkit);
DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
sysbus_init_child_obj(OBJECT(mms), name, uart, sizeof(mms->uart[0]),
@@ -170,14 +199,11 @@ static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal);
s = SYS_BUS_DEVICE(uart);
- sysbus_connect_irq(s, 0, qdev_get_gpio_in_named(iotkitdev,
- "EXP_IRQ", txirqno));
- sysbus_connect_irq(s, 1, qdev_get_gpio_in_named(iotkitdev,
- "EXP_IRQ", rxirqno));
+ sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno));
+ sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno));
sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
- sysbus_connect_irq(s, 4, qdev_get_gpio_in_named(iotkitdev,
- "EXP_IRQ", combirqno));
+ sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno));
return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
}
@@ -213,7 +239,6 @@ static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
const char *name, hwaddr size)
{
SysBusDevice *s;
- DeviceState *iotkitdev = DEVICE(&mms->iotkit);
NICInfo *nd = &nd_table[0];
/* In hardware this is a LAN9220; the LAN9118 is software compatible
@@ -225,7 +250,7 @@ static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
qdev_init_nofail(mms->lan9118);
s = SYS_BUS_DEVICE(mms->lan9118);
- sysbus_connect_irq(s, 0, qdev_get_gpio_in_named(iotkitdev, "EXP_IRQ", 16));
+ sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16));
return sysbus_mmio_get_region(s, 0);
}
@@ -315,12 +340,9 @@ static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
s = SYS_BUS_DEVICE(dma);
/* Wire up DMACINTR, DMACINTERR, DMACINTTC */
- sysbus_connect_irq(s, 0, qdev_get_gpio_in_named(iotkitdev,
- "EXP_IRQ", 58 + i * 3));
- sysbus_connect_irq(s, 1, qdev_get_gpio_in_named(iotkitdev,
- "EXP_IRQ", 56 + i * 3));
- sysbus_connect_irq(s, 2, qdev_get_gpio_in_named(iotkitdev,
- "EXP_IRQ", 57 + i * 3));
+ sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3));
+ sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3));
+ sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3));
g_free(mscname);
return sysbus_mmio_get_region(s, 0);
@@ -339,21 +361,20 @@ static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
*/
PL022State *spi = opaque;
int i = spi - &mms->spi[0];
- DeviceState *iotkitdev = DEVICE(&mms->iotkit);
SysBusDevice *s;
sysbus_init_child_obj(OBJECT(mms), name, spi, sizeof(mms->spi[0]),
TYPE_PL022);
object_property_set_bool(OBJECT(spi), true, "realized", &error_fatal);
s = SYS_BUS_DEVICE(spi);
- sysbus_connect_irq(s, 0,
- qdev_get_gpio_in_named(iotkitdev, "EXP_IRQ", 51 + i));
+ sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i));
return sysbus_mmio_get_region(s, 0);
}
static void mps2tz_common_init(MachineState *machine)
{
MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
+ MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
MachineClass *mc = MACHINE_GET_CLASS(machine);
MemoryRegion *system_memory = get_system_memory();
DeviceState *iotkitdev;
@@ -367,15 +388,42 @@ static void mps2tz_common_init(MachineState *machine)
}
sysbus_init_child_obj(OBJECT(machine), "iotkit", &mms->iotkit,
- sizeof(mms->iotkit), TYPE_IOTKIT);
+ sizeof(mms->iotkit), mmc->armsse_type);
iotkitdev = DEVICE(&mms->iotkit);
object_property_set_link(OBJECT(&mms->iotkit), OBJECT(system_memory),
"memory", &error_abort);
- qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", 92);
+ qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ);
qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
object_property_set_bool(OBJECT(&mms->iotkit), true, "realized",
&error_fatal);
+ /*
+ * The AN521 needs us to create splitters to feed the IRQ inputs
+ * for each CPU in the SSE-200 from each device in the board.
+ */
+ if (mmc->fpga_type == FPGA_AN521) {
+ for (i = 0; i < MPS2TZ_NUMIRQ; i++) {
+ char *name = g_strdup_printf("mps2-irq-splitter%d", i);
+ SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
+
+ object_initialize_child(OBJECT(machine), name,
+ splitter, sizeof(*splitter),
+ TYPE_SPLIT_IRQ, &error_fatal, NULL);
+ g_free(name);
+
+ object_property_set_int(OBJECT(splitter), 2, "num-lines",
+ &error_fatal);
+ object_property_set_bool(OBJECT(splitter), true, "realized",
+ &error_fatal);
+ qdev_connect_gpio_out(DEVICE(splitter), 0,
+ qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
+ "EXP_IRQ", i));
+ qdev_connect_gpio_out(DEVICE(splitter), 1,
+ qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
+ "EXP_CPU1_IRQ", i));
+ }
+ }
+
/* The sec_resp_cfg output from the IoTKit must be split into multiple
* lines, one for each of the PPCs we create here, plus one per MSC.
*/
@@ -426,7 +474,7 @@ static void mps2tz_common_init(MachineState *machine)
object_property_set_bool(OBJECT(&mms->uart_irq_orgate), true,
"realized", &error_fatal);
qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
- qdev_get_gpio_in_named(iotkitdev, "EXP_IRQ", 15));
+ get_sse_irq_in(mms, 15));
/* Most of the devices in the FPGA are behind Peripheral Protection
* Controllers. The required order for initializing things is:
@@ -593,7 +641,6 @@ static void mps2tz_class_init(ObjectClass *oc, void *data)
IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
mc->init = mps2tz_common_init;
- mc->max_cpus = 1;
iic->check = mps2_tz_idau_check;
}
@@ -603,9 +650,28 @@ static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
+ mc->default_cpus = 1;
+ mc->min_cpus = mc->default_cpus;
+ mc->max_cpus = mc->default_cpus;
mmc->fpga_type = FPGA_AN505;
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
mmc->scc_id = 0x41045050;
+ mmc->armsse_type = TYPE_IOTKIT;
+}
+
+static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
+{
+ MachineClass *mc = MACHINE_CLASS(oc);
+ MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
+
+ mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
+ mc->default_cpus = 2;
+ mc->min_cpus = mc->default_cpus;
+ mc->max_cpus = mc->default_cpus;
+ mmc->fpga_type = FPGA_AN521;
+ mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
+ mmc->scc_id = 0x41045210;
+ mmc->armsse_type = TYPE_SSE200;
}
static const TypeInfo mps2tz_info = {
@@ -627,10 +693,17 @@ static const TypeInfo mps2tz_an505_info = {
.class_init = mps2tz_an505_class_init,
};
+static const TypeInfo mps2tz_an521_info = {
+ .name = TYPE_MPS2TZ_AN521_MACHINE,
+ .parent = TYPE_MPS2TZ_MACHINE,
+ .class_init = mps2tz_an521_class_init,
+};
+
static void mps2tz_machine_init(void)
{
type_register_static(&mps2tz_info);
type_register_static(&mps2tz_an505_info);
+ type_register_static(&mps2tz_an521_info);
}
type_init(mps2tz_machine_init);
diff --git a/hw/arm/nrf51_soc.c b/hw/arm/nrf51_soc.c
index 1630c27594..bbaf050103 100644
--- a/hw/arm/nrf51_soc.c
+++ b/hw/arm/nrf51_soc.c
@@ -29,8 +29,10 @@
* are supported in the future, add a sub-class of NRF51SoC for
* the specific variants
*/
-#define NRF51822_FLASH_SIZE (256 * NRF51_PAGE_SIZE)
-#define NRF51822_SRAM_SIZE (16 * NRF51_PAGE_SIZE)
+#define NRF51822_FLASH_PAGES 256
+#define NRF51822_SRAM_PAGES 16
+#define NRF51822_FLASH_SIZE (NRF51822_FLASH_PAGES * NRF51_PAGE_SIZE)
+#define NRF51822_SRAM_SIZE (NRF51822_SRAM_PAGES * NRF51_PAGE_SIZE)
#define BASE_TO_IRQ(base) ((base >> 12) & 0x1F)
@@ -81,15 +83,8 @@ static void nrf51_soc_realize(DeviceState *dev_soc, Error **errp)
memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
- memory_region_init_rom(&s->flash, OBJECT(s), "nrf51.flash", s->flash_size,
- &err);
- if (err) {
- error_propagate(errp, err);
- return;
- }
- memory_region_add_subregion(&s->container, NRF51_FLASH_BASE, &s->flash);
-
- memory_region_init_ram(&s->sram, NULL, "nrf51.sram", s->sram_size, &err);
+ memory_region_init_ram(&s->sram, OBJECT(s), "nrf51.sram", s->sram_size,
+ &err);
if (err) {
error_propagate(errp, err);
return;
@@ -121,6 +116,29 @@ static void nrf51_soc_realize(DeviceState *dev_soc, Error **errp)
qdev_get_gpio_in(DEVICE(&s->cpu),
BASE_TO_IRQ(NRF51_RNG_BASE)));
+ /* UICR, FICR, NVMC, FLASH */
+ object_property_set_uint(OBJECT(&s->nvm), s->flash_size, "flash-size",
+ &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ object_property_set_bool(OBJECT(&s->nvm), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->nvm), 0);
+ memory_region_add_subregion_overlap(&s->container, NRF51_NVMC_BASE, mr, 0);
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->nvm), 1);
+ memory_region_add_subregion_overlap(&s->container, NRF51_FICR_BASE, mr, 0);
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->nvm), 2);
+ memory_region_add_subregion_overlap(&s->container, NRF51_UICR_BASE, mr, 0);
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->nvm), 3);
+ memory_region_add_subregion_overlap(&s->container, NRF51_FLASH_BASE, mr, 0);
+
/* GPIO */
object_property_set_bool(OBJECT(&s->gpio), true, "realized", &err);
if (err) {
@@ -158,8 +176,6 @@ static void nrf51_soc_realize(DeviceState *dev_soc, Error **errp)
create_unimplemented_device("nrf51_soc.io", NRF51_IOMEM_BASE,
NRF51_IOMEM_SIZE);
- create_unimplemented_device("nrf51_soc.ficr", NRF51_FICR_BASE,
- NRF51_FICR_SIZE);
create_unimplemented_device("nrf51_soc.private",
NRF51_PRIVATE_BASE, NRF51_PRIVATE_SIZE);
}
@@ -186,6 +202,8 @@ static void nrf51_soc_init(Object *obj)
sysbus_init_child_obj(obj, "rng", &s->rng, sizeof(s->rng),
TYPE_NRF51_RNG);
+ sysbus_init_child_obj(obj, "nvm", &s->nvm, sizeof(s->nvm), TYPE_NRF51_NVM);
+
sysbus_init_child_obj(obj, "gpio", &s->gpio, sizeof(s->gpio),
TYPE_NRF51_GPIO);
diff --git a/hw/intc/armv7m_nvic.c b/hw/intc/armv7m_nvic.c
index 0beefb05d4..790a3d9584 100644
--- a/hw/intc/armv7m_nvic.c
+++ b/hw/intc/armv7m_nvic.c
@@ -2274,8 +2274,7 @@ static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
Error *err = NULL;
int regionlen;
- s->cpu = ARM_CPU(qemu_get_cpu(0));
-
+ /* The armv7m container object will have set our CPU pointer */
if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
return;
diff --git a/hw/misc/Makefile.objs b/hw/misc/Makefile.objs
index 04f3bfa516..74c91d250c 100644
--- a/hw/misc/Makefile.objs
+++ b/hw/misc/Makefile.objs
@@ -69,6 +69,7 @@ obj-$(CONFIG_TZ_PPC) += tz-ppc.o
obj-$(CONFIG_IOTKIT_SECCTL) += iotkit-secctl.o
obj-$(CONFIG_IOTKIT_SYSCTL) += iotkit-sysctl.o
obj-$(CONFIG_IOTKIT_SYSINFO) += iotkit-sysinfo.o
+obj-$(CONFIG_ARMSSE_CPUID) += armsse-cpuid.o
obj-$(CONFIG_PVPANIC) += pvpanic.o
obj-$(CONFIG_AUX) += auxbus.o
diff --git a/hw/misc/armsse-cpuid.c b/hw/misc/armsse-cpuid.c
new file mode 100644
index 0000000000..7788f6ced6
--- /dev/null
+++ b/hw/misc/armsse-cpuid.c
@@ -0,0 +1,134 @@
+/*
+ * ARM SSE-200 CPU_IDENTITY register block
+ *
+ * Copyright (c) 2019 Linaro Limited
+ * Written by Peter Maydell
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 or
+ * (at your option) any later version.
+ */
+
+/*
+ * This is a model of the "CPU_IDENTITY" register block which is part of the
+ * Arm SSE-200 and documented in
+ * http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
+ *
+ * It consists of one read-only CPUID register (set by QOM property), plus the
+ * usual ID registers.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/log.h"
+#include "trace.h"
+#include "qapi/error.h"
+#include "sysemu/sysemu.h"
+#include "hw/sysbus.h"
+#include "hw/registerfields.h"
+#include "hw/misc/armsse-cpuid.h"
+
+REG32(CPUID, 0x0)
+REG32(PID4, 0xfd0)
+REG32(PID5, 0xfd4)
+REG32(PID6, 0xfd8)
+REG32(PID7, 0xfdc)
+REG32(PID0, 0xfe0)
+REG32(PID1, 0xfe4)
+REG32(PID2, 0xfe8)
+REG32(PID3, 0xfec)
+REG32(CID0, 0xff0)
+REG32(CID1, 0xff4)
+REG32(CID2, 0xff8)
+REG32(CID3, 0xffc)
+
+/* PID/CID values */
+static const int sysinfo_id[] = {
+ 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
+ 0x58, 0xb8, 0x0b, 0x00, /* PID0..PID3 */
+ 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
+};
+
+static uint64_t armsse_cpuid_read(void *opaque, hwaddr offset,
+ unsigned size)
+{
+ ARMSSECPUID *s = ARMSSE_CPUID(opaque);
+ uint64_t r;
+
+ switch (offset) {
+ case A_CPUID:
+ r = s->cpuid;
+ break;
+ case A_PID4 ... A_CID3:
+ r = sysinfo_id[(offset - A_PID4) / 4];
+ break;
+ default:
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "SSE CPU_IDENTITY read: bad offset 0x%x\n", (int)offset);
+ r = 0;
+ break;
+ }
+ trace_armsse_cpuid_read(offset, r, size);
+ return r;
+}
+
+static void armsse_cpuid_write(void *opaque, hwaddr offset,
+ uint64_t value, unsigned size)
+{
+ trace_armsse_cpuid_write(offset, value, size);
+
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "SSE CPU_IDENTITY: write to RO offset 0x%x\n", (int)offset);
+}
+
+static const MemoryRegionOps armsse_cpuid_ops = {
+ .read = armsse_cpuid_read,
+ .write = armsse_cpuid_write,
+ .endianness = DEVICE_LITTLE_ENDIAN,
+ /* byte/halfword accesses are just zero-padded on reads and writes */
+ .impl.min_access_size = 4,
+ .impl.max_access_size = 4,
+ .valid.min_access_size = 1,
+ .valid.max_access_size = 4,
+};
+
+static Property armsse_cpuid_props[] = {
+ DEFINE_PROP_UINT32("CPUID", ARMSSECPUID, cpuid, 0),
+ DEFINE_PROP_END_OF_LIST()
+};
+
+static void armsse_cpuid_init(Object *obj)
+{
+ SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
+ ARMSSECPUID *s = ARMSSE_CPUID(obj);
+
+ memory_region_init_io(&s->iomem, obj, &armsse_cpuid_ops,
+ s, "armsse-cpuid", 0x1000);
+ sysbus_init_mmio(sbd, &s->iomem);
+}
+
+static void armsse_cpuid_class_init(ObjectClass *klass, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(klass);
+
+ /*
+ * This device has no guest-modifiable state and so it
+ * does not need a reset function or VMState.
+ */
+
+ dc->props = armsse_cpuid_props;
+}
+
+static const TypeInfo armsse_cpuid_info = {
+ .name = TYPE_ARMSSE_CPUID,
+ .parent = TYPE_SYS_BUS_DEVICE,
+ .instance_size = sizeof(ARMSSECPUID),
+ .instance_init = armsse_cpuid_init,
+ .class_init = armsse_cpuid_class_init,
+};
+
+static void armsse_cpuid_register_types(void)
+{
+ type_register_static(&armsse_cpuid_info);
+}
+
+type_init(armsse_cpuid_register_types);
diff --git a/hw/misc/iotkit-secctl.c b/hw/misc/iotkit-secctl.c
index 2222b3e147..537601cd53 100644
--- a/hw/misc/iotkit-secctl.c
+++ b/hw/misc/iotkit-secctl.c
@@ -600,7 +600,7 @@ static void iotkit_secctl_mpc_status(void *opaque, int n, int level)
{
IoTKitSecCtl *s = IOTKIT_SECCTL(opaque);
- s->mpcintstatus = deposit32(s->mpcintstatus, 0, 1, !!level);
+ s->mpcintstatus = deposit32(s->mpcintstatus, n, 1, !!level);
}
static void iotkit_secctl_mpcexp_status(void *opaque, int n, int level)
@@ -686,7 +686,8 @@ static void iotkit_secctl_init(Object *obj)
qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
qdev_init_gpio_out_named(dev, &s->nsc_cfg_irq, "nsc_cfg", 1);
- qdev_init_gpio_in_named(dev, iotkit_secctl_mpc_status, "mpc_status", 1);
+ qdev_init_gpio_in_named(dev, iotkit_secctl_mpc_status, "mpc_status",
+ IOTS_NUM_MPC);
qdev_init_gpio_in_named(dev, iotkit_secctl_mpcexp_status,
"mpcexp_status", IOTS_NUM_EXP_MPC);
diff --git a/hw/misc/iotkit-sysinfo.c b/hw/misc/iotkit-sysinfo.c
index 78955bc45f..026ba94261 100644
--- a/hw/misc/iotkit-sysinfo.c
+++ b/hw/misc/iotkit-sysinfo.c
@@ -51,15 +51,16 @@ static const int sysinfo_id[] = {
static uint64_t iotkit_sysinfo_read(void *opaque, hwaddr offset,
unsigned size)
{
+ IoTKitSysInfo *s = IOTKIT_SYSINFO(opaque);
uint64_t r;
switch (offset) {
case A_SYS_VERSION:
- r = 0x41743;
+ r = s->sys_version;
break;
case A_SYS_CONFIG:
- r = 0x31;
+ r = s->sys_config;
break;
case A_PID4 ... A_CID3:
r = sysinfo_id[(offset - A_PID4) / 4];
@@ -94,6 +95,12 @@ static const MemoryRegionOps iotkit_sysinfo_ops = {
.valid.max_access_size = 4,
};
+static Property iotkit_sysinfo_props[] = {
+ DEFINE_PROP_UINT32("SYS_VERSION", IoTKitSysInfo, sys_version, 0),
+ DEFINE_PROP_UINT32("SYS_CONFIG", IoTKitSysInfo, sys_config, 0),
+ DEFINE_PROP_END_OF_LIST()
+};
+
static void iotkit_sysinfo_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
@@ -106,10 +113,14 @@ static void iotkit_sysinfo_init(Object *obj)
static void iotkit_sysinfo_class_init(ObjectClass *klass, void *data)
{
+ DeviceClass *dc = DEVICE_CLASS(klass);
+
/*
* This device has no guest-modifiable state and so it
* does not need a reset function or VMState.
*/
+
+ dc->props = iotkit_sysinfo_props;
}
static const TypeInfo iotkit_sysinfo_info = {
diff --git a/hw/misc/trace-events b/hw/misc/trace-events
index 52466c77c4..b0701bddd3 100644
--- a/hw/misc/trace-events
+++ b/hw/misc/trace-events
@@ -132,3 +132,7 @@ iotkit_sysinfo_write(uint64_t offset, uint64_t data, unsigned size) "IoTKit SysI
iotkit_sysctl_read(uint64_t offset, uint64_t data, unsigned size) "IoTKit SysCtl read: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %u"
iotkit_sysctl_write(uint64_t offset, uint64_t data, unsigned size) "IoTKit SysCtl write: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %u"
iotkit_sysctl_reset(void) "IoTKit SysCtl: reset"
+
+# hw/misc/armsse-cpuid.c
+armsse_cpuid_read(uint64_t offset, uint64_t data, unsigned size) "SSE-200 CPU_IDENTITY read: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %u"
+armsse_cpuid_write(uint64_t offset, uint64_t data, unsigned size) "SSE-200 CPU_IDENTITY write: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %u"
diff --git a/hw/nvram/Makefile.objs b/hw/nvram/Makefile.objs
index b318e53a43..26f7b4ca35 100644
--- a/hw/nvram/Makefile.objs
+++ b/hw/nvram/Makefile.objs
@@ -5,3 +5,4 @@ common-obj-y += fw_cfg.o
common-obj-y += chrp_nvram.o
common-obj-$(CONFIG_MAC_NVRAM) += mac_nvram.o
obj-$(CONFIG_PSERIES) += spapr_nvram.o
+obj-$(CONFIG_NRF51_SOC) += nrf51_nvm.o
diff --git a/hw/nvram/nrf51_nvm.c b/hw/nvram/nrf51_nvm.c
new file mode 100644
index 0000000000..7d94cef1db
--- /dev/null
+++ b/hw/nvram/nrf51_nvm.c
@@ -0,0 +1,388 @@
+/*
+ * Nordic Semiconductor nRF51 non-volatile memory
+ *
+ * It provides an interface to erase regions in flash memory.
+ * Furthermore it provides the user and factory information registers.
+ *
+ * Reference Manual: http://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.pdf
+ *
+ * See nRF51 reference manual and product sheet sections:
+ * + Non-Volatile Memory Controller (NVMC)
+ * + Factory Information Configuration Registers (FICR)
+ * + User Information Configuration Registers (UICR)
+ *
+ * Copyright 2018 Steffen Görtz <contrib@steffen-goertz.de>
+ *
+ * This code is licensed under the GPL version 2 or later. See
+ * the COPYING file in the top-level directory.
+ */
+
+#include "qemu/osdep.h"
+#include "qapi/error.h"
+#include "qemu/log.h"
+#include "exec/address-spaces.h"
+#include "hw/arm/nrf51.h"
+#include "hw/nvram/nrf51_nvm.h"
+
+/*
+ * FICR Registers Assignments
+ * CODEPAGESIZE 0x010
+ * CODESIZE 0x014
+ * CLENR0 0x028
+ * PPFC 0x02C
+ * NUMRAMBLOCK 0x034
+ * SIZERAMBLOCKS 0x038
+ * SIZERAMBLOCK[0] 0x038
+ * SIZERAMBLOCK[1] 0x03C
+ * SIZERAMBLOCK[2] 0x040
+ * SIZERAMBLOCK[3] 0x044
+ * CONFIGID 0x05C
+ * DEVICEID[0] 0x060
+ * DEVICEID[1] 0x064
+ * ER[0] 0x080
+ * ER[1] 0x084
+ * ER[2] 0x088
+ * ER[3] 0x08C
+ * IR[0] 0x090
+ * IR[1] 0x094
+ * IR[2] 0x098
+ * IR[3] 0x09C
+ * DEVICEADDRTYPE 0x0A0
+ * DEVICEADDR[0] 0x0A4
+ * DEVICEADDR[1] 0x0A8
+ * OVERRIDEEN 0x0AC
+ * NRF_1MBIT[0] 0x0B0
+ * NRF_1MBIT[1] 0x0B4
+ * NRF_1MBIT[2] 0x0B8
+ * NRF_1MBIT[3] 0x0BC
+ * NRF_1MBIT[4] 0x0C0
+ * BLE_1MBIT[0] 0x0EC
+ * BLE_1MBIT[1] 0x0F0
+ * BLE_1MBIT[2] 0x0F4
+ * BLE_1MBIT[3] 0x0F8
+ * BLE_1MBIT[4] 0x0FC
+ */
+static const uint32_t ficr_content[64] = {
+ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000400,
+ 0x00000100, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000002, 0x00002000,
+ 0x00002000, 0x00002000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
+ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
+ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000003,
+ 0x12345678, 0x9ABCDEF1, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
+ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
+ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
+ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
+ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
+ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
+ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF,
+ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF
+};
+
+static uint64_t ficr_read(void *opaque, hwaddr offset, unsigned int size)
+{
+ assert(offset < sizeof(ficr_content));
+ return ficr_content[offset / 4];
+}
+
+static void ficr_write(void *opaque, hwaddr offset, uint64_t value,
+ unsigned int size)
+{
+ /* Intentionally do nothing */
+}
+
+static const MemoryRegionOps ficr_ops = {
+ .read = ficr_read,
+ .write = ficr_write,
+ .impl.min_access_size = 4,
+ .impl.max_access_size = 4,
+ .endianness = DEVICE_LITTLE_ENDIAN
+};
+
+/*
+ * UICR Registers Assignments
+ * CLENR0 0x000
+ * RBPCONF 0x004
+ * XTALFREQ 0x008
+ * FWID 0x010
+ * BOOTLOADERADDR 0x014
+ * NRFFW[0] 0x014
+ * NRFFW[1] 0x018
+ * NRFFW[2] 0x01C
+ * NRFFW[3] 0x020
+ * NRFFW[4] 0x024
+ * NRFFW[5] 0x028
+ * NRFFW[6] 0x02C
+ * NRFFW[7] 0x030
+ * NRFFW[8] 0x034
+ * NRFFW[9] 0x038
+ * NRFFW[10] 0x03C
+ * NRFFW[11] 0x040
+ * NRFFW[12] 0x044
+ * NRFFW[13] 0x048
+ * NRFFW[14] 0x04C
+ * NRFHW[0] 0x050
+ * NRFHW[1] 0x054
+ * NRFHW[2] 0x058
+ * NRFHW[3] 0x05C
+ * NRFHW[4] 0x060
+ * NRFHW[5] 0x064
+ * NRFHW[6] 0x068
+ * NRFHW[7] 0x06C
+ * NRFHW[8] 0x070
+ * NRFHW[9] 0x074
+ * NRFHW[10] 0x078
+ * NRFHW[11] 0x07C
+ * CUSTOMER[0] 0x080
+ * CUSTOMER[1] 0x084
+ * CUSTOMER[2] 0x088
+ * CUSTOMER[3] 0x08C
+ * CUSTOMER[4] 0x090
+ * CUSTOMER[5] 0x094
+ * CUSTOMER[6] 0x098
+ * CUSTOMER[7] 0x09C
+ * CUSTOMER[8] 0x0A0
+ * CUSTOMER[9] 0x0A4
+ * CUSTOMER[10] 0x0A8
+ * CUSTOMER[11] 0x0AC
+ * CUSTOMER[12] 0x0B0
+ * CUSTOMER[13] 0x0B4
+ * CUSTOMER[14] 0x0B8
+ * CUSTOMER[15] 0x0BC
+ * CUSTOMER[16] 0x0C0
+ * CUSTOMER[17] 0x0C4
+ * CUSTOMER[18] 0x0C8
+ * CUSTOMER[19] 0x0CC
+ * CUSTOMER[20] 0x0D0
+ * CUSTOMER[21] 0x0D4
+ * CUSTOMER[22] 0x0D8
+ * CUSTOMER[23] 0x0DC
+ * CUSTOMER[24] 0x0E0
+ * CUSTOMER[25] 0x0E4
+ * CUSTOMER[26] 0x0E8
+ * CUSTOMER[27] 0x0EC
+ * CUSTOMER[28] 0x0F0
+ * CUSTOMER[29] 0x0F4
+ * CUSTOMER[30] 0x0F8
+ * CUSTOMER[31] 0x0FC
+ */
+
+static uint64_t uicr_read(void *opaque, hwaddr offset, unsigned int size)
+{
+ NRF51NVMState *s = NRF51_NVM(opaque);
+
+ assert(offset < sizeof(s->uicr_content));
+ return s->uicr_content[offset / 4];
+}
+
+static void uicr_write(void *opaque, hwaddr offset, uint64_t value,
+ unsigned int size)
+{
+ NRF51NVMState *s = NRF51_NVM(opaque);
+
+ assert(offset < sizeof(s->uicr_content));
+ s->uicr_content[offset / 4] = value;
+}
+
+static const MemoryRegionOps uicr_ops = {
+ .read = uicr_read,
+ .write = uicr_write,
+ .impl.min_access_size = 4,
+ .impl.max_access_size = 4,
+ .endianness = DEVICE_LITTLE_ENDIAN
+};
+
+
+static uint64_t io_read(void *opaque, hwaddr offset, unsigned int size)
+{
+ NRF51NVMState *s = NRF51_NVM(opaque);
+ uint64_t r = 0;
+
+ switch (offset) {
+ case NRF51_NVMC_READY:
+ r = NRF51_NVMC_READY_READY;
+ break;
+ case NRF51_NVMC_CONFIG:
+ r = s->config;
+ break;
+ default:
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "%s: bad read offset 0x%" HWADDR_PRIx "\n", __func__, offset);
+ break;
+ }
+
+ return r;
+}
+
+static void io_write(void *opaque, hwaddr offset, uint64_t value,
+ unsigned int size)
+{
+ NRF51NVMState *s = NRF51_NVM(opaque);
+
+ switch (offset) {
+ case NRF51_NVMC_CONFIG:
+ s->config = value & NRF51_NVMC_CONFIG_MASK;
+ break;
+ case NRF51_NVMC_ERASEPCR0:
+ case NRF51_NVMC_ERASEPCR1:
+ if (s->config & NRF51_NVMC_CONFIG_EEN) {
+ /* Mask in-page sub address */
+ value &= ~(NRF51_PAGE_SIZE - 1);
+ if (value <= (s->flash_size - NRF51_PAGE_SIZE)) {
+ memset(s->storage + value, 0xFF, NRF51_PAGE_SIZE);
+ memory_region_flush_rom_device(&s->flash, value,
+ NRF51_PAGE_SIZE);
+ }
+ } else {
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "%s: Flash erase at 0x%" HWADDR_PRIx" while flash not erasable.\n",
+ __func__, offset);
+ }
+ break;
+ case NRF51_NVMC_ERASEALL:
+ if (value == NRF51_NVMC_ERASE) {
+ if (s->config & NRF51_NVMC_CONFIG_EEN) {
+ memset(s->storage, 0xFF, s->flash_size);
+ memory_region_flush_rom_device(&s->flash, 0, s->flash_size);
+ memset(s->uicr_content, 0xFF, sizeof(s->uicr_content));
+ } else {
+ qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash not erasable.\n",
+ __func__);
+ }
+ }
+ break;
+ case NRF51_NVMC_ERASEUICR:
+ if (value == NRF51_NVMC_ERASE) {
+ memset(s->uicr_content, 0xFF, sizeof(s->uicr_content));
+ }
+ break;
+
+ default:
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "%s: bad write offset 0x%" HWADDR_PRIx "\n", __func__, offset);
+ }
+}
+
+static const MemoryRegionOps io_ops = {
+ .read = io_read,
+ .write = io_write,
+ .impl.min_access_size = 4,
+ .impl.max_access_size = 4,
+ .endianness = DEVICE_LITTLE_ENDIAN,
+};
+
+
+static void flash_write(void *opaque, hwaddr offset, uint64_t value,
+ unsigned int size)
+{
+ NRF51NVMState *s = NRF51_NVM(opaque);
+
+ if (s->config & NRF51_NVMC_CONFIG_WEN) {
+ uint32_t oldval;
+
+ assert(offset + size <= s->flash_size);
+
+ /* NOR Flash only allows bits to be flipped from 1's to 0's on write */
+ oldval = ldl_le_p(s->storage + offset);
+ oldval &= value;
+ stl_le_p(s->storage + offset, oldval);
+
+ memory_region_flush_rom_device(&s->flash, offset, size);
+ } else {
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "%s: Flash write 0x%" HWADDR_PRIx" while flash not writable.\n",
+ __func__, offset);
+ }
+}
+
+
+
+static const MemoryRegionOps flash_ops = {
+ .write = flash_write,
+ .valid.min_access_size = 4,
+ .valid.max_access_size = 4,
+ .endianness = DEVICE_LITTLE_ENDIAN,
+};
+
+static void nrf51_nvm_init(Object *obj)
+{
+ NRF51NVMState *s = NRF51_NVM(obj);
+ SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
+
+ memory_region_init_io(&s->mmio, obj, &io_ops, s, "nrf51_soc.nvmc",
+ NRF51_NVMC_SIZE);
+ sysbus_init_mmio(sbd, &s->mmio);
+
+ memory_region_init_io(&s->ficr, obj, &ficr_ops, s, "nrf51_soc.ficr",
+ sizeof(ficr_content));
+ sysbus_init_mmio(sbd, &s->ficr);
+
+ memory_region_init_io(&s->uicr, obj, &uicr_ops, s, "nrf51_soc.uicr",
+ sizeof(s->uicr_content));
+ sysbus_init_mmio(sbd, &s->uicr);
+}
+
+static void nrf51_nvm_realize(DeviceState *dev, Error **errp)
+{
+ NRF51NVMState *s = NRF51_NVM(dev);
+ Error *err = NULL;
+
+ memory_region_init_rom_device(&s->flash, OBJECT(dev), &flash_ops, s,
+ "nrf51_soc.flash", s->flash_size, &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ s->storage = memory_region_get_ram_ptr(&s->flash);
+ sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->flash);
+}
+
+static void nrf51_nvm_reset(DeviceState *dev)
+{
+ NRF51NVMState *s = NRF51_NVM(dev);
+
+ s->config = 0x00;
+ memset(s->uicr_content, 0xFF, sizeof(s->uicr_content));
+}
+
+static Property nrf51_nvm_properties[] = {
+ DEFINE_PROP_UINT32("flash-size", NRF51NVMState, flash_size, 0x40000),
+ DEFINE_PROP_END_OF_LIST(),
+};
+
+static const VMStateDescription vmstate_nvm = {
+ .name = "nrf51_soc.nvm",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .fields = (VMStateField[]) {
+ VMSTATE_UINT32_ARRAY(uicr_content, NRF51NVMState,
+ NRF51_UICR_FIXTURE_SIZE),
+ VMSTATE_UINT32(config, NRF51NVMState),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+static void nrf51_nvm_class_init(ObjectClass *klass, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(klass);
+
+ dc->props = nrf51_nvm_properties;
+ dc->vmsd = &vmstate_nvm;
+ dc->realize = nrf51_nvm_realize;
+ dc->reset = nrf51_nvm_reset;
+}
+
+static const TypeInfo nrf51_nvm_info = {
+ .name = TYPE_NRF51_NVM,
+ .parent = TYPE_SYS_BUS_DEVICE,
+ .instance_size = sizeof(NRF51NVMState),
+ .instance_init = nrf51_nvm_init,
+ .class_init = nrf51_nvm_class_init
+};
+
+static void nrf51_nvm_register_types(void)
+{
+ type_register_static(&nrf51_nvm_info);
+}
+
+type_init(nrf51_nvm_register_types)
diff --git a/include/hw/arm/iotkit.h b/include/hw/arm/armsse.h
index 3a8ee63908..f800bafb14 100644
--- a/include/hw/arm/iotkit.h
+++ b/include/hw/arm/armsse.h
@@ -1,5 +1,5 @@
/*
- * ARM IoT Kit
+ * ARM SSE (Subsystems for Embedded): IoTKit, SSE-200
*
* Copyright (c) 2018 Linaro Limited
* Written by Peter Maydell
@@ -9,9 +9,16 @@
* (at your option) any later version.
*/
-/* This is a model of the Arm IoT Kit which is documented in
+/*
+ * This is a model of the Arm "Subsystems for Embedded" family of
+ * hardware, which include the IoT Kit and the SSE-050, SSE-100 and
+ * SSE-200. Currently we model:
+ * - the Arm IoT Kit which is documented in
* http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
- * It contains:
+ * - the SSE-200 which is documented in
+ * http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
+ *
+ * The IoTKit contains:
* a Cortex-M33
* the IDAU
* some timers and watchdogs
@@ -20,14 +27,29 @@
* a security controller
* a bus fabric which arranges that some parts of the address
* space are secure and non-secure aliases of each other
+ * The SSE-200 additionally contains:
+ * a second Cortex-M33
+ * two Message Handling Units (MHUs)
+ * an optional CryptoCell (which we do not model)
+ * more SRAM banks with associated MPCs
+ * multiple Power Policy Units (PPUs)
+ * a control interface for an icache for each CPU
+ * per-CPU identity and control register blocks
*
* QEMU interface:
* + QOM property "memory" is a MemoryRegion containing the devices provided
* by the board model.
* + QOM property "MAINCLK" is the frequency of the main system clock
- * + QOM property "EXP_NUMIRQ" sets the number of expansion interrupts
- * + Named GPIO inputs "EXP_IRQ" 0..n are the expansion interrupts, which
- * are wired to the NVIC lines 32 .. n+32
+ * + QOM property "EXP_NUMIRQ" sets the number of expansion interrupts.
+ * (In hardware, the SSE-200 permits the number of expansion interrupts
+ * for the two CPUs to be configured separately, but we restrict it to
+ * being the same for both, to avoid having to have separate Property
+ * lists for different variants. This restriction can be relaxed later
+ * if necessary.)
+ * + Named GPIO inputs "EXP_IRQ" 0..n are the expansion interrupts for CPU 0,
+ * which are wired to its NVIC lines 32 .. n+32
+ * + Named GPIO inputs "EXP_CPU1_IRQ" 0..n are the expansion interrupts for
+ * CPU 1, which are wired to its NVIC lines 32 .. n+32
* + sysbus MMIO region 0 is the "AHB Slave Expansion" which allows
* bus master devices in the board model to make transactions into
* all the devices and memory areas in the IoTKit
@@ -55,8 +77,8 @@
* + named GPIO outputs mscexp_ns[0..15]
*/
-#ifndef IOTKIT_H
-#define IOTKIT_H
+#ifndef ARMSSE_H
+#define ARMSSE_H
#include "hw/sysbus.h"
#include "hw/arm/armv7m.h"
@@ -68,11 +90,22 @@
#include "hw/watchdog/cmsdk-apb-watchdog.h"
#include "hw/misc/iotkit-sysctl.h"
#include "hw/misc/iotkit-sysinfo.h"
+#include "hw/misc/armsse-cpuid.h"
+#include "hw/misc/unimp.h"
#include "hw/or-irq.h"
#include "hw/core/split-irq.h"
+#include "hw/cpu/cluster.h"
+#define TYPE_ARMSSE "arm-sse"
+#define ARMSSE(obj) OBJECT_CHECK(ARMSSE, (obj), TYPE_ARMSSE)
+
+/*
+ * These type names are for specific IoTKit subsystems; other than
+ * instantiating them, code using these devices should always handle
+ * them via the ARMSSE base class, so they have no IOTKIT() etc macros.
+ */
#define TYPE_IOTKIT "iotkit"
-#define IOTKIT(obj) OBJECT_CHECK(IoTKit, (obj), TYPE_IOTKIT)
+#define TYPE_SSE200 "sse-200"
/* We have an IRQ splitter and an OR gate input for each external PPC
* and the 2 internal PPCs
@@ -80,16 +113,34 @@
#define NUM_EXTERNAL_PPCS (IOTS_NUM_AHB_EXP_PPC + IOTS_NUM_APB_EXP_PPC)
#define NUM_PPCS (NUM_EXTERNAL_PPCS + 2)
-typedef struct IoTKit {
+#define MAX_SRAM_BANKS 4
+#if MAX_SRAM_BANKS > IOTS_NUM_MPC
+#error Too many SRAM banks
+#endif
+
+#define SSE_MAX_CPUS 2
+
+/* These define what each PPU in the ppu[] index is for */
+#define CPU0CORE_PPU 0
+#define CPU1CORE_PPU 1
+#define DBG_PPU 2
+#define RAM0_PPU 3
+#define RAM1_PPU 4
+#define RAM2_PPU 5
+#define RAM3_PPU 6
+#define NUM_PPUS 7
+
+typedef struct ARMSSE {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
- ARMv7MState armv7m;
+ ARMv7MState armv7m[SSE_MAX_CPUS];
+ CPUClusterState cluster[SSE_MAX_CPUS];
IoTKitSecCtl secctl;
TZPPC apb_ppc0;
TZPPC apb_ppc1;
- TZMPC mpc;
+ TZMPC mpc[IOTS_NUM_MPC];
CMSDKAPBTIMER timer0;
CMSDKAPBTIMER timer1;
CMSDKAPBTIMER s32ktimer;
@@ -100,6 +151,8 @@ typedef struct IoTKit {
qemu_or_irq mpc_irq_orgate;
qemu_or_irq nmi_orgate;
+ SplitIRQ cpu_irq_splitter[32];
+
CMSDKAPBDualTimer dualtimer;
CMSDKAPBWatchdog s32kwatchdog;
@@ -109,13 +162,30 @@ typedef struct IoTKit {
IoTKitSysCtl sysctl;
IoTKitSysCtl sysinfo;
+ UnimplementedDeviceState mhu[2];
+ UnimplementedDeviceState ppu[NUM_PPUS];
+ UnimplementedDeviceState cachectrl[SSE_MAX_CPUS];
+ UnimplementedDeviceState cpusecctrl[SSE_MAX_CPUS];
+
+ ARMSSECPUID cpuid[SSE_MAX_CPUS];
+
+ /*
+ * 'container' holds all devices seen by all CPUs.
+ * 'cpu_container[i]' is the view that CPU i has: this has the
+ * per-CPU devices of that CPU, plus as the background 'container'
+ * (or an alias of it, since we can only use it directly once).
+ * container_alias[i] is the alias of 'container' used by CPU i+1;
+ * CPU 0 can use 'container' directly.
+ */
MemoryRegion container;
+ MemoryRegion container_alias[SSE_MAX_CPUS - 1];
+ MemoryRegion cpu_container[SSE_MAX_CPUS];
MemoryRegion alias1;
MemoryRegion alias2;
MemoryRegion alias3;
- MemoryRegion sram0;
+ MemoryRegion sram[MAX_SRAM_BANKS];
- qemu_irq *exp_irqs;
+ qemu_irq *exp_irqs[SSE_MAX_CPUS];
qemu_irq ppc0_irq;
qemu_irq ppc1_irq;
qemu_irq sec_resp_cfg;
@@ -131,6 +201,19 @@ typedef struct IoTKit {
MemoryRegion *board_memory;
uint32_t exp_numirq;
uint32_t mainclk_frq;
-} IoTKit;
+ uint32_t sram_addr_width;
+} ARMSSE;
+
+typedef struct ARMSSEInfo ARMSSEInfo;
+
+typedef struct ARMSSEClass {
+ DeviceClass parent_class;
+ const ARMSSEInfo *info;
+} ARMSSEClass;
+
+#define ARMSSE_CLASS(klass) \
+ OBJECT_CLASS_CHECK(ARMSSEClass, (klass), TYPE_ARMSSE)
+#define ARMSSE_GET_CLASS(obj) \
+ OBJECT_GET_CLASS(ARMSSEClass, (obj), TYPE_ARMSSE)
#endif
diff --git a/include/hw/arm/armv7m.h b/include/hw/arm/armv7m.h
index 2ba24953b6..e96a98f809 100644
--- a/include/hw/arm/armv7m.h
+++ b/include/hw/arm/armv7m.h
@@ -65,6 +65,7 @@ typedef struct ARMv7MState {
Object *idau;
uint32_t init_svtor;
bool enable_bitband;
+ bool start_powered_off;
} ARMv7MState;
#endif
diff --git a/include/hw/arm/nrf51_soc.h b/include/hw/arm/nrf51_soc.h
index fbdefc07e4..fd7fcc71a5 100644
--- a/include/hw/arm/nrf51_soc.h
+++ b/include/hw/arm/nrf51_soc.h
@@ -15,6 +15,7 @@
#include "hw/char/nrf51_uart.h"
#include "hw/misc/nrf51_rng.h"
#include "hw/gpio/nrf51_gpio.h"
+#include "hw/nvram/nrf51_nvm.h"
#include "hw/timer/nrf51_timer.h"
#define TYPE_NRF51_SOC "nrf51-soc"
@@ -32,6 +33,7 @@ typedef struct NRF51State {
NRF51UARTState uart;
NRF51RNGState rng;
+ NRF51NVMState nvm;
NRF51GPIOState gpio;
NRF51TimerState timer[NRF51_NUM_TIMERS];
diff --git a/include/hw/misc/armsse-cpuid.h b/include/hw/misc/armsse-cpuid.h
new file mode 100644
index 0000000000..0ef33fcaba
--- /dev/null
+++ b/include/hw/misc/armsse-cpuid.h
@@ -0,0 +1,41 @@
+/*
+ * ARM SSE-200 CPU_IDENTITY register block
+ *
+ * Copyright (c) 2019 Linaro Limited
+ * Written by Peter Maydell
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 or
+ * (at your option) any later version.
+ */
+
+/*
+ * This is a model of the "CPU_IDENTITY" register block which is part of the
+ * Arm SSE-200 and documented in
+ * http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
+ *
+ * QEMU interface:
+ * + QOM property "CPUID": the value to use for the CPUID register
+ * + sysbus MMIO region 0: the system information register bank
+ */
+
+#ifndef HW_MISC_ARMSSE_CPUID_H
+#define HW_MISC_ARMSSE_CPUID_H
+
+#include "hw/sysbus.h"
+
+#define TYPE_ARMSSE_CPUID "armsse-cpuid"
+#define ARMSSE_CPUID(obj) OBJECT_CHECK(ARMSSECPUID, (obj), TYPE_ARMSSE_CPUID)
+
+typedef struct ARMSSECPUID {
+ /*< private >*/
+ SysBusDevice parent_obj;
+
+ /*< public >*/
+ MemoryRegion iomem;
+
+ /* Properties */
+ uint32_t cpuid;
+} ARMSSECPUID;
+
+#endif
diff --git a/include/hw/misc/iotkit-secctl.h b/include/hw/misc/iotkit-secctl.h
index 1a193b306f..bcb0437be5 100644
--- a/include/hw/misc/iotkit-secctl.h
+++ b/include/hw/misc/iotkit-secctl.h
@@ -40,8 +40,8 @@
* + named GPIO outputs ahb_ppcexp{0,1,2,3}_irq_enable
* + named GPIO outputs ahb_ppcexp{0,1,2,3}_irq_clear
* + named GPIO inputs ahb_ppcexp{0,1,2,3}_irq_status
- * Controlling the MPC in the IoTKit:
- * + named GPIO input mpc_status
+ * Controlling the (up to) 4 MPCs in the IoTKit/SSE:
+ * + named GPIO inputs mpc_status[0..3]
* Controlling each of the 16 expansion MPCs which a system using the IoTKit
* might provide:
* + named GPIO inputs mpcexp_status[0..15]
@@ -67,7 +67,7 @@
#define IOTS_NUM_APB_EXP_PPC 4
#define IOTS_NUM_AHB_EXP_PPC 4
#define IOTS_NUM_EXP_MPC 16
-#define IOTS_NUM_MPC 1
+#define IOTS_NUM_MPC 4
#define IOTS_NUM_EXP_MSC 16
typedef struct IoTKitSecCtl IoTKitSecCtl;
diff --git a/include/hw/misc/iotkit-sysinfo.h b/include/hw/misc/iotkit-sysinfo.h
index 7b2e1a5e48..d84eb203b9 100644
--- a/include/hw/misc/iotkit-sysinfo.h
+++ b/include/hw/misc/iotkit-sysinfo.h
@@ -14,6 +14,8 @@
* Arm IoTKit and documented in
* http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
* QEMU interface:
+ * + QOM property "SYS_VERSION": value to use for SYS_VERSION register
+ * + QOM property "SYS_CONFIG": value to use for SYS_CONFIG register
* + sysbus MMIO region 0: the system information register bank
*/
@@ -32,6 +34,10 @@ typedef struct IoTKitSysInfo {
/*< public >*/
MemoryRegion iomem;
+
+ /* Properties */
+ uint32_t sys_version;
+ uint32_t sys_config;
} IoTKitSysInfo;
#endif
diff --git a/include/hw/nvram/nrf51_nvm.h b/include/hw/nvram/nrf51_nvm.h
new file mode 100644
index 0000000000..3792e4a9fe
--- /dev/null
+++ b/include/hw/nvram/nrf51_nvm.h
@@ -0,0 +1,64 @@
+/*
+ * Nordic Semiconductor nRF51 non-volatile memory
+ *
+ * It provides an interface to erase regions in flash memory.
+ * Furthermore it provides the user and factory information registers.
+ *
+ * QEMU interface:
+ * + sysbus MMIO regions 0: NVMC peripheral registers
+ * + sysbus MMIO regions 1: FICR peripheral registers
+ * + sysbus MMIO regions 2: UICR peripheral registers
+ * + flash-size property: flash size in bytes.
+ *
+ * Accuracy of the peripheral model:
+ * + Code regions (MPU configuration) are disregarded.
+ *
+ * Copyright 2018 Steffen Görtz <contrib@steffen-goertz.de>
+ *
+ * This code is licensed under the GPL version 2 or later. See
+ * the COPYING file in the top-level directory.
+ *
+ */
+#ifndef NRF51_NVM_H
+#define NRF51_NVM_H
+
+#include "hw/sysbus.h"
+#define TYPE_NRF51_NVM "nrf51_soc.nvm"
+#define NRF51_NVM(obj) OBJECT_CHECK(NRF51NVMState, (obj), TYPE_NRF51_NVM)
+
+#define NRF51_UICR_FIXTURE_SIZE 64
+
+#define NRF51_NVMC_SIZE 0x1000
+
+#define NRF51_NVMC_READY 0x400
+#define NRF51_NVMC_READY_READY 0x01
+#define NRF51_NVMC_CONFIG 0x504
+#define NRF51_NVMC_CONFIG_MASK 0x03
+#define NRF51_NVMC_CONFIG_WEN 0x01
+#define NRF51_NVMC_CONFIG_EEN 0x02
+#define NRF51_NVMC_ERASEPCR1 0x508
+#define NRF51_NVMC_ERASEPCR0 0x510
+#define NRF51_NVMC_ERASEALL 0x50C
+#define NRF51_NVMC_ERASEUICR 0x514
+#define NRF51_NVMC_ERASE 0x01
+
+#define NRF51_UICR_SIZE 0x100
+
+typedef struct NRF51NVMState {
+ SysBusDevice parent_obj;
+
+ MemoryRegion mmio;
+ MemoryRegion ficr;
+ MemoryRegion uicr;
+ MemoryRegion flash;
+
+ uint32_t uicr_content[NRF51_UICR_FIXTURE_SIZE];
+ uint32_t flash_size;
+ uint8_t *storage;
+
+ uint32_t config;
+
+} NRF51NVMState;
+
+
+#endif
diff --git a/include/qom/cpu.h b/include/qom/cpu.h
index 4c2feb9c17..1d6099e5d4 100644
--- a/include/qom/cpu.h
+++ b/include/qom/cpu.h
@@ -103,9 +103,21 @@ struct TranslationBlock;
* @get_arch_id: Callback for getting architecture-dependent CPU ID.
* @get_paging_enabled: Callback for inquiring whether paging is enabled.
* @get_memory_mapping: Callback for obtaining the memory mappings.
- * @set_pc: Callback for setting the Program Counter register.
+ * @set_pc: Callback for setting the Program Counter register. This
+ * should have the semantics used by the target architecture when
+ * setting the PC from a source such as an ELF file entry point;
+ * for example on Arm it will also set the Thumb mode bit based
+ * on the least significant bit of the new PC value.
+ * If the target behaviour here is anything other than "set
+ * the PC register to the value passed in" then the target must
+ * also implement the synchronize_from_tb hook.
* @synchronize_from_tb: Callback for synchronizing state from a TCG
- * #TranslationBlock.
+ * #TranslationBlock. This is called when we abandon execution
+ * of a TB before starting it, and must set all parts of the CPU
+ * state which the previous TB in the chain may not have updated.
+ * This always includes at least the program counter; some targets
+ * will need to do more. If this hook is not implemented then the
+ * default is to call @set_pc(tb->pc).
* @handle_mmu_fault: Callback for handling an MMU fault.
* @get_phys_page_debug: Callback for obtaining a physical address.
* @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
diff --git a/linux-user/aarch64/cpu_loop.c b/linux-user/aarch64/cpu_loop.c
index 65d815f030..d75fd9d3e2 100644
--- a/linux-user/aarch64/cpu_loop.c
+++ b/linux-user/aarch64/cpu_loop.c
@@ -147,10 +147,29 @@ void cpu_loop(CPUARMState *env)
}
}
+static uint64_t arm_rand64(void)
+{
+ int shift = 64 - clz64(RAND_MAX);
+ int i, n = 64 / shift + (64 % shift != 0);
+ uint64_t ret = 0;
+
+ for (i = 0; i < n; i++) {
+ ret = (ret << shift) | rand();
+ }
+ return ret;
+}
+
+void arm_init_pauth_key(ARMPACKey *key)
+{
+ key->lo = arm_rand64();
+ key->hi = arm_rand64();
+}
+
void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs)
{
- CPUState *cpu = ENV_GET_CPU(env);
- TaskState *ts = cpu->opaque;
+ ARMCPU *cpu = arm_env_get_cpu(env);
+ CPUState *cs = CPU(cpu);
+ TaskState *ts = cs->opaque;
struct image_info *info = ts->info;
int i;
@@ -172,6 +191,14 @@ void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs)
}
#endif
+ if (cpu_isar_feature(aa64_pauth, cpu)) {
+ arm_init_pauth_key(&env->apia_key);
+ arm_init_pauth_key(&env->apib_key);
+ arm_init_pauth_key(&env->apda_key);
+ arm_init_pauth_key(&env->apdb_key);
+ arm_init_pauth_key(&env->apga_key);
+ }
+
ts->stack_base = info->start_stack;
ts->heap_base = info->brk;
/* This will be filled in on the first SYS_HEAPINFO call. */
diff --git a/linux-user/aarch64/target_syscall.h b/linux-user/aarch64/target_syscall.h
index 205265e619..937fd7989e 100644
--- a/linux-user/aarch64/target_syscall.h
+++ b/linux-user/aarch64/target_syscall.h
@@ -22,4 +22,6 @@ struct target_pt_regs {
#define TARGET_PR_SVE_SET_VL 50
#define TARGET_PR_SVE_GET_VL 51
+void arm_init_pauth_key(ARMPACKey *key);
+
#endif /* AARCH64_TARGET_SYSCALL_H */
diff --git a/linux-user/elfload.c b/linux-user/elfload.c
index 4cff9e1a31..775a36ccdd 100644
--- a/linux-user/elfload.c
+++ b/linux-user/elfload.c
@@ -560,6 +560,15 @@ enum {
ARM_HWCAP_A64_ASIMDDP = 1 << 20,
ARM_HWCAP_A64_SHA512 = 1 << 21,
ARM_HWCAP_A64_SVE = 1 << 22,
+ ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
+ ARM_HWCAP_A64_DIT = 1 << 24,
+ ARM_HWCAP_A64_USCAT = 1 << 25,
+ ARM_HWCAP_A64_ILRCPC = 1 << 26,
+ ARM_HWCAP_A64_FLAGM = 1 << 27,
+ ARM_HWCAP_A64_SSBS = 1 << 28,
+ ARM_HWCAP_A64_SB = 1 << 29,
+ ARM_HWCAP_A64_PACA = 1 << 30,
+ ARM_HWCAP_A64_PACG = 1UL << 31,
};
#define ELF_HWCAP get_elf_hwcap()
@@ -591,6 +600,7 @@ static uint32_t get_elf_hwcap(void)
GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
+ GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
#undef GET_FEATURE_ID
diff --git a/target/arm/arm-powerctl.c b/target/arm/arm-powerctl.c
index 2b856930fb..f9de5164e5 100644
--- a/target/arm/arm-powerctl.c
+++ b/target/arm/arm-powerctl.c
@@ -120,11 +120,8 @@ static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
if (info->target_aa64) {
target_cpu->env.xregs[0] = info->context_id;
- target_cpu->env.thumb = false;
} else {
target_cpu->env.regs[0] = info->context_id;
- target_cpu->env.thumb = info->entry & 1;
- info->entry &= 0xfffffffe;
}
/* Start the new CPU at the requested address */
diff --git a/target/arm/cpu.c b/target/arm/cpu.c
index d6da3f4fed..3874dc9875 100644
--- a/target/arm/cpu.c
+++ b/target/arm/cpu.c
@@ -40,8 +40,31 @@
static void arm_cpu_set_pc(CPUState *cs, vaddr value)
{
ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
- cpu->env.regs[15] = value;
+ if (is_a64(env)) {
+ env->pc = value;
+ env->thumb = 0;
+ } else {
+ env->regs[15] = value & ~1;
+ env->thumb = value & 1;
+ }
+}
+
+static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
+{
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+
+ /*
+ * It's OK to look at env for the current mode here, because it's
+ * never possible for an AArch64 TB to chain to an AArch32 TB.
+ */
+ if (is_a64(env)) {
+ env->pc = tb->pc;
+ } else {
+ env->regs[15] = tb->pc;
+ }
}
static bool arm_cpu_has_work(CPUState *cs)
@@ -162,6 +185,9 @@ static void arm_cpu_reset(CPUState *s)
env->pstate = PSTATE_MODE_EL0t;
/* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
+ /* Enable all PAC keys. */
+ env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
+ SCTLR_EnDA | SCTLR_EnDB);
/* Enable all PAC instructions */
env->cp15.hcr_el2 |= HCR_API;
env->cp15.scr_el3 |= SCR_API;
@@ -836,6 +862,13 @@ static void arm_cpu_finalizefn(Object *obj)
QLIST_REMOVE(hook, node);
g_free(hook);
}
+#ifndef CONFIG_USER_ONLY
+ if (cpu->pmu_timer) {
+ timer_del(cpu->pmu_timer);
+ timer_deinit(cpu->pmu_timer);
+ timer_free(cpu->pmu_timer);
+ }
+#endif
}
static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
@@ -1045,6 +1078,11 @@ static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
}
+
+#ifndef CONFIG_USER_ONLY
+ cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
+ cpu);
+#endif
} else {
cpu->id_aa64dfr0 &= ~0xf00;
cpu->pmceid0 = 0;
@@ -2087,6 +2125,7 @@ static void arm_cpu_class_init(ObjectClass *oc, void *data)
cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
cc->dump_state = arm_cpu_dump_state;
cc->set_pc = arm_cpu_set_pc;
+ cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
cc->gdb_read_register = arm_cpu_gdb_read_register;
cc->gdb_write_register = arm_cpu_gdb_write_register;
#ifdef CONFIG_USER_ONLY
diff --git a/target/arm/cpu.h b/target/arm/cpu.h
index b8161cb6d7..a68bcc9fed 100644
--- a/target/arm/cpu.h
+++ b/target/arm/cpu.h
@@ -746,6 +746,11 @@ struct ARMCPU {
/* Timers used by the generic (architected) timer */
QEMUTimer *gt_timer[NUM_GTIMERS];
+ /*
+ * Timer used by the PMU. Its state is restored after migration by
+ * pmu_op_finish() - it does not need other handling during migration
+ */
+ QEMUTimer *pmu_timer;
/* GPIO outputs for generic timer */
qemu_irq gt_timer_outputs[NUM_GTIMERS];
/* GPIO output for GICv3 maintenance interrupt signal */
@@ -1005,6 +1010,11 @@ void pmccntr_op_finish(CPUARMState *env);
void pmu_op_start(CPUARMState *env);
void pmu_op_finish(CPUARMState *env);
+/*
+ * Called when a PMU counter is due to overflow
+ */
+void arm_pmu_timer_cb(void *opaque);
+
/**
* Functions to register as EL change hooks for PMU mode filtering
*/
@@ -2502,7 +2512,7 @@ bool write_cpustate_to_list(ARMCPU *cpu);
#if defined(TARGET_AARCH64)
# define TARGET_PHYS_ADDR_SPACE_BITS 48
-# define TARGET_VIRT_ADDR_SPACE_BITS 64
+# define TARGET_VIRT_ADDR_SPACE_BITS 48
#else
# define TARGET_PHYS_ADDR_SPACE_BITS 40
# define TARGET_VIRT_ADDR_SPACE_BITS 32
diff --git a/target/arm/cpu64.c b/target/arm/cpu64.c
index e9bc461c36..7107ec8d7e 100644
--- a/target/arm/cpu64.c
+++ b/target/arm/cpu64.c
@@ -281,38 +281,6 @@ static void cpu_max_set_sve_vq(Object *obj, Visitor *v, const char *name,
error_propagate(errp, err);
}
-#ifdef CONFIG_USER_ONLY
-static void cpu_max_get_packey(Object *obj, Visitor *v, const char *name,
- void *opaque, Error **errp)
-{
- ARMCPU *cpu = ARM_CPU(obj);
- const uint64_t *bit = opaque;
- bool enabled = (cpu->env.cp15.sctlr_el[1] & *bit) != 0;
-
- visit_type_bool(v, name, &enabled, errp);
-}
-
-static void cpu_max_set_packey(Object *obj, Visitor *v, const char *name,
- void *opaque, Error **errp)
-{
- ARMCPU *cpu = ARM_CPU(obj);
- Error *err = NULL;
- const uint64_t *bit = opaque;
- bool enabled;
-
- visit_type_bool(v, name, &enabled, errp);
-
- if (!err) {
- if (enabled) {
- cpu->env.cp15.sctlr_el[1] |= *bit;
- } else {
- cpu->env.cp15.sctlr_el[1] &= ~*bit;
- }
- }
- error_propagate(errp, err);
-}
-#endif
-
/* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
* otherwise, a CPU with as many features enabled as our emulation supports.
* The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
@@ -388,34 +356,6 @@ static void aarch64_max_initfn(Object *obj)
*/
cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
cpu->dcz_blocksize = 7; /* 512 bytes */
-
- /*
- * Note that Linux will enable enable all of the keys at once.
- * But doing it this way will allow experimentation beyond that.
- */
- {
- static const uint64_t apia_bit = SCTLR_EnIA;
- static const uint64_t apib_bit = SCTLR_EnIB;
- static const uint64_t apda_bit = SCTLR_EnDA;
- static const uint64_t apdb_bit = SCTLR_EnDB;
-
- object_property_add(obj, "apia", "bool", cpu_max_get_packey,
- cpu_max_set_packey, NULL,
- (void *)&apia_bit, &error_fatal);
- object_property_add(obj, "apib", "bool", cpu_max_get_packey,
- cpu_max_set_packey, NULL,
- (void *)&apib_bit, &error_fatal);
- object_property_add(obj, "apda", "bool", cpu_max_get_packey,
- cpu_max_set_packey, NULL,
- (void *)&apda_bit, &error_fatal);
- object_property_add(obj, "apdb", "bool", cpu_max_get_packey,
- cpu_max_set_packey, NULL,
- (void *)&apdb_bit, &error_fatal);
-
- /* Enable all PAC keys by default. */
- cpu->env.cp15.sctlr_el[1] |= SCTLR_EnIA | SCTLR_EnIB;
- cpu->env.cp15.sctlr_el[1] |= SCTLR_EnDA | SCTLR_EnDB;
- }
#endif
cpu->sve_max_vq = ARM_MAX_VQ;
@@ -480,20 +420,6 @@ static void aarch64_cpu_finalizefn(Object *obj)
{
}
-static void aarch64_cpu_set_pc(CPUState *cs, vaddr value)
-{
- ARMCPU *cpu = ARM_CPU(cs);
- /* It's OK to look at env for the current mode here, because it's
- * never possible for an AArch64 TB to chain to an AArch32 TB.
- * (Otherwise we would need to use synchronize_from_tb instead.)
- */
- if (is_a64(&cpu->env)) {
- cpu->env.pc = value;
- } else {
- cpu->env.regs[15] = value;
- }
-}
-
static gchar *aarch64_gdb_arch_name(CPUState *cs)
{
return g_strdup("aarch64");
@@ -504,7 +430,6 @@ static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
CPUClass *cc = CPU_CLASS(oc);
cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
- cc->set_pc = aarch64_cpu_set_pc;
cc->gdb_read_register = aarch64_cpu_gdb_read_register;
cc->gdb_write_register = aarch64_cpu_gdb_write_register;
cc->gdb_num_core_regs = 34;
diff --git a/target/arm/helper.c b/target/arm/helper.c
index 66faebea8e..d070879894 100644
--- a/target/arm/helper.c
+++ b/target/arm/helper.c
@@ -977,6 +977,7 @@ static const ARMCPRegInfo v6_cp_reginfo[] = {
/* Definitions for the PMU registers */
#define PMCRN_MASK 0xf800
#define PMCRN_SHIFT 11
+#define PMCRLC 0x40
#define PMCRDP 0x10
#define PMCRD 0x8
#define PMCRC 0x4
@@ -1020,6 +1021,13 @@ typedef struct pm_event {
* counters hold a difference from the return value from this function
*/
uint64_t (*get_count)(CPUARMState *);
+ /*
+ * Return how many nanoseconds it will take (at a minimum) for count events
+ * to occur. A negative value indicates the counter will never overflow, or
+ * that the counter has otherwise arranged for the overflow bit to be set
+ * and the PMU interrupt to be raised on overflow.
+ */
+ int64_t (*ns_per_count)(uint64_t);
} pm_event;
static bool event_always_supported(CPUARMState *env)
@@ -1036,6 +1044,11 @@ static uint64_t swinc_get_count(CPUARMState *env)
return 0;
}
+static int64_t swinc_ns_per(uint64_t ignored)
+{
+ return -1;
+}
+
/*
* Return the underlying cycle count for the PMU cycle counters. If we're in
* usermode, simply return 0.
@@ -1051,6 +1064,11 @@ static uint64_t cycles_get_count(CPUARMState *env)
}
#ifndef CONFIG_USER_ONLY
+static int64_t cycles_ns_per(uint64_t cycles)
+{
+ return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
+}
+
static bool instructions_supported(CPUARMState *env)
{
return use_icount == 1 /* Precise instruction counting */;
@@ -1060,21 +1078,29 @@ static uint64_t instructions_get_count(CPUARMState *env)
{
return (uint64_t)cpu_get_icount_raw();
}
+
+static int64_t instructions_ns_per(uint64_t icount)
+{
+ return cpu_icount_to_ns((int64_t)icount);
+}
#endif
static const pm_event pm_events[] = {
{ .number = 0x000, /* SW_INCR */
.supported = event_always_supported,
.get_count = swinc_get_count,
+ .ns_per_count = swinc_ns_per,
},
#ifndef CONFIG_USER_ONLY
{ .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
.supported = instructions_supported,
.get_count = instructions_get_count,
+ .ns_per_count = instructions_ns_per,
},
{ .number = 0x011, /* CPU_CYCLES, Cycle */
.supported = event_always_supported,
.get_count = cycles_get_count,
+ .ns_per_count = cycles_ns_per,
}
#endif
};
@@ -1293,6 +1319,13 @@ static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
return enabled && !prohibited && !filtered;
}
+static void pmu_update_irq(CPUARMState *env)
+{
+ ARMCPU *cpu = arm_env_get_cpu(env);
+ qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
+ (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
+}
+
/*
* Ensure c15_ccnt is the guest-visible count so that operations such as
* enabling/disabling the counter or filtering, modifying the count itself,
@@ -1310,7 +1343,16 @@ void pmccntr_op_start(CPUARMState *env)
eff_cycles /= 64;
}
- env->cp15.c15_ccnt = eff_cycles - env->cp15.c15_ccnt_delta;
+ uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
+
+ uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
+ 1ull << 63 : 1ull << 31;
+ if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
+ env->cp15.c9_pmovsr |= (1 << 31);
+ pmu_update_irq(env);
+ }
+
+ env->cp15.c15_ccnt = new_pmccntr;
}
env->cp15.c15_ccnt_delta = cycles;
}
@@ -1323,13 +1365,27 @@ void pmccntr_op_start(CPUARMState *env)
void pmccntr_op_finish(CPUARMState *env)
{
if (pmu_counter_enabled(env, 31)) {
- uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
+#ifndef CONFIG_USER_ONLY
+ /* Calculate when the counter will next overflow */
+ uint64_t remaining_cycles = -env->cp15.c15_ccnt;
+ if (!(env->cp15.c9_pmcr & PMCRLC)) {
+ remaining_cycles = (uint32_t)remaining_cycles;
+ }
+ int64_t overflow_in = cycles_ns_per(remaining_cycles);
+
+ if (overflow_in > 0) {
+ int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
+ overflow_in;
+ ARMCPU *cpu = arm_env_get_cpu(env);
+ timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
+ }
+#endif
+ uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
if (env->cp15.c9_pmcr & PMCRD) {
/* Increment once every 64 processor clock cycles */
prev_cycles /= 64;
}
-
env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
}
}
@@ -1345,8 +1401,13 @@ static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
}
if (pmu_counter_enabled(env, counter)) {
- env->cp15.c14_pmevcntr[counter] =
- count - env->cp15.c14_pmevcntr_delta[counter];
+ uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
+
+ if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
+ env->cp15.c9_pmovsr |= (1 << counter);
+ pmu_update_irq(env);
+ }
+ env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
}
env->cp15.c14_pmevcntr_delta[counter] = count;
}
@@ -1354,6 +1415,21 @@ static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
{
if (pmu_counter_enabled(env, counter)) {
+#ifndef CONFIG_USER_ONLY
+ uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
+ uint16_t event_idx = supported_event_map[event];
+ uint64_t delta = UINT32_MAX -
+ (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
+ int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
+
+ if (overflow_in > 0) {
+ int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
+ overflow_in;
+ ARMCPU *cpu = arm_env_get_cpu(env);
+ timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
+ }
+#endif
+
env->cp15.c14_pmevcntr_delta[counter] -=
env->cp15.c14_pmevcntr[counter];
}
@@ -1387,6 +1463,20 @@ void pmu_post_el_change(ARMCPU *cpu, void *ignored)
pmu_op_finish(&cpu->env);
}
+void arm_pmu_timer_cb(void *opaque)
+{
+ ARMCPU *cpu = opaque;
+
+ /*
+ * Update all the counter values based on the current underlying counts,
+ * triggering interrupts to be raised, if necessary. pmu_op_finish() also
+ * has the effect of setting the cpu->pmu_timer to the next earliest time a
+ * counter may expire.
+ */
+ pmu_op_start(&cpu->env);
+ pmu_op_finish(&cpu->env);
+}
+
static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
@@ -1423,7 +1513,20 @@ static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
/* counter is SW_INCR */
(env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
pmevcntr_op_start(env, i);
- env->cp15.c14_pmevcntr[i]++;
+
+ /*
+ * Detect if this write causes an overflow since we can't predict
+ * PMSWINC overflows like we can for other events
+ */
+ uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
+
+ if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
+ env->cp15.c9_pmovsr |= (1 << i);
+ pmu_update_irq(env);
+ }
+
+ env->cp15.c14_pmevcntr[i] = new_pmswinc;
+
pmevcntr_op_finish(env, i);
}
}
@@ -1508,6 +1611,7 @@ static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
{
value &= pmu_counter_mask(env);
env->cp15.c9_pmovsr &= ~value;
+ pmu_update_irq(env);
}
static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
@@ -1515,6 +1619,7 @@ static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
{
value &= pmu_counter_mask(env);
env->cp15.c9_pmovsr |= value;
+ pmu_update_irq(env);
}
static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
@@ -1701,6 +1806,7 @@ static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
/* We have no event counters so only the C bit can be changed */
value &= pmu_counter_mask(env);
env->cp15.c9_pminten |= value;
+ pmu_update_irq(env);
}
static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
@@ -1708,6 +1814,7 @@ static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
{
value &= pmu_counter_mask(env);
env->cp15.c9_pminten &= ~value;
+ pmu_update_irq(env);
}
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
@@ -1752,6 +1859,9 @@ static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
if (cpu_isar_feature(aa64_lor, cpu)) {
valid_mask |= SCR_TLOR;
}
+ if (cpu_isar_feature(aa64_pauth, cpu)) {
+ valid_mask |= SCR_API | SCR_APK;
+ }
/* Clear all-context RES0 bits. */
value &= valid_mask;
@@ -1846,7 +1956,7 @@ static const ARMCPRegInfo v7_cp_reginfo[] = {
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
.writefn = pmcntenclr_write },
{ .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
- .access = PL0_RW,
+ .access = PL0_RW, .type = ARM_CP_IO,
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
.accessfn = pmreg_access,
.writefn = pmovsr_write,
@@ -1854,16 +1964,18 @@ static const ARMCPRegInfo v7_cp_reginfo[] = {
{ .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
.access = PL0_RW, .accessfn = pmreg_access,
- .type = ARM_CP_ALIAS,
+ .type = ARM_CP_ALIAS | ARM_CP_IO,
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
.writefn = pmovsr_write,
.raw_writefn = raw_write },
{ .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
- .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NO_RAW,
+ .access = PL0_W, .accessfn = pmreg_access_swinc,
+ .type = ARM_CP_NO_RAW | ARM_CP_IO,
.writefn = pmswinc_write },
{ .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
- .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NO_RAW,
+ .access = PL0_W, .accessfn = pmreg_access_swinc,
+ .type = ARM_CP_NO_RAW | ARM_CP_IO,
.writefn = pmswinc_write },
{ .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
.access = PL0_RW, .type = ARM_CP_ALIAS,
@@ -2050,14 +2162,14 @@ static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
/* PMOVSSET is not implemented in v7 before v7ve */
{ .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
.access = PL0_RW, .accessfn = pmreg_access,
- .type = ARM_CP_ALIAS,
+ .type = ARM_CP_ALIAS | ARM_CP_IO,
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
.writefn = pmovsset_write,
.raw_writefn = raw_write },
{ .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
.access = PL0_RW, .accessfn = pmreg_access,
- .type = ARM_CP_ALIAS,
+ .type = ARM_CP_ALIAS | ARM_CP_IO,
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
.writefn = pmovsset_write,
.raw_writefn = raw_write },
@@ -4449,6 +4561,9 @@ static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
if (cpu_isar_feature(aa64_lor, cpu)) {
valid_mask |= HCR_TLOR;
}
+ if (cpu_isar_feature(aa64_pauth, cpu)) {
+ valid_mask |= HCR_API | HCR_APK;
+ }
/* Clear RES0 bits. */
value &= valid_mask;
diff --git a/target/arm/translate-a64.c b/target/arm/translate-a64.c
index 4d28a27c3b..a1997e3ae2 100644
--- a/target/arm/translate-a64.c
+++ b/target/arm/translate-a64.c
@@ -2036,7 +2036,7 @@ static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
if (!dc_isar_feature(aa64_pauth, s)) {
goto do_unallocated;
}
- if (op3 != 2 || op3 != 3) {
+ if ((op3 & ~1) != 2) {
goto do_unallocated;
}
if (s->pauth_active) {
@@ -2144,7 +2144,11 @@ static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
break;
case 0x6a: /* Exception generation / System */
if (insn & (1 << 24)) {
- disas_system(s, insn);
+ if (extract32(insn, 22, 2) == 0) {
+ disas_system(s, insn);
+ } else {
+ unallocated_encoding(s);
+ }
} else {
disas_exc(s, insn);
}
@@ -2799,7 +2803,7 @@ static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
} else {
if (size == 3 && opc == 2) {
/* PRFM - prefetch */
- if (is_unpriv) {
+ if (idx != 0) {
unallocated_encoding(s);
return;
}
@@ -3245,6 +3249,7 @@ static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
{
int rt = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
+ int rm = extract32(insn, 16, 5);
int size = extract32(insn, 10, 2);
int opcode = extract32(insn, 12, 4);
bool is_store = !extract32(insn, 22, 1);
@@ -3264,6 +3269,11 @@ static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
return;
}
+ if (!is_postidx && rm != 0) {
+ unallocated_encoding(s);
+ return;
+ }
+
/* From the shared decode logic */
switch (opcode) {
case 0x0:
@@ -3363,7 +3373,6 @@ static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
}
if (is_postidx) {
- int rm = extract32(insn, 16, 5);
if (rm == 31) {
tcg_gen_mov_i64(tcg_rn, tcg_addr);
} else {
@@ -3400,6 +3409,7 @@ static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
{
int rt = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
+ int rm = extract32(insn, 16, 5);
int size = extract32(insn, 10, 2);
int S = extract32(insn, 12, 1);
int opc = extract32(insn, 13, 3);
@@ -3415,6 +3425,15 @@ static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
int ebytes, xs;
TCGv_i64 tcg_addr, tcg_rn, tcg_ebytes;
+ if (extract32(insn, 31, 1)) {
+ unallocated_encoding(s);
+ return;
+ }
+ if (!is_postidx && rm != 0) {
+ unallocated_encoding(s);
+ return;
+ }
+
switch (scale) {
case 3:
if (!is_load || S) {
@@ -3492,7 +3511,6 @@ static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
}
if (is_postidx) {
- int rm = extract32(insn, 16, 5);
if (rm == 31) {
tcg_gen_mov_i64(tcg_rn, tcg_addr);
} else {
@@ -4183,6 +4201,7 @@ static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
int imm3 = extract32(insn, 10, 3);
int option = extract32(insn, 13, 3);
int rm = extract32(insn, 16, 5);
+ int opt = extract32(insn, 22, 2);
bool setflags = extract32(insn, 29, 1);
bool sub_op = extract32(insn, 30, 1);
bool sf = extract32(insn, 31, 1);
@@ -4191,7 +4210,7 @@ static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
TCGv_i64 tcg_rd;
TCGv_i64 tcg_result;
- if (imm3 > 4) {
+ if (imm3 > 4 || opt != 0) {
unallocated_encoding(s);
return;
}
@@ -5617,11 +5636,17 @@ static void handle_fp_fcvt(DisasContext *s, int opcode,
*/
static void disas_fp_1src(DisasContext *s, uint32_t insn)
{
+ int mos = extract32(insn, 29, 3);
int type = extract32(insn, 22, 2);
int opcode = extract32(insn, 15, 6);
int rn = extract32(insn, 5, 5);
int rd = extract32(insn, 0, 5);
+ if (mos) {
+ unallocated_encoding(s);
+ return;
+ }
+
switch (opcode) {
case 0x4: case 0x5: case 0x7:
{
@@ -5848,13 +5873,14 @@ static void handle_fp_2src_half(DisasContext *s, int opcode,
*/
static void disas_fp_2src(DisasContext *s, uint32_t insn)
{
+ int mos = extract32(insn, 29, 3);
int type = extract32(insn, 22, 2);
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
int rm = extract32(insn, 16, 5);
int opcode = extract32(insn, 12, 4);
- if (opcode > 8) {
+ if (opcode > 8 || mos) {
unallocated_encoding(s);
return;
}
@@ -6009,6 +6035,7 @@ static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
*/
static void disas_fp_3src(DisasContext *s, uint32_t insn)
{
+ int mos = extract32(insn, 29, 3);
int type = extract32(insn, 22, 2);
int rd = extract32(insn, 0, 5);
int rn = extract32(insn, 5, 5);
@@ -6017,6 +6044,11 @@ static void disas_fp_3src(DisasContext *s, uint32_t insn)
bool o0 = extract32(insn, 15, 1);
bool o1 = extract32(insn, 21, 1);
+ if (mos) {
+ unallocated_encoding(s);
+ return;
+ }
+
switch (type) {
case 0:
if (!fp_access_check(s)) {
@@ -6086,12 +6118,19 @@ uint64_t vfp_expand_imm(int size, uint8_t imm8)
static void disas_fp_imm(DisasContext *s, uint32_t insn)
{
int rd = extract32(insn, 0, 5);
+ int imm5 = extract32(insn, 5, 5);
int imm8 = extract32(insn, 13, 8);
int type = extract32(insn, 22, 2);
+ int mos = extract32(insn, 29, 3);
uint64_t imm;
TCGv_i64 tcg_res;
TCGMemOp sz;
+ if (mos || imm5) {
+ unallocated_encoding(s);
+ return;
+ }
+
switch (type) {
case 0:
sz = MO_32;
@@ -12602,7 +12641,7 @@ static void disas_simd_indexed(DisasContext *s, uint32_t insn)
break;
case 0x0e: /* SDOT */
case 0x1e: /* UDOT */
- if (size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
+ if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
unallocated_encoding(s);
return;
}
@@ -12611,7 +12650,7 @@ static void disas_simd_indexed(DisasContext *s, uint32_t insn)
case 0x13: /* FCMLA #90 */
case 0x15: /* FCMLA #180 */
case 0x17: /* FCMLA #270 */
- if (!dc_isar_feature(aa64_fcma, s)) {
+ if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
unallocated_encoding(s);
return;
}
@@ -12641,7 +12680,7 @@ static void disas_simd_indexed(DisasContext *s, uint32_t insn)
case 2: /* complex fp */
/* Each indexable element is a complex pair. */
- size <<= 1;
+ size += 1;
switch (size) {
case MO_32:
if (h && !is_q) {
diff --git a/tests/microbit-test.c b/tests/microbit-test.c
index 3bad947b6c..04e199ec33 100644
--- a/tests/microbit-test.c
+++ b/tests/microbit-test.c
@@ -21,6 +21,7 @@
#include "hw/arm/nrf51.h"
#include "hw/char/nrf51_uart.h"
#include "hw/gpio/nrf51_gpio.h"
+#include "hw/nvram/nrf51_nvm.h"
#include "hw/timer/nrf51_timer.h"
#include "hw/i2c/microbit_i2c.h"
@@ -156,6 +157,112 @@ static void test_microbit_i2c(void)
qtest_quit(qts);
}
+#define FLASH_SIZE (256 * NRF51_PAGE_SIZE)
+
+static void fill_and_erase(QTestState *qts, hwaddr base, hwaddr size,
+ uint32_t address_reg)
+{
+ hwaddr i;
+
+ /* Erase Page */
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_CONFIG, 0x02);
+ qtest_writel(qts, NRF51_NVMC_BASE + address_reg, base);
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_CONFIG, 0x00);
+
+ /* Check memory */
+ for (i = 0; i < size / 4; i++) {
+ g_assert_cmpuint(qtest_readl(qts, base + i * 4), ==, 0xFFFFFFFF);
+ }
+
+ /* Fill memory */
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_CONFIG, 0x01);
+ for (i = 0; i < size / 4; i++) {
+ qtest_writel(qts, base + i * 4, i);
+ g_assert_cmpuint(qtest_readl(qts, base + i * 4), ==, i);
+ }
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_CONFIG, 0x00);
+}
+
+static void test_nrf51_nvmc(void)
+{
+ uint32_t value;
+ hwaddr i;
+ QTestState *qts = qtest_init("-M microbit");
+
+ /* Test always ready */
+ value = qtest_readl(qts, NRF51_NVMC_BASE + NRF51_NVMC_READY);
+ g_assert_cmpuint(value & 0x01, ==, 0x01);
+
+ /* Test write-read config register */
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_CONFIG, 0x03);
+ g_assert_cmpuint(qtest_readl(qts, NRF51_NVMC_BASE + NRF51_NVMC_CONFIG),
+ ==, 0x03);
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_CONFIG, 0x00);
+ g_assert_cmpuint(qtest_readl(qts, NRF51_NVMC_BASE + NRF51_NVMC_CONFIG),
+ ==, 0x00);
+
+ /* Test PCR0 */
+ fill_and_erase(qts, NRF51_FLASH_BASE, NRF51_PAGE_SIZE,
+ NRF51_NVMC_ERASEPCR0);
+ fill_and_erase(qts, NRF51_FLASH_BASE + NRF51_PAGE_SIZE,
+ NRF51_PAGE_SIZE, NRF51_NVMC_ERASEPCR0);
+
+ /* Test PCR1 */
+ fill_and_erase(qts, NRF51_FLASH_BASE, NRF51_PAGE_SIZE,
+ NRF51_NVMC_ERASEPCR1);
+ fill_and_erase(qts, NRF51_FLASH_BASE + NRF51_PAGE_SIZE,
+ NRF51_PAGE_SIZE, NRF51_NVMC_ERASEPCR1);
+
+ /* Erase all */
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_CONFIG, 0x02);
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_ERASEALL, 0x01);
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_CONFIG, 0x00);
+
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_CONFIG, 0x01);
+ for (i = 0; i < FLASH_SIZE / 4; i++) {
+ qtest_writel(qts, NRF51_FLASH_BASE + i * 4, i);
+ g_assert_cmpuint(qtest_readl(qts, NRF51_FLASH_BASE + i * 4), ==, i);
+ }
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_CONFIG, 0x00);
+
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_CONFIG, 0x02);
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_ERASEALL, 0x01);
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_CONFIG, 0x00);
+
+ for (i = 0; i < FLASH_SIZE / 4; i++) {
+ g_assert_cmpuint(qtest_readl(qts, NRF51_FLASH_BASE + i * 4),
+ ==, 0xFFFFFFFF);
+ }
+
+ /* Erase UICR */
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_CONFIG, 0x02);
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_ERASEUICR, 0x01);
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_CONFIG, 0x00);
+
+ for (i = 0; i < NRF51_UICR_SIZE / 4; i++) {
+ g_assert_cmpuint(qtest_readl(qts, NRF51_UICR_BASE + i * 4),
+ ==, 0xFFFFFFFF);
+ }
+
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_CONFIG, 0x01);
+ for (i = 0; i < NRF51_UICR_SIZE / 4; i++) {
+ qtest_writel(qts, NRF51_UICR_BASE + i * 4, i);
+ g_assert_cmpuint(qtest_readl(qts, NRF51_UICR_BASE + i * 4), ==, i);
+ }
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_CONFIG, 0x00);
+
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_CONFIG, 0x02);
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_ERASEUICR, 0x01);
+ qtest_writel(qts, NRF51_NVMC_BASE + NRF51_NVMC_CONFIG, 0x00);
+
+ for (i = 0; i < NRF51_UICR_SIZE / 4; i++) {
+ g_assert_cmpuint(qtest_readl(qts, NRF51_UICR_BASE + i * 4),
+ ==, 0xFFFFFFFF);
+ }
+
+ qtest_quit(qts);
+}
+
static void test_nrf51_gpio(void)
{
size_t i;
@@ -392,6 +499,7 @@ int main(int argc, char **argv)
qtest_add_func("/microbit/nrf51/uart", test_nrf51_uart);
qtest_add_func("/microbit/nrf51/gpio", test_nrf51_gpio);
+ qtest_add_func("/microbit/nrf51/nvmc", test_nrf51_nvmc);
qtest_add_func("/microbit/nrf51/timer", test_nrf51_timer);
qtest_add_func("/microbit/microbit/i2c", test_microbit_i2c);