aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPeter Maydell <peter.maydell@linaro.org>2022-01-18 19:43:33 +0000
committerPeter Maydell <peter.maydell@linaro.org>2022-01-18 19:43:33 +0000
commit0dabdd6b3a7ead1183d6f26eaded7d0c332e4cc7 (patch)
tree23a05f5d199c5677fa5573bd0d010f675ef7b52e
parent8b846207151955a7d4de2d33d07645991824e345 (diff)
parentba49190107ee9803fb2f336b15283b457384b178 (diff)
Merge remote-tracking branch 'remotes/legoater/tags/pull-ppc-20220118' into staging
ppc 7.0 queue: * More documentation updates (Leonardo) * Fixes for the 7448 CPU (Fabiano and Cedric) * Final removal of 403 CPUs and the .load_state_old handler (Cedric) * More cleanups of PHB4 models (Daniel and Cedric) # gpg: Signature made Tue 18 Jan 2022 11:59:16 GMT # gpg: using RSA key A0F66548F04895EBFE6B0B6051A343C7CFFBECA1 # gpg: Good signature from "Cédric Le Goater <clg@kaod.org>" [undefined] # gpg: WARNING: This key is not certified with a trusted signature! # gpg: There is no indication that the signature belongs to the owner. # Primary key fingerprint: A0F6 6548 F048 95EB FE6B 0B60 51A3 43C7 CFFB ECA1 * remotes/legoater/tags/pull-ppc-20220118: (31 commits) ppc/pnv: Remove PHB4 version property ppc/pnv: Add a 'rp_model' class attribute for the PHB4 PEC ppc/pnv: Move root port allocation under pnv_pec_default_phb_realize() ppc/pnv: rename pnv_pec_stk_update_map() ppc/pnv: remove PnvPhb4PecStack object ppc/pnv: make PECs create and realize PHB4s ppc/pnv: remove PnvPhb4PecStack::stack_no ppc/pnv: move default_phb_realize() to pec_realize() ppc/pnv: remove stack pointer from PnvPHB4 ppc/pnv: reduce stack->stack_no usage ppc/pnv: introduce PnvPHB4 'pec' property ppc/pnv: move phb_regs_mr to PnvPHB4 ppc/pnv: move nest_regs_mr to PnvPHB4 ppc/pnv: change pnv_pec_stk_update_map() to use PnvPHB4 ppc/pnv: move nest_regs[] to PnvPHB4 ppc/pnv: move mmbar0/mmbar1 and friends to PnvPHB4 ppc/pnv: change pnv_phb4_update_regions() to use PnvPHB4 ppc/pnv: move intbar to PnvPHB4 ppc/pnv: move phbbar to PnvPHB4 ppc/pnv: move PCI registers to PnvPHB4 ... Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
-rw-r--r--docs/specs/ppc-spapr-hotplug.rst510
-rw-r--r--docs/specs/ppc-spapr-hotplug.txt409
-rw-r--r--docs/specs/ppc-spapr-uv-hcalls.rst89
-rw-r--r--docs/specs/ppc-spapr-uv-hcalls.txt76
-rw-r--r--docs/system/ppc/pseries.rst8
-rw-r--r--hw/pci-host/pnv_phb4.c299
-rw-r--r--hw/pci-host/pnv_phb4_pec.c121
-rw-r--r--include/hw/pci-host/pnv_phb4.h80
-rw-r--r--target/ppc/cpu-models.c9
-rw-r--r--target/ppc/cpu.h1
-rw-r--r--target/ppc/helper.h1
-rw-r--r--target/ppc/machine.c136
-rw-r--r--target/ppc/misc_helper.c9
-rw-r--r--target/ppc/translate.c16
-rw-r--r--tests/avocado/ppc_74xx.py123
15 files changed, 940 insertions, 947 deletions
diff --git a/docs/specs/ppc-spapr-hotplug.rst b/docs/specs/ppc-spapr-hotplug.rst
new file mode 100644
index 0000000000..f84dc55ad9
--- /dev/null
+++ b/docs/specs/ppc-spapr-hotplug.rst
@@ -0,0 +1,510 @@
+=============================
+sPAPR Dynamic Reconfiguration
+=============================
+
+sPAPR or pSeries guests make use of a facility called dynamic reconfiguration
+to handle hot plugging of dynamic "physical" resources like PCI cards, or
+"logical"/para-virtual resources like memory, CPUs, and "physical"
+host-bridges, which are generally managed by the host/hypervisor and provided
+to guests as virtualized resources. The specifics of dynamic reconfiguration
+are documented extensively in section 13 of the Linux on Power Architecture
+Reference document ([LoPAR]_). This document provides a summary of that
+information as it applies to the implementation within QEMU.
+
+Dynamic-reconfiguration Connectors
+==================================
+
+To manage hot plug/unplug of these resources, a firmware abstraction known as
+a Dynamic Resource Connector (DRC) is used to assign a particular dynamic
+resource to the guest, and provide an interface for the guest to manage
+configuration/removal of the resource associated with it.
+
+Device tree description of DRCs
+===============================
+
+A set of four Open Firmware device tree array properties are used to describe
+the name/index/power-domain/type of each DRC allocated to a guest at
+boot time. There may be multiple sets of these arrays, rooted at different
+paths in the device tree depending on the type of resource the DRCs manage.
+
+In some cases, the DRCs themselves may be provided by a dynamic resource,
+such as the DRCs managing PCI slots on a hot plugged PHB. In this case the
+arrays would be fetched as part of the device tree retrieval interfaces
+for hot plugged resources described under :ref:`guest-host-interface`.
+
+The array properties are described below. Each entry/element in an array
+describes the DRC identified by the element in the corresponding position
+of ``ibm,drc-indexes``:
+
+``ibm,drc-names``
+-----------------
+
+ First 4-bytes: big-endian (BE) encoded integer denoting the number of entries.
+
+ Each entry: a NULL-terminated ``<name>`` string encoded as a byte array.
+
+ ``<name>`` values for logical/virtual resources are defined in the Linux on
+ Power Architecture Reference ([LoPAR]_) section 13.5.2.4, and basically
+ consist of the type of the resource followed by a space and a numerical
+ value that's unique across resources of that type.
+
+ ``<name>`` values for "physical" resources such as PCI or VIO devices are
+ defined as being "location codes", which are the "location labels" of each
+ encapsulating device, starting from the chassis down to the individual slot
+ for the device, concatenated by a hyphen. This provides a mapping of
+ resources to a physical location in a chassis for debugging purposes. For
+ QEMU, this mapping is less important, so we assign a location code that
+ conforms to naming specifications, but is simply a location label for the
+ slot by itself to simplify the implementation. The naming convention for
+ location labels is documented in detail in the [LoPAR]_ section 12.3.1.5,
+ and in our case amounts to using ``C<n>`` for PCI/VIO device slots, where
+ ``<n>`` is unique across all PCI/VIO device slots.
+
+``ibm,drc-indexes``
+-------------------
+
+ First 4-bytes: BE-encoded integer denoting the number of entries.
+
+ Each 4-byte entry: BE-encoded ``<index>`` integer that is unique across all
+ DRCs in the machine.
+
+ ``<index>`` is arbitrary, but in the case of QEMU we try to maintain the
+ convention used to assign them to pSeries guests on pHyp (the hypervisor
+ portion of PowerVM):
+
+ ``bit[31:28]``: integer encoding of ``<type>``, where ``<type>`` is:
+
+ ``1`` for CPU resource.
+
+ ``2`` for PHB resource.
+
+ ``3`` for VIO resource.
+
+ ``4`` for PCI resource.
+
+ ``8`` for memory resource.
+
+ ``bit[27:0]``: integer encoding of ``<id>``, where ``<id>`` is unique
+ across all resources of specified type.
+
+``ibm,drc-power-domains``
+-------------------------
+
+ First 4-bytes: BE-encoded integer denoting the number of entries.
+
+ Each 4-byte entry: 32-bit, BE-encoded ``<index>`` integer that specifies the
+ power domain the resource will be assigned to. In the case of QEMU we
+ associated all resources with a "live insertion" domain, where the power is
+ assumed to be managed automatically. The integer value for this domain is a
+ special value of ``-1``.
+
+
+``ibm,drc-types``
+-----------------
+
+ First 4-bytes: BE-encoded integer denoting the number of entries.
+
+ Each entry: a NULL-terminated ``<type>`` string encoded as a byte array.
+ ``<type>`` is assigned as follows:
+
+ "CPU" for a CPU.
+
+ "PHB" for a physical host-bridge.
+
+ "SLOT" for a VIO slot.
+
+ "28" for a PCI slot.
+
+ "MEM" for memory resource.
+
+.. _guest-host-interface:
+
+Guest->Host interface to manage dynamic resources
+=================================================
+
+Each DRC is given a globally unique DRC index, and resources associated with a
+particular DRC are configured/managed by the guest via a number of RTAS calls
+which reference individual DRCs based on the DRC index. This can be considered
+the guest->host interface.
+
+``rtas-set-power-level``
+------------------------
+
+Set the power level for a specified power domain.
+
+ ``arg[0]``: integer identifying power domain.
+
+ ``arg[1]``: new power level for the domain, ``0-100``.
+
+ ``output[0]``: status, ``0`` on success.
+
+ ``output[1]``: power level after command.
+
+``rtas-get-power-level``
+------------------------
+
+Get the power level for a specified power domain.
+
+ ``arg[0]``: integer identifying power domain.
+
+ ``output[0]``: status, ``0`` on success.
+
+ ``output[1]``: current power level.
+
+``rtas-set-indicator``
+----------------------
+
+Set the state of an indicator or sensor.
+
+ ``arg[0]``: integer identifying sensor/indicator type.
+
+ ``arg[1]``: index of sensor, for DR-related sensors this is generally the DRC
+ index.
+
+ ``arg[2]``: desired sensor value.
+
+ ``output[0]``: status, ``0`` on success.
+
+For the purpose of this document we focus on the indicator/sensor types
+associated with a DRC. The types are:
+
+* ``9001``: ``isolation-state``, controls/indicates whether a device has been
+ made accessible to a guest. Supported sensor values:
+
+ ``0``: ``isolate``, device is made inaccessible by guest OS.
+
+ ``1``: ``unisolate``, device is made available to guest OS.
+
+* ``9002``: ``dr-indicator``, controls "visual" indicator associated with
+ device. Supported sensor values:
+
+ ``0``: ``inactive``, resource may be safely removed.
+
+ ``1``: ``active``, resource is in use and cannot be safely removed.
+
+ ``2``: ``identify``, used to visually identify slot for interactive hot plug.
+
+ ``3``: ``action``, in most cases, used in the same manner as identify.
+
+* ``9003``: ``allocation-state``, generally only used for "logical" DR resources
+ to request the allocation/deallocation of a resource prior to acquiring it via
+ ``isolation-state->unisolate``, or after releasing it via
+ ``isolation-state->isolate``, respectively. For "physical" DR (like PCI
+ hot plug/unplug) the pre-allocation of the resource is implied and this sensor
+ is unused. Supported sensor values:
+
+ ``0``: ``unusable``, tell firmware/system the resource can be
+ unallocated/reclaimed and added back to the system resource pool.
+
+ ``1``: ``usable``, request the resource be allocated/reserved for use by
+ guest OS.
+
+ ``2``: ``exchange``, used to allocate a spare resource to use for fail-over
+ in certain situations. Unused in QEMU.
+
+ ``3``: ``recover``, used to reclaim a previously allocated resource that's
+ not currently allocated to the guest OS. Unused in QEMU.
+
+``rtas-get-sensor-state:``
+--------------------------
+
+Used to read an indicator or sensor value.
+
+ ``arg[0]``: integer identifying sensor/indicator type.
+
+ ``arg[1]``: index of sensor, for DR-related sensors this is generally the DRC
+ index
+
+ ``output[0]``: status, 0 on success
+
+For DR-related operations, the only noteworthy sensor is ``dr-entity-sense``,
+which has a type value of ``9003``, as ``allocation-state`` does in the case of
+``rtas-set-indicator``. The semantics/encodings of the sensor values are
+distinct however.
+
+Supported sensor values for ``dr-entity-sense`` (``9003``) sensor:
+
+ ``0``: empty.
+
+ For physical resources: DRC/slot is empty.
+
+ For logical resources: unused.
+
+ ``1``: present.
+
+ For physical resources: DRC/slot is populated with a device/resource.
+
+ For logical resources: resource has been allocated to the DRC.
+
+ ``2``: unusable.
+
+ For physical resources: unused.
+
+ For logical resources: DRC has no resource allocated to it.
+
+ ``3``: exchange.
+
+ For physical resources: unused.
+
+ For logical resources: resource available for exchange (see
+ ``allocation-state`` sensor semantics above).
+
+ ``4``: recovery.
+
+ For physical resources: unused.
+
+ For logical resources: resource available for recovery (see
+ ``allocation-state`` sensor semantics above).
+
+``rtas-ibm-configure-connector``
+--------------------------------
+
+Used to fetch an OpenFirmware device tree description of the resource associated
+with a particular DRC.
+
+ ``arg[0]``: guest physical address of 4096-byte work area buffer.
+
+ ``arg[1]``: 0, or address of additional 4096-byte work area buffer; only
+ non-zero if a prior RTAS response indicated a need for additional memory.
+
+ ``output[0]``: status:
+
+ ``0``: completed transmittal of device tree node.
+
+ ``1``: instruct guest to prepare for next device tree sibling node.
+
+ ``2``: instruct guest to prepare for next device tree child node.
+
+ ``3``: instruct guest to prepare for next device tree property.
+
+ ``4``: instruct guest to ascend to parent device tree node.
+
+ ``5``: instruct guest to provide additional work-area buffer via ``arg[1]``.
+
+ ``990x``: instruct guest that operation took too long and to try again
+ later.
+
+The DRC index is encoded in the first 4-bytes of the first work area buffer.
+Work area (``wa``) layout, using 4-byte offsets:
+
+ ``wa[0]``: DRC index of the DRC to fetch device tree nodes from.
+
+ ``wa[1]``: ``0`` (hard-coded).
+
+ ``wa[2]``:
+
+ For next-sibling/next-child response:
+
+ ``wa`` offset of null-terminated string denoting the new node's name.
+
+ For next-property response:
+
+ ``wa`` offset of null-terminated string denoting new property's name.
+
+ ``wa[3]``: for next-property response (unused otherwise):
+
+ Byte-length of new property's value.
+
+ ``wa[4]``: for next-property response (unused otherwise):
+
+ New property's value, encoded as an OFDT-compatible byte array.
+
+Hot plug/unplug events
+======================
+
+For most DR operations, the hypervisor will issue host->guest add/remove events
+using the EPOW/check-exception notification framework, where the host issues a
+check-exception interrupt, then provides an RTAS event log via an
+rtas-check-exception call issued by the guest in response. This framework is
+documented by PAPR+ v2.7, and already use in by QEMU for generating powerdown
+requests via EPOW events.
+
+For DR, this framework has been extended to include hotplug events, which were
+previously unneeded due to direct manipulation of DR-related guest userspace
+tools by host-level management such as an HMC. This level of management is not
+applicable to KVM on Power, hence the reason for extending the notification
+framework to support hotplug events.
+
+The format for these EPOW-signalled events is described below under
+:ref:`hot-plug-unplug-event-structure`. Note that these events are not formally
+part of the PAPR+ specification, and have been superseded by a newer format,
+also described below under :ref:`hot-plug-unplug-event-structure`, and so are
+now deemed a "legacy" format. The formats are similar, but the "modern" format
+contains additional fields/flags, which are denoted for the purposes of this
+documentation with ``#ifdef GUEST_SUPPORTS_MODERN`` guards.
+
+QEMU should assume support only for "legacy" fields/flags unless the guest
+advertises support for the "modern" format via
+``ibm,client-architecture-support`` hcall by setting byte 5, bit 6 of it's
+``ibm,architecture-vec-5`` option vector structure (as described by [LoPAR]_,
+section B.5.2.3). As with "legacy" format events, "modern" format events are
+surfaced to the guest via check-exception RTAS calls, but use a dedicated event
+source to signal the guest. This event source is advertised to the guest by the
+addition of a ``hot-plug-events`` node under ``/event-sources`` node of the
+guest's device tree using the standard format described in [LoPAR]_,
+section B.5.12.2.
+
+.. _hot-plug-unplug-event-structure:
+
+Hot plug/unplug event structure
+===============================
+
+The hot plug specific payload in QEMU is implemented as follows (with all values
+encoded in big-endian format):
+
+.. code-block:: c
+
+ struct rtas_event_log_v6_hp {
+ #define SECTION_ID_HOTPLUG 0x4850 /* HP */
+ struct section_header {
+ uint16_t section_id; /* set to SECTION_ID_HOTPLUG */
+ uint16_t section_length; /* sizeof(rtas_event_log_v6_hp),
+ * plus the length of the DRC name
+ * if a DRC name identifier is
+ * specified for hotplug_identifier
+ */
+ uint8_t section_version; /* version 1 */
+ uint8_t section_subtype; /* unused */
+ uint16_t creator_component_id; /* unused */
+ } hdr;
+ #define RTAS_LOG_V6_HP_TYPE_CPU 1
+ #define RTAS_LOG_V6_HP_TYPE_MEMORY 2
+ #define RTAS_LOG_V6_HP_TYPE_SLOT 3
+ #define RTAS_LOG_V6_HP_TYPE_PHB 4
+ #define RTAS_LOG_V6_HP_TYPE_PCI 5
+ uint8_t hotplug_type; /* type of resource/device */
+ #define RTAS_LOG_V6_HP_ACTION_ADD 1
+ #define RTAS_LOG_V6_HP_ACTION_REMOVE 2
+ uint8_t hotplug_action; /* action (add/remove) */
+ #define RTAS_LOG_V6_HP_ID_DRC_NAME 1
+ #define RTAS_LOG_V6_HP_ID_DRC_INDEX 2
+ #define RTAS_LOG_V6_HP_ID_DRC_COUNT 3
+ #ifdef GUEST_SUPPORTS_MODERN
+ #define RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED 4
+ #endif
+ uint8_t hotplug_identifier; /* type of the resource identifier,
+ * which serves as the discriminator
+ * for the 'drc' union field below
+ */
+ #ifdef GUEST_SUPPORTS_MODERN
+ uint8_t capabilities; /* capability flags, currently unused
+ * by QEMU
+ */
+ #else
+ uint8_t reserved;
+ #endif
+ union {
+ uint32_t index; /* DRC index of resource to take action
+ * on
+ */
+ uint32_t count; /* number of DR resources to take
+ * action on (guest chooses which)
+ */
+ #ifdef GUEST_SUPPORTS_MODERN
+ struct {
+ uint32_t count; /* number of DR resources to take
+ * action on
+ */
+ uint32_t index; /* DRC index of first resource to take
+ * action on. guest will take action
+ * on DRC index <index> through
+ * DRC index <index + count - 1> in
+ * sequential order
+ */
+ } count_indexed;
+ #endif
+ char name[1]; /* string representing the name of the
+ * DRC to take action on
+ */
+ } drc;
+ } QEMU_PACKED;
+
+``ibm,lrdr-capacity``
+=====================
+
+``ibm,lrdr-capacity`` is a property in the /rtas device tree node that
+identifies the dynamic reconfiguration capabilities of the guest. It consists
+of a triple consisting of ``<phys>``, ``<size>`` and ``<maxcpus>``.
+
+ ``<phys>``, encoded in BE format represents the maximum address in bytes and
+ hence the maximum memory that can be allocated to the guest.
+
+ ``<size>``, encoded in BE format represents the size increments in which
+ memory can be hot-plugged to the guest.
+
+ ``<maxcpus>``, a BE-encoded integer, represents the maximum number of
+ processors that the guest can have.
+
+``pseries`` guests use this property to note the maximum allowed CPUs for the
+guest.
+
+``ibm,dynamic-reconfiguration-memory``
+======================================
+
+``ibm,dynamic-reconfiguration-memory`` is a device tree node that represents
+dynamically reconfigurable logical memory blocks (LMB). This node is generated
+only when the guest advertises the support for it via
+``ibm,client-architecture-support`` call. Memory that is not dynamically
+reconfigurable is represented by ``/memory`` nodes. The properties of this node
+that are of interest to the sPAPR memory hotplug implementation in QEMU are
+described here.
+
+``ibm,lmb-size``
+----------------
+
+This 64-bit integer defines the size of each dynamically reconfigurable LMB.
+
+``ibm,associativity-lookup-arrays``
+-----------------------------------
+
+This property defines a lookup array in which the NUMA associativity
+information for each LMB can be found. It is a property encoded array
+that begins with an integer M, the number of associativity lists followed
+by an integer N, the number of entries per associativity list and terminated
+by M associativity lists each of length N integers.
+
+This property provides the same information as given by ``ibm,associativity``
+property in a ``/memory`` node. Each assigned LMB has an index value between
+0 and M-1 which is used as an index into this table to select which
+associativity list to use for the LMB. This index value for each LMB is defined
+in ``ibm,dynamic-memory`` property.
+
+``ibm,dynamic-memory``
+----------------------
+
+This property describes the dynamically reconfigurable memory. It is a
+property encoded array that has an integer N, the number of LMBs followed
+by N LMB list entries.
+
+Each LMB list entry consists of the following elements:
+
+- Logical address of the start of the LMB encoded as a 64-bit integer. This
+ corresponds to ``reg`` property in ``/memory`` node.
+- DRC index of the LMB that corresponds to ``ibm,my-drc-index`` property
+ in a ``/memory`` node.
+- Four bytes reserved for expansion.
+- Associativity list index for the LMB that is used as an index into
+ ``ibm,associativity-lookup-arrays`` property described earlier. This is used
+ to retrieve the right associativity list to be used for this LMB.
+- A 32-bit flags word. The bit at bit position ``0x00000008`` defines whether
+ the LMB is assigned to the partition as of boot time.
+
+``ibm,dynamic-memory-v2``
+-------------------------
+
+This property describes the dynamically reconfigurable memory. This is
+an alternate and newer way to describe dynamically reconfigurable memory.
+It is a property encoded array that has an integer N (the number of
+LMB set entries) followed by N LMB set entries. There is an LMB set entry
+for each sequential group of LMBs that share common attributes.
+
+Each LMB set entry consists of the following elements:
+
+- Number of sequential LMBs in the entry represented by a 32-bit integer.
+- Logical address of the first LMB in the set encoded as a 64-bit integer.
+- DRC index of the first LMB in the set.
+- Associativity list index that is used as an index into
+ ``ibm,associativity-lookup-arrays`` property described earlier. This
+ is used to retrieve the right associativity list to be used for all
+ the LMBs in this set.
+- A 32-bit flags word that applies to all the LMBs in the set.
diff --git a/docs/specs/ppc-spapr-hotplug.txt b/docs/specs/ppc-spapr-hotplug.txt
deleted file mode 100644
index d4fb2d46d9..0000000000
--- a/docs/specs/ppc-spapr-hotplug.txt
+++ /dev/null
@@ -1,409 +0,0 @@
-= sPAPR Dynamic Reconfiguration =
-
-sPAPR/"pseries" guests make use of a facility called dynamic-reconfiguration
-to handle hotplugging of dynamic "physical" resources like PCI cards, or
-"logical"/paravirtual resources like memory, CPUs, and "physical"
-host-bridges, which are generally managed by the host/hypervisor and provided
-to guests as virtualized resources. The specifics of dynamic-reconfiguration
-are documented extensively in PAPR+ v2.7, Section 13.1. This document
-provides a summary of that information as it applies to the implementation
-within QEMU.
-
-== Dynamic-reconfiguration Connectors ==
-
-To manage hotplug/unplug of these resources, a firmware abstraction known as
-a Dynamic Resource Connector (DRC) is used to assign a particular dynamic
-resource to the guest, and provide an interface for the guest to manage
-configuration/removal of the resource associated with it.
-
-== Device-tree description of DRCs ==
-
-A set of 4 Open Firmware device tree array properties are used to describe
-the name/index/power-domain/type of each DRC allocated to a guest at
-boot-time. There may be multiple sets of these arrays, rooted at different
-paths in the device tree depending on the type of resource the DRCs manage.
-
-In some cases, the DRCs themselves may be provided by a dynamic resource,
-such as the DRCs managing PCI slots on a hotplugged PHB. In this case the
-arrays would be fetched as part of the device tree retrieval interfaces
-for hotplugged resources described under "Guest->Host interface".
-
-The array properties are described below. Each entry/element in an array
-describes the DRC identified by the element in the corresponding position
-of ibm,drc-indexes:
-
-ibm,drc-names:
- first 4-bytes: BE-encoded integer denoting the number of entries
- each entry: a NULL-terminated <name> string encoded as a byte array
-
- <name> values for logical/virtual resources are defined in PAPR+ v2.7,
- Section 13.5.2.4, and basically consist of the type of the resource
- followed by a space and a numerical value that's unique across resources
- of that type.
-
- <name> values for "physical" resources such as PCI or VIO devices are
- defined as being "location codes", which are the "location labels" of
- each encapsulating device, starting from the chassis down to the
- individual slot for the device, concatenated by a hyphen. This provides
- a mapping of resources to a physical location in a chassis for debugging
- purposes. For QEMU, this mapping is less important, so we assign a
- location code that conforms to naming specifications, but is simply a
- location label for the slot by itself to simplify the implementation.
- The naming convention for location labels is documented in detail in
- PAPR+ v2.7, Section 12.3.1.5, and in our case amounts to using "C<n>"
- for PCI/VIO device slots, where <n> is unique across all PCI/VIO
- device slots.
-
-ibm,drc-indexes:
- first 4-bytes: BE-encoded integer denoting the number of entries
- each 4-byte entry: BE-encoded <index> integer that is unique across all DRCs
- in the machine
-
- <index> is arbitrary, but in the case of QEMU we try to maintain the
- convention used to assign them to pSeries guests on pHyp:
-
- bit[31:28]: integer encoding of <type>, where <type> is:
- 1 for CPU resource
- 2 for PHB resource
- 3 for VIO resource
- 4 for PCI resource
- 8 for Memory resource
- bit[27:0]: integer encoding of <id>, where <id> is unique across
- all resources of specified type
-
-ibm,drc-power-domains:
- first 4-bytes: BE-encoded integer denoting the number of entries
- each 4-byte entry: 32-bit, BE-encoded <index> integer that specifies the
- power domain the resource will be assigned to. In the case of QEMU
- we associated all resources with a "live insertion" domain, where the
- power is assumed to be managed automatically. The integer value for
- this domain is a special value of -1.
-
-
-ibm,drc-types:
- first 4-bytes: BE-encoded integer denoting the number of entries
- each entry: a NULL-terminated <type> string encoded as a byte array
-
- <type> is assigned as follows:
- "CPU" for a CPU
- "PHB" for a physical host-bridge
- "SLOT" for a VIO slot
- "28" for a PCI slot
- "MEM" for memory resource
-
-== Guest->Host interface to manage dynamic resources ==
-
-Each DRC is given a globally unique DRC Index, and resources associated with
-a particular DRC are configured/managed by the guest via a number of RTAS
-calls which reference individual DRCs based on the DRC index. This can be
-considered the guest->host interface.
-
-rtas-set-power-level:
- arg[0]: integer identifying power domain
- arg[1]: new power level for the domain, 0-100
- output[0]: status, 0 on success
- output[1]: power level after command
-
- Set the power level for a specified power domain
-
-rtas-get-power-level:
- arg[0]: integer identifying power domain
- output[0]: status, 0 on success
- output[1]: current power level
-
- Get the power level for a specified power domain
-
-rtas-set-indicator:
- arg[0]: integer identifying sensor/indicator type
- arg[1]: index of sensor, for DR-related sensors this is generally the
- DRC index
- arg[2]: desired sensor value
- output[0]: status, 0 on success
-
- Set the state of an indicator or sensor. For the purpose of this document we
- focus on the indicator/sensor types associated with a DRC. The types are:
-
- 9001: isolation-state, controls/indicates whether a device has been made
- accessible to a guest
-
- supported sensor values:
- 0: isolate, device is made unaccessible by guest OS
- 1: unisolate, device is made available to guest OS
-
- 9002: dr-indicator, controls "visual" indicator associated with device
-
- supported sensor values:
- 0: inactive, resource may be safely removed
- 1: active, resource is in use and cannot be safely removed
- 2: identify, used to visually identify slot for interactive hotplug
- 3: action, in most cases, used in the same manner as identify
-
- 9003: allocation-state, generally only used for "logical" DR resources to
- request the allocation/deallocation of a resource prior to acquiring
- it via isolation-state->unisolate, or after releasing it via
- isolation-state->isolate, respectively. for "physical" DR (like PCI
- hotplug/unplug) the pre-allocation of the resource is implied and
- this sensor is unused.
-
- supported sensor values:
- 0: unusable, tell firmware/system the resource can be
- unallocated/reclaimed and added back to the system resource pool
- 1: usable, request the resource be allocated/reserved for use by
- guest OS
- 2: exchange, used to allocate a spare resource to use for fail-over
- in certain situations. unused in QEMU
- 3: recover, used to reclaim a previously allocated resource that's
- not currently allocated to the guest OS. unused in QEMU
-
-rtas-get-sensor-state:
- arg[0]: integer identifying sensor/indicator type
- arg[1]: index of sensor, for DR-related sensors this is generally the
- DRC index
- output[0]: status, 0 on success
-
- Used to read an indicator or sensor value.
-
- For DR-related operations, the only noteworthy sensor is dr-entity-sense,
- which has a type value of 9003, as allocation-state does in the case of
- rtas-set-indicator. The semantics/encodings of the sensor values are distinct
- however:
-
- supported sensor values for dr-entity-sense (9003) sensor:
- 0: empty,
- for physical resources: DRC/slot is empty
- for logical resources: unused
- 1: present,
- for physical resources: DRC/slot is populated with a device/resource
- for logical resources: resource has been allocated to the DRC
- 2: unusable,
- for physical resources: unused
- for logical resources: DRC has no resource allocated to it
- 3: exchange,
- for physical resources: unused
- for logical resources: resource available for exchange (see
- allocation-state sensor semantics above)
- 4: recovery,
- for physical resources: unused
- for logical resources: resource available for recovery (see
- allocation-state sensor semantics above)
-
-rtas-ibm-configure-connector:
- arg[0]: guest physical address of 4096-byte work area buffer
- arg[1]: 0, or address of additional 4096-byte work area buffer. only non-zero
- if a prior RTAS response indicated a need for additional memory
- output[0]: status:
- 0: completed transmittal of device-tree node
- 1: instruct guest to prepare for next DT sibling node
- 2: instruct guest to prepare for next DT child node
- 3: instruct guest to prepare for next DT property
- 4: instruct guest to ascend to parent DT node
- 5: instruct guest to provide additional work-area buffer
- via arg[1]
- 990x: instruct guest that operation took too long and to try
- again later
-
- Used to fetch an OF device-tree description of the resource associated with
- a particular DRC. The DRC index is encoded in the first 4-bytes of the first
- work area buffer.
-
- Work area layout, using 4-byte offsets:
- wa[0]: DRC index of the DRC to fetch device-tree nodes from
- wa[1]: 0 (hard-coded)
- wa[2]: for next-sibling/next-child response:
- wa offset of null-terminated string denoting the new node's name
- for next-property response:
- wa offset of null-terminated string denoting new property's name
- wa[3]: for next-property response (unused otherwise):
- byte-length of new property's value
- wa[4]: for next-property response (unused otherwise):
- new property's value, encoded as an OFDT-compatible byte array
-
-== hotplug/unplug events ==
-
-For most DR operations, the hypervisor will issue host->guest add/remove events
-using the EPOW/check-exception notification framework, where the host issues a
-check-exception interrupt, then provides an RTAS event log via an
-rtas-check-exception call issued by the guest in response. This framework is
-documented by PAPR+ v2.7, and already use in by QEMU for generating powerdown
-requests via EPOW events.
-
-For DR, this framework has been extended to include hotplug events, which were
-previously unneeded due to direct manipulation of DR-related guest userspace
-tools by host-level management such as an HMC. This level of management is not
-applicable to PowerKVM, hence the reason for extending the notification
-framework to support hotplug events.
-
-The format for these EPOW-signalled events is described below under
-"hotplug/unplug event structure". Note that these events are not
-formally part of the PAPR+ specification, and have been superseded by a
-newer format, also described below under "hotplug/unplug event structure",
-and so are now deemed a "legacy" format. The formats are similar, but the
-"modern" format contains additional fields/flags, which are denoted for the
-purposes of this documentation with "#ifdef GUEST_SUPPORTS_MODERN" guards.
-
-QEMU should assume support only for "legacy" fields/flags unless the guest
-advertises support for the "modern" format via ibm,client-architecture-support
-hcall by setting byte 5, bit 6 of it's ibm,architecture-vec-5 option vector
-structure (as described by LoPAPR v11, B.6.2.3). As with "legacy" format events,
-"modern" format events are surfaced to the guest via check-exception RTAS calls,
-but use a dedicated event source to signal the guest. This event source is
-advertised to the guest by the addition of a "hot-plug-events" node under
-"/event-sources" node of the guest's device tree using the standard format
-described in LoPAPR v11, B.6.12.1.
-
-== hotplug/unplug event structure ==
-
-The hotplug-specific payload in QEMU is implemented as follows (with all values
-encoded in big-endian format):
-
-struct rtas_event_log_v6_hp {
-#define SECTION_ID_HOTPLUG 0x4850 /* HP */
- struct section_header {
- uint16_t section_id; /* set to SECTION_ID_HOTPLUG */
- uint16_t section_length; /* sizeof(rtas_event_log_v6_hp),
- * plus the length of the DRC name
- * if a DRC name identifier is
- * specified for hotplug_identifier
- */
- uint8_t section_version; /* version 1 */
- uint8_t section_subtype; /* unused */
- uint16_t creator_component_id; /* unused */
- } hdr;
-#define RTAS_LOG_V6_HP_TYPE_CPU 1
-#define RTAS_LOG_V6_HP_TYPE_MEMORY 2
-#define RTAS_LOG_V6_HP_TYPE_SLOT 3
-#define RTAS_LOG_V6_HP_TYPE_PHB 4
-#define RTAS_LOG_V6_HP_TYPE_PCI 5
- uint8_t hotplug_type; /* type of resource/device */
-#define RTAS_LOG_V6_HP_ACTION_ADD 1
-#define RTAS_LOG_V6_HP_ACTION_REMOVE 2
- uint8_t hotplug_action; /* action (add/remove) */
-#define RTAS_LOG_V6_HP_ID_DRC_NAME 1
-#define RTAS_LOG_V6_HP_ID_DRC_INDEX 2
-#define RTAS_LOG_V6_HP_ID_DRC_COUNT 3
-#ifdef GUEST_SUPPORTS_MODERN
-#define RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED 4
-#endif
- uint8_t hotplug_identifier; /* type of the resource identifier,
- * which serves as the discriminator
- * for the 'drc' union field below
- */
-#ifdef GUEST_SUPPORTS_MODERN
- uint8_t capabilities; /* capability flags, currently unused
- * by QEMU
- */
-#else
- uint8_t reserved;
-#endif
- union {
- uint32_t index; /* DRC index of resource to take action
- * on
- */
- uint32_t count; /* number of DR resources to take
- * action on (guest chooses which)
- */
-#ifdef GUEST_SUPPORTS_MODERN
- struct {
- uint32_t count; /* number of DR resources to take
- * action on
- */
- uint32_t index; /* DRC index of first resource to take
- * action on. guest will take action
- * on DRC index <index> through
- * DRC index <index + count - 1> in
- * sequential order
- */
- } count_indexed;
-#endif
- char name[1]; /* string representing the name of the
- * DRC to take action on
- */
- } drc;
-} QEMU_PACKED;
-
-== ibm,lrdr-capacity ==
-
-ibm,lrdr-capacity is a property in the /rtas device tree node that identifies
-the dynamic reconfiguration capabilities of the guest. It consists of a triple
-consisting of <phys>, <size> and <maxcpus>.
-
- <phys>, encoded in BE format represents the maximum address in bytes and
- hence the maximum memory that can be allocated to the guest.
-
- <size>, encoded in BE format represents the size increments in which
- memory can be hot-plugged to the guest.
-
- <maxcpus>, a BE-encoded integer, represents the maximum number of
- processors that the guest can have.
-
-pseries guests use this property to note the maximum allowed CPUs for the
-guest.
-
-== ibm,dynamic-reconfiguration-memory ==
-
-ibm,dynamic-reconfiguration-memory is a device tree node that represents
-dynamically reconfigurable logical memory blocks (LMB). This node
-is generated only when the guest advertises the support for it via
-ibm,client-architecture-support call. Memory that is not dynamically
-reconfigurable is represented by /memory nodes. The properties of this
-node that are of interest to the sPAPR memory hotplug implementation
-in QEMU are described here.
-
-ibm,lmb-size
-
-This 64bit integer defines the size of each dynamically reconfigurable LMB.
-
-ibm,associativity-lookup-arrays
-
-This property defines a lookup array in which the NUMA associativity
-information for each LMB can be found. It is a property encoded array
-that begins with an integer M, the number of associativity lists followed
-by an integer N, the number of entries per associativity list and terminated
-by M associativity lists each of length N integers.
-
-This property provides the same information as given by ibm,associativity
-property in a /memory node. Each assigned LMB has an index value between
-0 and M-1 which is used as an index into this table to select which
-associativity list to use for the LMB. This index value for each LMB
-is defined in ibm,dynamic-memory property.
-
-ibm,dynamic-memory
-
-This property describes the dynamically reconfigurable memory. It is a
-property encoded array that has an integer N, the number of LMBs followed
-by N LMB list entries.
-
-Each LMB list entry consists of the following elements:
-
-- Logical address of the start of the LMB encoded as a 64bit integer. This
- corresponds to reg property in /memory node.
-- DRC index of the LMB that corresponds to ibm,my-drc-index property
- in a /memory node.
-- Four bytes reserved for expansion.
-- Associativity list index for the LMB that is used as an index into
- ibm,associativity-lookup-arrays property described earlier. This
- is used to retrieve the right associativity list to be used for this
- LMB.
-- A 32bit flags word. The bit at bit position 0x00000008 defines whether
- the LMB is assigned to the partition as of boot time.
-
-ibm,dynamic-memory-v2
-
-This property describes the dynamically reconfigurable memory. This is
-an alternate and newer way to describe dynamically reconfigurable memory.
-It is a property encoded array that has an integer N (the number of
-LMB set entries) followed by N LMB set entries. There is an LMB set entry
-for each sequential group of LMBs that share common attributes.
-
-Each LMB set entry consists of the following elements:
-
-- Number of sequential LMBs in the entry represented by a 32bit integer.
-- Logical address of the first LMB in the set encoded as a 64bit integer.
-- DRC index of the first LMB in the set.
-- Associativity list index that is used as an index into
- ibm,associativity-lookup-arrays property described earlier. This
- is used to retrieve the right associativity list to be used for all
- the LMBs in this set.
-- A 32bit flags word that applies to all the LMBs in the set.
-
-[1] http://thread.gmane.org/gmane.linux.ports.ppc.embedded/75350/focus=106867
diff --git a/docs/specs/ppc-spapr-uv-hcalls.rst b/docs/specs/ppc-spapr-uv-hcalls.rst
new file mode 100644
index 0000000000..a00288deb3
--- /dev/null
+++ b/docs/specs/ppc-spapr-uv-hcalls.rst
@@ -0,0 +1,89 @@
+===================================
+Hypervisor calls and the Ultravisor
+===================================
+
+On PPC64 systems supporting Protected Execution Facility (PEF), system memory
+can be placed in a secured region where only an ultravisor running in firmware
+can provide access to. pSeries guests on such systems can communicate with
+the ultravisor (via ultracalls) to switch to a secure virtual machine (SVM) mode
+where the guest's memory is relocated to this secured region, making its memory
+inaccessible to normal processes/guests running on the host.
+
+The various ultracalls/hypercalls relating to SVM mode are currently only
+documented internally, but are planned for direct inclusion into the Linux on
+Power Architecture Reference document ([LoPAR]_). An internal ACR has been filed
+to reserve a hypercall number range specific to this use case to avoid any
+future conflicts with the IBM internally maintained Power Architecture Platform
+Reference (PAPR+) documentation specification. This document summarizes some of
+these details as they relate to QEMU.
+
+Hypercalls needed by the ultravisor
+===================================
+
+Switching to SVM mode involves a number of hcalls issued by the ultravisor to
+the hypervisor to orchestrate the movement of guest memory to secure memory and
+various other aspects of the SVM mode. Numbers are assigned for these hcalls
+within the reserved range ``0xEF00-0xEF80``. The below documents the hcalls
+relevant to QEMU.
+
+``H_TPM_COMM`` (``0xef10``)
+---------------------------
+
+SVM file systems are encrypted using a symmetric key. This key is then
+wrapped/encrypted using the public key of a trusted system which has the private
+key stored in the system's TPM. An Ultravisor will use this hcall to
+unwrap/unseal the symmetric key using the system's TPM device or a TPM Resource
+Manager associated with the device.
+
+The Ultravisor sets up a separate session key with the TPM in advance during
+host system boot. All sensitive in and out values will be encrypted using the
+session key. Though the hypervisor will see the in and out buffers in raw form,
+any sensitive contents will generally be encrypted using this session key.
+
+Arguments:
+
+ ``r3``: ``H_TPM_COMM`` (``0xef10``)
+
+ ``r4``: ``TPM`` operation, one of:
+
+ ``TPM_COMM_OP_EXECUTE`` (``0x1``): send a request to a TPM and receive a
+ response, opening a new TPM session if one has not already been opened.
+
+ ``TPM_COMM_OP_CLOSE_SESSION`` (``0x2``): close the existing TPM session, if
+ any.
+
+ ``r5``: ``in_buffer``, guest physical address of buffer containing the
+ request. Caller may use the same address for both request and response.
+
+ ``r6``: ``in_size``, size of the in buffer. Must be less than or equal to
+ 4 KB.
+
+ ``r7``: ``out_buffer``, guest physical address of buffer to store the
+ response. Caller may use the same address for both request and response.
+
+ ``r8``: ``out_size``, size of the out buffer. Must be at least 4 KB, as this
+ is the maximum request/response size supported by most TPM implementations,
+ including the TPM Resource Manager in the linux kernel.
+
+Return values:
+
+ ``r3``: one of the following values:
+
+ ``H_Success``: request processed successfully.
+
+ ``H_PARAMETER``: invalid TPM operation.
+
+ ``H_P2``: ``in_buffer`` is invalid.
+
+ ``H_P3``: ``in_size`` is invalid.
+
+ ``H_P4``: ``out_buffer`` is invalid.
+
+ ``H_P5``: ``out_size`` is invalid.
+
+ ``H_RESOURCE``: problem communicating with TPM.
+
+ ``H_FUNCTION``: TPM access is not currently allowed/configured.
+
+ ``r4``: For ``TPM_COMM_OP_EXECUTE``, the size of the response will be stored
+ here upon success.
diff --git a/docs/specs/ppc-spapr-uv-hcalls.txt b/docs/specs/ppc-spapr-uv-hcalls.txt
deleted file mode 100644
index 389c2740d7..0000000000
--- a/docs/specs/ppc-spapr-uv-hcalls.txt
+++ /dev/null
@@ -1,76 +0,0 @@
-On PPC64 systems supporting Protected Execution Facility (PEF), system
-memory can be placed in a secured region where only an "ultravisor"
-running in firmware can provide to access it. pseries guests on such
-systems can communicate with the ultravisor (via ultracalls) to switch to a
-secure VM mode (SVM) where the guest's memory is relocated to this secured
-region, making its memory inaccessible to normal processes/guests running on
-the host.
-
-The various ultracalls/hypercalls relating to SVM mode are currently
-only documented internally, but are planned for direct inclusion into the
-public OpenPOWER version of the PAPR specification (LoPAPR/LoPAR). An internal
-ACR has been filed to reserve a hypercall number range specific to this
-use-case to avoid any future conflicts with the internally-maintained PAPR
-specification. This document summarizes some of these details as they relate
-to QEMU.
-
-== hypercalls needed by the ultravisor ==
-
-Switching to SVM mode involves a number of hcalls issued by the ultravisor
-to the hypervisor to orchestrate the movement of guest memory to secure
-memory and various other aspects SVM mode. Numbers are assigned for these
-hcalls within the reserved range 0xEF00-0xEF80. The below documents the
-hcalls relevant to QEMU.
-
-- H_TPM_COMM (0xef10)
-
- For TPM_COMM_OP_EXECUTE operation:
- Send a request to a TPM and receive a response, opening a new TPM session
- if one has not already been opened.
-
- For TPM_COMM_OP_CLOSE_SESSION operation:
- Close the existing TPM session, if any.
-
- Arguments:
-
- r3 : H_TPM_COMM (0xef10)
- r4 : TPM operation, one of:
- TPM_COMM_OP_EXECUTE (0x1)
- TPM_COMM_OP_CLOSE_SESSION (0x2)
- r5 : in_buffer, guest physical address of buffer containing the request
- - Caller may use the same address for both request and response
- r6 : in_size, size of the in buffer
- - Must be less than or equal to 4KB
- r7 : out_buffer, guest physical address of buffer to store the response
- - Caller may use the same address for both request and response
- r8 : out_size, size of the out buffer
- - Must be at least 4KB, as this is the maximum request/response size
- supported by most TPM implementations, including the TPM Resource
- Manager in the linux kernel.
-
- Return values:
-
- r3 : H_Success request processed successfully
- H_PARAMETER invalid TPM operation
- H_P2 in_buffer is invalid
- H_P3 in_size is invalid
- H_P4 out_buffer is invalid
- H_P5 out_size is invalid
- H_RESOURCE problem communicating with TPM
- H_FUNCTION TPM access is not currently allowed/configured
- r4 : For TPM_COMM_OP_EXECUTE, the size of the response will be stored here
- upon success.
-
- Use-case/notes:
-
- SVM filesystems are encrypted using a symmetric key. This key is then
- wrapped/encrypted using the public key of a trusted system which has the
- private key stored in the system's TPM. An Ultravisor will use this
- hcall to unwrap/unseal the symmetric key using the system's TPM device
- or a TPM Resource Manager associated with the device.
-
- The Ultravisor sets up a separate session key with the TPM in advance
- during host system boot. All sensitive in and out values will be
- encrypted using the session key. Though the hypervisor will see the 'in'
- and 'out' buffers in raw form, any sensitive contents will generally be
- encrypted using this session key.
diff --git a/docs/system/ppc/pseries.rst b/docs/system/ppc/pseries.rst
index 1689324815..569237dc0c 100644
--- a/docs/system/ppc/pseries.rst
+++ b/docs/system/ppc/pseries.rst
@@ -110,16 +110,12 @@ can also be found in QEMU documentation:
.. toctree::
:maxdepth: 1
+ ../../specs/ppc-spapr-hotplug.rst
../../specs/ppc-spapr-hcalls.rst
../../specs/ppc-spapr-numa.rst
+ ../../specs/ppc-spapr-uv-hcalls.rst
../../specs/ppc-spapr-xive.rst
-Other documentation available in QEMU docs directory:
-
-* Hot plug (``/docs/specs/ppc-spapr-hotplug.txt``).
-* Hypervisor calls needed by the Ultravisor
- (``/docs/specs/ppc-spapr-uv-hcalls.txt``).
-
Switching between the KVM-PR and KVM-HV kernel module
=====================================================
diff --git a/hw/pci-host/pnv_phb4.c b/hw/pci-host/pnv_phb4.c
index a7b638831e..a78add75b0 100644
--- a/hw/pci-host/pnv_phb4.c
+++ b/hw/pci-host/pnv_phb4.c
@@ -22,7 +22,6 @@
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "qom/object.h"
-#include "sysemu/sysemu.h"
#include "trace.h"
#define phb_error(phb, fmt, ...) \
@@ -228,16 +227,16 @@ static void pnv_phb4_check_mbt(PnvPHB4 *phb, uint32_t index)
/* TODO: Figure out how to implemet/decode AOMASK */
/* Check if it matches an enabled MMIO region in the PEC stack */
- if (memory_region_is_mapped(&phb->stack->mmbar0) &&
- base >= phb->stack->mmio0_base &&
- (base + size) <= (phb->stack->mmio0_base + phb->stack->mmio0_size)) {
- parent = &phb->stack->mmbar0;
- base -= phb->stack->mmio0_base;
- } else if (memory_region_is_mapped(&phb->stack->mmbar1) &&
- base >= phb->stack->mmio1_base &&
- (base + size) <= (phb->stack->mmio1_base + phb->stack->mmio1_size)) {
- parent = &phb->stack->mmbar1;
- base -= phb->stack->mmio1_base;
+ if (memory_region_is_mapped(&phb->mmbar0) &&
+ base >= phb->mmio0_base &&
+ (base + size) <= (phb->mmio0_base + phb->mmio0_size)) {
+ parent = &phb->mmbar0;
+ base -= phb->mmio0_base;
+ } else if (memory_region_is_mapped(&phb->mmbar1) &&
+ base >= phb->mmio1_base &&
+ (base + size) <= (phb->mmio1_base + phb->mmio1_size)) {
+ parent = &phb->mmbar1;
+ base -= phb->mmio1_base;
} else {
phb_error(phb, "PHB MBAR %d out of parent bounds", index);
return;
@@ -673,7 +672,7 @@ static uint64_t pnv_phb4_reg_read(void *opaque, hwaddr off, unsigned size)
switch (off) {
case PHB_VERSION:
- return phb->version;
+ return PNV_PHB4_PEC_GET_CLASS(phb->pec)->version;
/* Read-only */
case PHB_PHB4_GEN_CAP:
@@ -861,44 +860,65 @@ const MemoryRegionOps pnv_phb4_xscom_ops = {
static uint64_t pnv_pec_stk_nest_xscom_read(void *opaque, hwaddr addr,
unsigned size)
{
- PnvPhb4PecStack *stack = PNV_PHB4_PEC_STACK(opaque);
+ PnvPHB4 *phb = PNV_PHB4(opaque);
uint32_t reg = addr >> 3;
/* TODO: add list of allowed registers and error out if not */
- return stack->nest_regs[reg];
+ return phb->nest_regs[reg];
}
-static void pnv_phb4_update_regions(PnvPhb4PecStack *stack)
+/*
+ * Return the 'stack_no' of a PHB4. 'stack_no' is the order
+ * the PHB4 occupies in the PEC. This is the reverse of what
+ * pnv_phb4_pec_get_phb_id() does.
+ *
+ * E.g. a phb with phb_id = 4 and pec->index = 1 (PEC1) will
+ * be the second phb (stack_no = 1) of the PEC.
+ */
+static int pnv_phb4_get_phb_stack_no(PnvPHB4 *phb)
{
- PnvPHB4 *phb = stack->phb;
+ PnvPhb4PecState *pec = phb->pec;
+ PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
+ int index = pec->index;
+ int stack_no = phb->phb_id;
+
+ while (index--) {
+ stack_no -= pecc->num_phbs[index];
+ }
+
+ return stack_no;
+}
+static void pnv_phb4_update_regions(PnvPHB4 *phb)
+{
/* Unmap first always */
if (memory_region_is_mapped(&phb->mr_regs)) {
- memory_region_del_subregion(&stack->phbbar, &phb->mr_regs);
+ memory_region_del_subregion(&phb->phbbar, &phb->mr_regs);
}
if (memory_region_is_mapped(&phb->xsrc.esb_mmio)) {
- memory_region_del_subregion(&stack->intbar, &phb->xsrc.esb_mmio);
+ memory_region_del_subregion(&phb->intbar, &phb->xsrc.esb_mmio);
}
/* Map registers if enabled */
- if (memory_region_is_mapped(&stack->phbbar)) {
- memory_region_add_subregion(&stack->phbbar, 0, &phb->mr_regs);
+ if (memory_region_is_mapped(&phb->phbbar)) {
+ memory_region_add_subregion(&phb->phbbar, 0, &phb->mr_regs);
}
/* Map ESB if enabled */
- if (memory_region_is_mapped(&stack->intbar)) {
- memory_region_add_subregion(&stack->intbar, 0, &phb->xsrc.esb_mmio);
+ if (memory_region_is_mapped(&phb->intbar)) {
+ memory_region_add_subregion(&phb->intbar, 0, &phb->xsrc.esb_mmio);
}
/* Check/update m32 */
pnv_phb4_check_all_mbt(phb);
}
-static void pnv_pec_stk_update_map(PnvPhb4PecStack *stack)
+static void pnv_pec_phb_update_map(PnvPHB4 *phb)
{
- PnvPhb4PecState *pec = stack->pec;
+ PnvPhb4PecState *pec = phb->pec;
MemoryRegion *sysmem = get_system_memory();
- uint64_t bar_en = stack->nest_regs[PEC_NEST_STK_BAR_EN];
+ uint64_t bar_en = phb->nest_regs[PEC_NEST_STK_BAR_EN];
+ int stack_no = pnv_phb4_get_phb_stack_no(phb);
uint64_t bar, mask, size;
char name[64];
@@ -911,106 +931,106 @@ static void pnv_pec_stk_update_map(PnvPhb4PecStack *stack)
*/
/* Handle unmaps */
- if (memory_region_is_mapped(&stack->mmbar0) &&
+ if (memory_region_is_mapped(&phb->mmbar0) &&
!(bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) {
- memory_region_del_subregion(sysmem, &stack->mmbar0);
+ memory_region_del_subregion(sysmem, &phb->mmbar0);
}
- if (memory_region_is_mapped(&stack->mmbar1) &&
+ if (memory_region_is_mapped(&phb->mmbar1) &&
!(bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) {
- memory_region_del_subregion(sysmem, &stack->mmbar1);
+ memory_region_del_subregion(sysmem, &phb->mmbar1);
}
- if (memory_region_is_mapped(&stack->phbbar) &&
+ if (memory_region_is_mapped(&phb->phbbar) &&
!(bar_en & PEC_NEST_STK_BAR_EN_PHB)) {
- memory_region_del_subregion(sysmem, &stack->phbbar);
+ memory_region_del_subregion(sysmem, &phb->phbbar);
}
- if (memory_region_is_mapped(&stack->intbar) &&
+ if (memory_region_is_mapped(&phb->intbar) &&
!(bar_en & PEC_NEST_STK_BAR_EN_INT)) {
- memory_region_del_subregion(sysmem, &stack->intbar);
+ memory_region_del_subregion(sysmem, &phb->intbar);
}
/* Update PHB */
- pnv_phb4_update_regions(stack);
+ pnv_phb4_update_regions(phb);
/* Handle maps */
- if (!memory_region_is_mapped(&stack->mmbar0) &&
+ if (!memory_region_is_mapped(&phb->mmbar0) &&
(bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) {
- bar = stack->nest_regs[PEC_NEST_STK_MMIO_BAR0] >> 8;
- mask = stack->nest_regs[PEC_NEST_STK_MMIO_BAR0_MASK];
+ bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0] >> 8;
+ mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0_MASK];
size = ((~mask) >> 8) + 1;
- snprintf(name, sizeof(name), "pec-%d.%d-stack-%d-mmio0",
- pec->chip_id, pec->index, stack->stack_no);
- memory_region_init(&stack->mmbar0, OBJECT(stack), name, size);
- memory_region_add_subregion(sysmem, bar, &stack->mmbar0);
- stack->mmio0_base = bar;
- stack->mmio0_size = size;
- }
- if (!memory_region_is_mapped(&stack->mmbar1) &&
+ snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio0",
+ pec->chip_id, pec->index, stack_no);
+ memory_region_init(&phb->mmbar0, OBJECT(phb), name, size);
+ memory_region_add_subregion(sysmem, bar, &phb->mmbar0);
+ phb->mmio0_base = bar;
+ phb->mmio0_size = size;
+ }
+ if (!memory_region_is_mapped(&phb->mmbar1) &&
(bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) {
- bar = stack->nest_regs[PEC_NEST_STK_MMIO_BAR1] >> 8;
- mask = stack->nest_regs[PEC_NEST_STK_MMIO_BAR1_MASK];
+ bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1] >> 8;
+ mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1_MASK];
size = ((~mask) >> 8) + 1;
- snprintf(name, sizeof(name), "pec-%d.%d-stack-%d-mmio1",
- pec->chip_id, pec->index, stack->stack_no);
- memory_region_init(&stack->mmbar1, OBJECT(stack), name, size);
- memory_region_add_subregion(sysmem, bar, &stack->mmbar1);
- stack->mmio1_base = bar;
- stack->mmio1_size = size;
- }
- if (!memory_region_is_mapped(&stack->phbbar) &&
+ snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio1",
+ pec->chip_id, pec->index, stack_no);
+ memory_region_init(&phb->mmbar1, OBJECT(phb), name, size);
+ memory_region_add_subregion(sysmem, bar, &phb->mmbar1);
+ phb->mmio1_base = bar;
+ phb->mmio1_size = size;
+ }
+ if (!memory_region_is_mapped(&phb->phbbar) &&
(bar_en & PEC_NEST_STK_BAR_EN_PHB)) {
- bar = stack->nest_regs[PEC_NEST_STK_PHB_REGS_BAR] >> 8;
+ bar = phb->nest_regs[PEC_NEST_STK_PHB_REGS_BAR] >> 8;
size = PNV_PHB4_NUM_REGS << 3;
- snprintf(name, sizeof(name), "pec-%d.%d-stack-%d-phb",
- pec->chip_id, pec->index, stack->stack_no);
- memory_region_init(&stack->phbbar, OBJECT(stack), name, size);
- memory_region_add_subregion(sysmem, bar, &stack->phbbar);
+ snprintf(name, sizeof(name), "pec-%d.%d-phb-%d",
+ pec->chip_id, pec->index, stack_no);
+ memory_region_init(&phb->phbbar, OBJECT(phb), name, size);
+ memory_region_add_subregion(sysmem, bar, &phb->phbbar);
}
- if (!memory_region_is_mapped(&stack->intbar) &&
+ if (!memory_region_is_mapped(&phb->intbar) &&
(bar_en & PEC_NEST_STK_BAR_EN_INT)) {
- bar = stack->nest_regs[PEC_NEST_STK_INT_BAR] >> 8;
+ bar = phb->nest_regs[PEC_NEST_STK_INT_BAR] >> 8;
size = PNV_PHB4_MAX_INTs << 16;
- snprintf(name, sizeof(name), "pec-%d.%d-stack-%d-int",
- stack->pec->chip_id, stack->pec->index, stack->stack_no);
- memory_region_init(&stack->intbar, OBJECT(stack), name, size);
- memory_region_add_subregion(sysmem, bar, &stack->intbar);
+ snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-int",
+ phb->pec->chip_id, phb->pec->index, stack_no);
+ memory_region_init(&phb->intbar, OBJECT(phb), name, size);
+ memory_region_add_subregion(sysmem, bar, &phb->intbar);
}
/* Update PHB */
- pnv_phb4_update_regions(stack);
+ pnv_phb4_update_regions(phb);
}
static void pnv_pec_stk_nest_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
- PnvPhb4PecStack *stack = PNV_PHB4_PEC_STACK(opaque);
- PnvPhb4PecState *pec = stack->pec;
+ PnvPHB4 *phb = PNV_PHB4(opaque);
+ PnvPhb4PecState *pec = phb->pec;
uint32_t reg = addr >> 3;
switch (reg) {
case PEC_NEST_STK_PCI_NEST_FIR:
- stack->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] = val;
+ phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] = val;
break;
case PEC_NEST_STK_PCI_NEST_FIR_CLR:
- stack->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] &= val;
+ phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] &= val;
break;
case PEC_NEST_STK_PCI_NEST_FIR_SET:
- stack->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] |= val;
+ phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] |= val;
break;
case PEC_NEST_STK_PCI_NEST_FIR_MSK:
- stack->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] = val;
+ phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] = val;
break;
case PEC_NEST_STK_PCI_NEST_FIR_MSKC:
- stack->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] &= val;
+ phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] &= val;
break;
case PEC_NEST_STK_PCI_NEST_FIR_MSKS:
- stack->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] |= val;
+ phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] |= val;
break;
case PEC_NEST_STK_PCI_NEST_FIR_ACT0:
case PEC_NEST_STK_PCI_NEST_FIR_ACT1:
- stack->nest_regs[reg] = val;
+ phb->nest_regs[reg] = val;
break;
case PEC_NEST_STK_PCI_NEST_FIR_WOF:
- stack->nest_regs[reg] = 0;
+ phb->nest_regs[reg] = 0;
break;
case PEC_NEST_STK_ERR_REPORT_0:
case PEC_NEST_STK_ERR_REPORT_1:
@@ -1018,39 +1038,39 @@ static void pnv_pec_stk_nest_xscom_write(void *opaque, hwaddr addr,
/* Flag error ? */
break;
case PEC_NEST_STK_PBCQ_MODE:
- stack->nest_regs[reg] = val & 0xff00000000000000ull;
+ phb->nest_regs[reg] = val & 0xff00000000000000ull;
break;
case PEC_NEST_STK_MMIO_BAR0:
case PEC_NEST_STK_MMIO_BAR0_MASK:
case PEC_NEST_STK_MMIO_BAR1:
case PEC_NEST_STK_MMIO_BAR1_MASK:
- if (stack->nest_regs[PEC_NEST_STK_BAR_EN] &
+ if (phb->nest_regs[PEC_NEST_STK_BAR_EN] &
(PEC_NEST_STK_BAR_EN_MMIO0 |
PEC_NEST_STK_BAR_EN_MMIO1)) {
phb_pec_error(pec, "Changing enabled BAR unsupported\n");
}
- stack->nest_regs[reg] = val & 0xffffffffff000000ull;
+ phb->nest_regs[reg] = val & 0xffffffffff000000ull;
break;
case PEC_NEST_STK_PHB_REGS_BAR:
- if (stack->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_PHB) {
+ if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_PHB) {
phb_pec_error(pec, "Changing enabled BAR unsupported\n");
}
- stack->nest_regs[reg] = val & 0xffffffffffc00000ull;
+ phb->nest_regs[reg] = val & 0xffffffffffc00000ull;
break;
case PEC_NEST_STK_INT_BAR:
- if (stack->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_INT) {
+ if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_INT) {
phb_pec_error(pec, "Changing enabled BAR unsupported\n");
}
- stack->nest_regs[reg] = val & 0xfffffff000000000ull;
+ phb->nest_regs[reg] = val & 0xfffffff000000000ull;
break;
case PEC_NEST_STK_BAR_EN:
- stack->nest_regs[reg] = val & 0xf000000000000000ull;
- pnv_pec_stk_update_map(stack);
+ phb->nest_regs[reg] = val & 0xf000000000000000ull;
+ pnv_pec_phb_update_map(phb);
break;
case PEC_NEST_STK_DATA_FRZ_TYPE:
case PEC_NEST_STK_PBCQ_TUN_BAR:
/* Not used for now */
- stack->nest_regs[reg] = val;
+ phb->nest_regs[reg] = val;
break;
default:
qemu_log_mask(LOG_UNIMP, "phb4_pec: nest_xscom_write 0x%"HWADDR_PRIx
@@ -1071,54 +1091,54 @@ static const MemoryRegionOps pnv_pec_stk_nest_xscom_ops = {
static uint64_t pnv_pec_stk_pci_xscom_read(void *opaque, hwaddr addr,
unsigned size)
{
- PnvPhb4PecStack *stack = PNV_PHB4_PEC_STACK(opaque);
+ PnvPHB4 *phb = PNV_PHB4(opaque);
uint32_t reg = addr >> 3;
/* TODO: add list of allowed registers and error out if not */
- return stack->pci_regs[reg];
+ return phb->pci_regs[reg];
}
static void pnv_pec_stk_pci_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
- PnvPhb4PecStack *stack = PNV_PHB4_PEC_STACK(opaque);
+ PnvPHB4 *phb = PNV_PHB4(opaque);
uint32_t reg = addr >> 3;
switch (reg) {
case PEC_PCI_STK_PCI_FIR:
- stack->pci_regs[reg] = val;
+ phb->pci_regs[reg] = val;
break;
case PEC_PCI_STK_PCI_FIR_CLR:
- stack->pci_regs[PEC_PCI_STK_PCI_FIR] &= val;
+ phb->pci_regs[PEC_PCI_STK_PCI_FIR] &= val;
break;
case PEC_PCI_STK_PCI_FIR_SET:
- stack->pci_regs[PEC_PCI_STK_PCI_FIR] |= val;
+ phb->pci_regs[PEC_PCI_STK_PCI_FIR] |= val;
break;
case PEC_PCI_STK_PCI_FIR_MSK:
- stack->pci_regs[reg] = val;
+ phb->pci_regs[reg] = val;
break;
case PEC_PCI_STK_PCI_FIR_MSKC:
- stack->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] &= val;
+ phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] &= val;
break;
case PEC_PCI_STK_PCI_FIR_MSKS:
- stack->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] |= val;
+ phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] |= val;
break;
case PEC_PCI_STK_PCI_FIR_ACT0:
case PEC_PCI_STK_PCI_FIR_ACT1:
- stack->pci_regs[reg] = val;
+ phb->pci_regs[reg] = val;
break;
case PEC_PCI_STK_PCI_FIR_WOF:
- stack->pci_regs[reg] = 0;
+ phb->pci_regs[reg] = 0;
break;
case PEC_PCI_STK_ETU_RESET:
- stack->pci_regs[reg] = val & 0x8000000000000000ull;
+ phb->pci_regs[reg] = val & 0x8000000000000000ull;
/* TODO: Implement reset */
break;
case PEC_PCI_STK_PBAIB_ERR_REPORT:
break;
case PEC_PCI_STK_PBAIB_TX_CMD_CRED:
case PEC_PCI_STK_PBAIB_TX_DAT_CRED:
- stack->pci_regs[reg] = val;
+ phb->pci_regs[reg] = val;
break;
default:
qemu_log_mask(LOG_UNIMP, "phb4_pec_stk: pci_xscom_write 0x%"HWADDR_PRIx
@@ -1362,7 +1382,7 @@ int pnv_phb4_pec_get_phb_id(PnvPhb4PecState *pec, int stack_index)
int offset = 0;
while (index--) {
- offset += pecc->num_stacks[index];
+ offset += pecc->num_phbs[index];
}
return offset + stack_index;
@@ -1459,9 +1479,9 @@ static AddressSpace *pnv_phb4_dma_iommu(PCIBus *bus, void *opaque, int devfn)
static void pnv_phb4_xscom_realize(PnvPHB4 *phb)
{
- PnvPhb4PecStack *stack = phb->stack;
- PnvPhb4PecState *pec = stack->pec;
+ PnvPhb4PecState *pec = phb->pec;
PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
+ int stack_no = pnv_phb4_get_phb_stack_no(phb);
uint32_t pec_nest_base;
uint32_t pec_pci_base;
char name[64];
@@ -1469,22 +1489,22 @@ static void pnv_phb4_xscom_realize(PnvPHB4 *phb)
assert(pec);
/* Initialize the XSCOM regions for the stack registers */
- snprintf(name, sizeof(name), "xscom-pec-%d.%d-nest-stack-%d",
- pec->chip_id, pec->index, stack->stack_no);
- pnv_xscom_region_init(&stack->nest_regs_mr, OBJECT(stack),
- &pnv_pec_stk_nest_xscom_ops, stack, name,
+ snprintf(name, sizeof(name), "xscom-pec-%d.%d-nest-phb-%d",
+ pec->chip_id, pec->index, stack_no);
+ pnv_xscom_region_init(&phb->nest_regs_mr, OBJECT(phb),
+ &pnv_pec_stk_nest_xscom_ops, phb, name,
PHB4_PEC_NEST_STK_REGS_COUNT);
- snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-stack-%d",
- pec->chip_id, pec->index, stack->stack_no);
- pnv_xscom_region_init(&stack->pci_regs_mr, OBJECT(stack),
- &pnv_pec_stk_pci_xscom_ops, stack, name,
+ snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-phb-%d",
+ pec->chip_id, pec->index, stack_no);
+ pnv_xscom_region_init(&phb->pci_regs_mr, OBJECT(phb),
+ &pnv_pec_stk_pci_xscom_ops, phb, name,
PHB4_PEC_PCI_STK_REGS_COUNT);
/* PHB pass-through */
- snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-stack-%d-phb",
- pec->chip_id, pec->index, stack->stack_no);
- pnv_xscom_region_init(&stack->phb_regs_mr, OBJECT(phb),
+ snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-phb-%d",
+ pec->chip_id, pec->index, stack_no);
+ pnv_xscom_region_init(&phb->phb_regs_mr, OBJECT(phb),
&pnv_phb4_xscom_ops, phb, name, 0x40);
pec_nest_base = pecc->xscom_nest_base(pec);
@@ -1492,15 +1512,15 @@ static void pnv_phb4_xscom_realize(PnvPHB4 *phb)
/* Populate the XSCOM address space. */
pnv_xscom_add_subregion(pec->chip,
- pec_nest_base + 0x40 * (stack->stack_no + 1),
- &stack->nest_regs_mr);
+ pec_nest_base + 0x40 * (stack_no + 1),
+ &phb->nest_regs_mr);
pnv_xscom_add_subregion(pec->chip,
- pec_pci_base + 0x40 * (stack->stack_no + 1),
- &stack->pci_regs_mr);
+ pec_pci_base + 0x40 * (stack_no + 1),
+ &phb->pci_regs_mr);
pnv_xscom_add_subregion(pec->chip,
pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
- 0x40 * stack->stack_no,
- &stack->phb_regs_mr);
+ 0x40 * stack_no,
+ &phb->phb_regs_mr);
}
static void pnv_phb4_instance_init(Object *obj)
@@ -1513,8 +1533,8 @@ static void pnv_phb4_instance_init(Object *obj)
object_initialize_child(obj, "source", &phb->xsrc, TYPE_XIVE_SOURCE);
}
-static PnvPhb4PecStack *pnv_phb4_get_stack(PnvChip *chip, PnvPHB4 *phb,
- Error **errp)
+static PnvPhb4PecState *pnv_phb4_get_pec(PnvChip *chip, PnvPHB4 *phb,
+ Error **errp)
{
Pnv9Chip *chip9 = PNV9_CHIP(chip);
int chip_id = phb->chip_id;
@@ -1523,14 +1543,14 @@ static PnvPhb4PecStack *pnv_phb4_get_stack(PnvChip *chip, PnvPHB4 *phb,
for (i = 0; i < chip->num_pecs; i++) {
/*
- * For each PEC, check the amount of stacks it supports
- * and see if the given phb4 index matches a stack.
+ * For each PEC, check the amount of phbs it supports
+ * and see if the given phb4 index matches an index.
*/
PnvPhb4PecState *pec = &chip9->pecs[i];
- for (j = 0; j < pec->num_stacks; j++) {
+ for (j = 0; j < pec->num_phbs; j++) {
if (index == pnv_phb4_pec_get_phb_id(pec, j)) {
- return &pec->stacks[j];
+ return pec;
}
}
}
@@ -1552,10 +1572,9 @@ static void pnv_phb4_realize(DeviceState *dev, Error **errp)
char name[32];
/* User created PHB */
- if (!phb->stack) {
+ if (!phb->pec) {
PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
PnvChip *chip = pnv_get_chip(pnv, phb->chip_id);
- PnvPhb4PecClass *pecc;
BusState *s;
if (!chip) {
@@ -1563,23 +1582,12 @@ static void pnv_phb4_realize(DeviceState *dev, Error **errp)
return;
}
- phb->stack = pnv_phb4_get_stack(chip, phb, &local_err);
+ phb->pec = pnv_phb4_get_pec(chip, phb, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
- /* All other phb properties but 'version' are already set */
- pecc = PNV_PHB4_PEC_GET_CLASS(phb->stack->pec);
- object_property_set_int(OBJECT(phb), "version", pecc->version,
- &error_fatal);
-
- /*
- * Assign stack->phb since pnv_phb4_update_regions() uses it
- * to access the phb.
- */
- phb->stack->phb = phb;
-
/*
* Reparent user created devices to the chip to build
* correctly the device tree.
@@ -1624,12 +1632,6 @@ static void pnv_phb4_realize(DeviceState *dev, Error **errp)
pci_setup_iommu(pci->bus, pnv_phb4_dma_iommu, phb);
pci->bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE;
- /* Add a single Root port if running with defaults */
- if (defaults_enabled()) {
- pnv_phb_attach_root_port(PCI_HOST_BRIDGE(phb),
- TYPE_PNV_PHB4_ROOT_PORT);
- }
-
/* Setup XIVE Source */
if (phb->big_phb) {
nr_irqs = PNV_PHB4_MAX_INTs;
@@ -1680,9 +1682,8 @@ static void pnv_phb4_xive_notify(XiveNotifier *xf, uint32_t srcno)
static Property pnv_phb4_properties[] = {
DEFINE_PROP_UINT32("index", PnvPHB4, phb_id, 0),
DEFINE_PROP_UINT32("chip-id", PnvPHB4, chip_id, 0),
- DEFINE_PROP_UINT64("version", PnvPHB4, version, 0),
- DEFINE_PROP_LINK("stack", PnvPHB4, stack, TYPE_PNV_PHB4_PEC_STACK,
- PnvPhb4PecStack *),
+ DEFINE_PROP_LINK("pec", PnvPHB4, pec, TYPE_PNV_PHB4_PEC,
+ PnvPhb4PecState *),
DEFINE_PROP_END_OF_LIST(),
};
diff --git a/hw/pci-host/pnv_phb4_pec.c b/hw/pci-host/pnv_phb4_pec.c
index 7fe7f1f007..40d89fda56 100644
--- a/hw/pci-host/pnv_phb4_pec.c
+++ b/hw/pci-host/pnv_phb4_pec.c
@@ -112,15 +112,28 @@ static const MemoryRegionOps pnv_pec_pci_xscom_ops = {
.endianness = DEVICE_BIG_ENDIAN,
};
-static void pnv_pec_instance_init(Object *obj)
+static void pnv_pec_default_phb_realize(PnvPhb4PecState *pec,
+ int stack_no,
+ Error **errp)
{
- PnvPhb4PecState *pec = PNV_PHB4_PEC(obj);
- int i;
+ PnvPHB4 *phb = PNV_PHB4(qdev_new(TYPE_PNV_PHB4));
+ int phb_id = pnv_phb4_pec_get_phb_id(pec, stack_no);
+
+ object_property_set_link(OBJECT(phb), "pec", OBJECT(pec),
+ &error_abort);
+ object_property_set_int(OBJECT(phb), "chip-id", pec->chip_id,
+ &error_fatal);
+ object_property_set_int(OBJECT(phb), "index", phb_id,
+ &error_fatal);
- for (i = 0; i < PHB4_PEC_MAX_STACKS; i++) {
- object_initialize_child(obj, "stack[*]", &pec->stacks[i],
- TYPE_PNV_PHB4_PEC_STACK);
+ if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
+ return;
}
+
+ /* Add a single Root port if running with defaults */
+ pnv_phb_attach_root_port(PCI_HOST_BRIDGE(phb),
+ PNV_PHB4_PEC_GET_CLASS(pec)->rp_model);
+
}
static void pnv_pec_realize(DeviceState *dev, Error **errp)
@@ -135,22 +148,14 @@ static void pnv_pec_realize(DeviceState *dev, Error **errp)
return;
}
- pec->num_stacks = pecc->num_stacks[pec->index];
-
- /* Create stacks */
- for (i = 0; i < pec->num_stacks; i++) {
- PnvPhb4PecStack *stack = &pec->stacks[i];
- Object *stk_obj = OBJECT(stack);
+ pec->num_phbs = pecc->num_phbs[pec->index];
- object_property_set_int(stk_obj, "stack-no", i, &error_abort);
- object_property_set_link(stk_obj, "pec", OBJECT(pec), &error_abort);
- if (!qdev_realize(DEVICE(stk_obj), NULL, errp)) {
- return;
+ /* Create PHBs if running with defaults */
+ if (defaults_enabled()) {
+ for (i = 0; i < pec->num_phbs; i++) {
+ pnv_pec_default_phb_realize(pec, i, errp);
}
}
- for (; i < PHB4_PEC_MAX_STACKS; i++) {
- object_unparent(OBJECT(&pec->stacks[i]));
- }
/* Initialize the XSCOM regions for the PEC registers */
snprintf(name, sizeof(name), "xscom-pec-%d.%d-nest", pec->chip_id,
@@ -195,7 +200,7 @@ static int pnv_pec_dt_xscom(PnvXScomInterface *dev, void *fdt,
_FDT((fdt_setprop(fdt, offset, "compatible", pecc->compat,
pecc->compat_size)));
- for (i = 0; i < pec->num_stacks; i++) {
+ for (i = 0; i < pec->num_phbs; i++) {
int phb_id = pnv_phb4_pec_get_phb_id(pec, i);
int stk_offset;
@@ -231,11 +236,11 @@ static uint32_t pnv_pec_xscom_nest_base(PnvPhb4PecState *pec)
}
/*
- * PEC0 -> 1 stack
- * PEC1 -> 2 stacks
- * PEC2 -> 3 stacks
+ * PEC0 -> 1 phb
+ * PEC1 -> 2 phb
+ * PEC2 -> 3 phbs
*/
-static const uint32_t pnv_pec_num_stacks[] = { 1, 2, 3 };
+static const uint32_t pnv_pec_num_phbs[] = { 1, 2, 3 };
static void pnv_pec_class_init(ObjectClass *klass, void *data)
{
@@ -260,14 +265,14 @@ static void pnv_pec_class_init(ObjectClass *klass, void *data)
pecc->stk_compat = stk_compat;
pecc->stk_compat_size = sizeof(stk_compat);
pecc->version = PNV_PHB4_VERSION;
- pecc->num_stacks = pnv_pec_num_stacks;
+ pecc->num_phbs = pnv_pec_num_phbs;
+ pecc->rp_model = TYPE_PNV_PHB4_ROOT_PORT;
}
static const TypeInfo pnv_pec_type_info = {
.name = TYPE_PNV_PHB4_PEC,
.parent = TYPE_DEVICE,
.instance_size = sizeof(PnvPhb4PecState),
- .instance_init = pnv_pec_instance_init,
.class_init = pnv_pec_class_init,
.class_size = sizeof(PnvPhb4PecClass),
.interfaces = (InterfaceInfo[]) {
@@ -276,73 +281,9 @@ static const TypeInfo pnv_pec_type_info = {
}
};
-static void pnv_pec_stk_default_phb_realize(PnvPhb4PecStack *stack,
- Error **errp)
-{
- PnvPhb4PecState *pec = stack->pec;
- PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
- int phb_id = pnv_phb4_pec_get_phb_id(pec, stack->stack_no);
-
- stack->phb = PNV_PHB4(qdev_new(TYPE_PNV_PHB4));
-
- object_property_set_int(OBJECT(stack->phb), "chip-id", pec->chip_id,
- &error_fatal);
- object_property_set_int(OBJECT(stack->phb), "index", phb_id,
- &error_fatal);
- object_property_set_int(OBJECT(stack->phb), "version", pecc->version,
- &error_fatal);
- object_property_set_link(OBJECT(stack->phb), "stack", OBJECT(stack),
- &error_abort);
-
- if (!sysbus_realize(SYS_BUS_DEVICE(stack->phb), errp)) {
- return;
- }
-}
-
-static void pnv_pec_stk_realize(DeviceState *dev, Error **errp)
-{
- PnvPhb4PecStack *stack = PNV_PHB4_PEC_STACK(dev);
-
- if (!defaults_enabled()) {
- return;
- }
-
- pnv_pec_stk_default_phb_realize(stack, errp);
-}
-
-static Property pnv_pec_stk_properties[] = {
- DEFINE_PROP_UINT32("stack-no", PnvPhb4PecStack, stack_no, 0),
- DEFINE_PROP_LINK("pec", PnvPhb4PecStack, pec, TYPE_PNV_PHB4_PEC,
- PnvPhb4PecState *),
- DEFINE_PROP_END_OF_LIST(),
-};
-
-static void pnv_pec_stk_class_init(ObjectClass *klass, void *data)
-{
- DeviceClass *dc = DEVICE_CLASS(klass);
-
- device_class_set_props(dc, pnv_pec_stk_properties);
- dc->realize = pnv_pec_stk_realize;
- dc->user_creatable = false;
-
- /* TODO: reset regs ? */
-}
-
-static const TypeInfo pnv_pec_stk_type_info = {
- .name = TYPE_PNV_PHB4_PEC_STACK,
- .parent = TYPE_DEVICE,
- .instance_size = sizeof(PnvPhb4PecStack),
- .class_init = pnv_pec_stk_class_init,
- .interfaces = (InterfaceInfo[]) {
- { TYPE_PNV_XSCOM_INTERFACE },
- { }
- }
-};
-
static void pnv_pec_register_types(void)
{
type_register_static(&pnv_pec_type_info);
- type_register_static(&pnv_pec_stk_type_info);
}
type_init(pnv_pec_register_types);
diff --git a/include/hw/pci-host/pnv_phb4.h b/include/hw/pci-host/pnv_phb4.h
index 4b7ce8a723..0c7635dec5 100644
--- a/include/hw/pci-host/pnv_phb4.h
+++ b/include/hw/pci-host/pnv_phb4.h
@@ -84,6 +84,9 @@ struct PnvPHB4 {
uint64_t version;
+ /* The owner PEC */
+ PnvPhb4PecState *pec;
+
char bus_path[8];
/* Main register images */
@@ -107,6 +110,29 @@ struct PnvPHB4 {
MemoryRegion pci_mmio;
MemoryRegion pci_io;
+ /* PCI registers (excluding pass-through) */
+#define PHB4_PEC_PCI_STK_REGS_COUNT 0xf
+ uint64_t pci_regs[PHB4_PEC_PCI_STK_REGS_COUNT];
+ MemoryRegion pci_regs_mr;
+
+ /* Nest registers */
+#define PHB4_PEC_NEST_STK_REGS_COUNT 0x17
+ uint64_t nest_regs[PHB4_PEC_NEST_STK_REGS_COUNT];
+ MemoryRegion nest_regs_mr;
+
+ /* PHB pass-through XSCOM */
+ MemoryRegion phb_regs_mr;
+
+ /* Memory windows from PowerBus to PHB */
+ MemoryRegion phbbar;
+ MemoryRegion intbar;
+ MemoryRegion mmbar0;
+ MemoryRegion mmbar1;
+ uint64_t mmio0_base;
+ uint64_t mmio0_size;
+ uint64_t mmio1_base;
+ uint64_t mmio1_size;
+
/* On-chip IODA tables */
uint64_t ioda_LIST[PNV_PHB4_MAX_LSIs];
uint64_t ioda_MIST[PNV_PHB4_MAX_MIST];
@@ -125,8 +151,6 @@ struct PnvPHB4 {
XiveSource xsrc;
qemu_irq *qirqs;
- PnvPhb4PecStack *stack;
-
QLIST_HEAD(, PnvPhb4DMASpace) dma_spaces;
};
@@ -140,49 +164,6 @@ extern const MemoryRegionOps pnv_phb4_xscom_ops;
#define TYPE_PNV_PHB4_PEC "pnv-phb4-pec"
OBJECT_DECLARE_TYPE(PnvPhb4PecState, PnvPhb4PecClass, PNV_PHB4_PEC)
-#define TYPE_PNV_PHB4_PEC_STACK "pnv-phb4-pec-stack"
-OBJECT_DECLARE_SIMPLE_TYPE(PnvPhb4PecStack, PNV_PHB4_PEC_STACK)
-
-/* Per-stack data */
-struct PnvPhb4PecStack {
- DeviceState parent;
-
- /* My own stack number */
- uint32_t stack_no;
-
- /* Nest registers */
-#define PHB4_PEC_NEST_STK_REGS_COUNT 0x17
- uint64_t nest_regs[PHB4_PEC_NEST_STK_REGS_COUNT];
- MemoryRegion nest_regs_mr;
-
- /* PCI registers (excluding pass-through) */
-#define PHB4_PEC_PCI_STK_REGS_COUNT 0xf
- uint64_t pci_regs[PHB4_PEC_PCI_STK_REGS_COUNT];
- MemoryRegion pci_regs_mr;
-
- /* PHB pass-through XSCOM */
- MemoryRegion phb_regs_mr;
-
- /* Memory windows from PowerBus to PHB */
- MemoryRegion mmbar0;
- MemoryRegion mmbar1;
- MemoryRegion phbbar;
- MemoryRegion intbar;
- uint64_t mmio0_base;
- uint64_t mmio0_size;
- uint64_t mmio1_base;
- uint64_t mmio1_size;
-
- /* The owner PEC */
- PnvPhb4PecState *pec;
-
- /*
- * PHB4 pointer. pnv_phb4_update_regions() needs to access
- * the PHB4 via a PnvPhb4PecStack pointer.
- */
- PnvPHB4 *phb;
-};
-
struct PnvPhb4PecState {
DeviceState parent;
@@ -202,10 +183,8 @@ struct PnvPhb4PecState {
uint64_t pci_regs[PHB4_PEC_PCI_REGS_COUNT];
MemoryRegion pci_regs_mr;
- /* Stacks */
- #define PHB4_PEC_MAX_STACKS 3
- uint32_t num_stacks;
- PnvPhb4PecStack stacks[PHB4_PEC_MAX_STACKS];
+ /* PHBs */
+ uint32_t num_phbs;
PnvChip *chip;
};
@@ -223,7 +202,8 @@ struct PnvPhb4PecClass {
const char *stk_compat;
int stk_compat_size;
uint64_t version;
- const uint32_t *num_stacks;
+ const uint32_t *num_phbs;
+ const char *rp_model;
};
#endif /* PCI_HOST_PNV_PHB4_H */
diff --git a/target/ppc/cpu-models.c b/target/ppc/cpu-models.c
index c9fcb6119f..764afe5a2a 100644
--- a/target/ppc/cpu-models.c
+++ b/target/ppc/cpu-models.c
@@ -636,13 +636,13 @@
"PowerPC 7410 v1.3 (G4)")
POWERPC_DEF("7410_v1.4", CPU_POWERPC_7410_v14, 7410,
"PowerPC 7410 v1.4 (G4)")
- POWERPC_DEF("7448_v1.0", CPU_POWERPC_7448_v10, 7400,
+ POWERPC_DEF("7448_v1.0", CPU_POWERPC_7448_v10, 7445,
"PowerPC 7448 v1.0 (G4)")
- POWERPC_DEF("7448_v1.1", CPU_POWERPC_7448_v11, 7400,
+ POWERPC_DEF("7448_v1.1", CPU_POWERPC_7448_v11, 7445,
"PowerPC 7448 v1.1 (G4)")
- POWERPC_DEF("7448_v2.0", CPU_POWERPC_7448_v20, 7400,
+ POWERPC_DEF("7448_v2.0", CPU_POWERPC_7448_v20, 7445,
"PowerPC 7448 v2.0 (G4)")
- POWERPC_DEF("7448_v2.1", CPU_POWERPC_7448_v21, 7400,
+ POWERPC_DEF("7448_v2.1", CPU_POWERPC_7448_v21, 7445,
"PowerPC 7448 v2.1 (G4)")
POWERPC_DEF("7450_v1.0", CPU_POWERPC_7450_v10, 7450,
"PowerPC 7450 v1.0 (G4)")
@@ -750,7 +750,6 @@
/* PowerPC CPU aliases */
PowerPCCPUAlias ppc_cpu_aliases[] = {
- { "403", "403gc" },
{ "405", "405d4" },
{ "405cr", "405crc" },
{ "405gp", "405gpd" },
diff --git a/target/ppc/cpu.h b/target/ppc/cpu.h
index f99cd0ea92..2560b70c5f 100644
--- a/target/ppc/cpu.h
+++ b/target/ppc/cpu.h
@@ -1133,7 +1133,6 @@ struct CPUPPCState {
int nb_pids; /* Number of available PID registers */
int tlb_type; /* Type of TLB we're dealing with */
ppc_tlb_t tlb; /* TLB is optional. Allocate them only if needed */
- target_ulong pb[4]; /* 403 dedicated access protection registers */
bool tlb_dirty; /* Set to non-zero when modifying TLB */
bool kvm_sw_tlb; /* non-zero if KVM SW TLB API is active */
uint32_t tlb_need_flush; /* Delayed flush needed */
diff --git a/target/ppc/helper.h b/target/ppc/helper.h
index f9c72dcd50..d318837ea5 100644
--- a/target/ppc/helper.h
+++ b/target/ppc/helper.h
@@ -703,7 +703,6 @@ DEF_HELPER_FLAGS_2(store_hdecr, TCG_CALL_NO_RWG, void, env, tl)
DEF_HELPER_FLAGS_2(store_vtb, TCG_CALL_NO_RWG, void, env, tl)
DEF_HELPER_FLAGS_2(store_tbu40, TCG_CALL_NO_RWG, void, env, tl)
DEF_HELPER_2(store_hid0_601, void, env, tl)
-DEF_HELPER_3(store_403_pbr, void, env, i32, tl)
DEF_HELPER_FLAGS_1(load_40x_pit, TCG_CALL_NO_RWG, tl, env)
DEF_HELPER_FLAGS_2(store_40x_pit, TCG_CALL_NO_RWG, void, env, tl)
DEF_HELPER_FLAGS_2(store_40x_tcr, TCG_CALL_NO_RWG, void, env, tl)
diff --git a/target/ppc/machine.c b/target/ppc/machine.c
index 756d8de5d8..733a22d744 100644
--- a/target/ppc/machine.c
+++ b/target/ppc/machine.c
@@ -23,117 +23,6 @@ static void post_load_update_msr(CPUPPCState *env)
pmu_update_summaries(env);
}
-static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
-{
- PowerPCCPU *cpu = opaque;
- CPUPPCState *env = &cpu->env;
- unsigned int i, j;
- target_ulong sdr1;
- uint32_t fpscr, vscr;
-#if defined(TARGET_PPC64)
- int32_t slb_nr;
-#endif
- target_ulong xer;
-
- for (i = 0; i < 32; i++) {
- qemu_get_betls(f, &env->gpr[i]);
- }
-#if !defined(TARGET_PPC64)
- for (i = 0; i < 32; i++) {
- qemu_get_betls(f, &env->gprh[i]);
- }
-#endif
- qemu_get_betls(f, &env->lr);
- qemu_get_betls(f, &env->ctr);
- for (i = 0; i < 8; i++) {
- qemu_get_be32s(f, &env->crf[i]);
- }
- qemu_get_betls(f, &xer);
- cpu_write_xer(env, xer);
- qemu_get_betls(f, &env->reserve_addr);
- qemu_get_betls(f, &env->msr);
- for (i = 0; i < 4; i++) {
- qemu_get_betls(f, &env->tgpr[i]);
- }
- for (i = 0; i < 32; i++) {
- union {
- float64 d;
- uint64_t l;
- } u;
- u.l = qemu_get_be64(f);
- *cpu_fpr_ptr(env, i) = u.d;
- }
- qemu_get_be32s(f, &fpscr);
- env->fpscr = fpscr;
- qemu_get_sbe32s(f, &env->access_type);
-#if defined(TARGET_PPC64)
- qemu_get_betls(f, &env->spr[SPR_ASR]);
- qemu_get_sbe32s(f, &slb_nr);
-#endif
- qemu_get_betls(f, &sdr1);
- for (i = 0; i < 32; i++) {
- qemu_get_betls(f, &env->sr[i]);
- }
- for (i = 0; i < 2; i++) {
- for (j = 0; j < 8; j++) {
- qemu_get_betls(f, &env->DBAT[i][j]);
- }
- }
- for (i = 0; i < 2; i++) {
- for (j = 0; j < 8; j++) {
- qemu_get_betls(f, &env->IBAT[i][j]);
- }
- }
- qemu_get_sbe32s(f, &env->nb_tlb);
- qemu_get_sbe32s(f, &env->tlb_per_way);
- qemu_get_sbe32s(f, &env->nb_ways);
- qemu_get_sbe32s(f, &env->last_way);
- qemu_get_sbe32s(f, &env->id_tlbs);
- qemu_get_sbe32s(f, &env->nb_pids);
- if (env->tlb.tlb6) {
- /* XXX assumes 6xx */
- for (i = 0; i < env->nb_tlb; i++) {
- qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
- qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
- qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
- }
- }
- for (i = 0; i < 4; i++) {
- qemu_get_betls(f, &env->pb[i]);
- }
- for (i = 0; i < 1024; i++) {
- qemu_get_betls(f, &env->spr[i]);
- }
- if (!cpu->vhyp) {
- ppc_store_sdr1(env, sdr1);
- }
- qemu_get_be32s(f, &vscr);
- ppc_store_vscr(env, vscr);
- qemu_get_be64s(f, &env->spe_acc);
- qemu_get_be32s(f, &env->spe_fscr);
- qemu_get_betls(f, &env->msr_mask);
- qemu_get_be32s(f, &env->flags);
- qemu_get_sbe32s(f, &env->error_code);
- qemu_get_be32s(f, &env->pending_interrupts);
- qemu_get_be32s(f, &env->irq_input_state);
- for (i = 0; i < POWERPC_EXCP_NB; i++) {
- qemu_get_betls(f, &env->excp_vectors[i]);
- }
- qemu_get_betls(f, &env->excp_prefix);
- qemu_get_betls(f, &env->ivor_mask);
- qemu_get_betls(f, &env->ivpr_mask);
- qemu_get_betls(f, &env->hreset_vector);
- qemu_get_betls(f, &env->nip);
- qemu_get_sbetl(f); /* Discard unused hflags */
- qemu_get_sbetl(f); /* Discard unused hflags_nmsr */
- qemu_get_sbe32(f); /* Discard unused mmu_idx */
- qemu_get_sbe32(f); /* Discard unused power_mode */
-
- post_load_update_msr(env);
-
- return 0;
-}
-
static int get_avr(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
@@ -709,25 +598,6 @@ static bool tlbemb_needed(void *opaque)
return env->nb_tlb && (env->tlb_type == TLB_EMB);
}
-static bool pbr403_needed(void *opaque)
-{
- PowerPCCPU *cpu = opaque;
- uint32_t pvr = cpu->env.spr[SPR_PVR];
-
- return (pvr & 0xffff0000) == 0x00200000;
-}
-
-static const VMStateDescription vmstate_pbr403 = {
- .name = "cpu/pbr403",
- .version_id = 1,
- .minimum_version_id = 1,
- .needed = pbr403_needed,
- .fields = (VMStateField[]) {
- VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
- VMSTATE_END_OF_LIST()
- },
-};
-
static const VMStateDescription vmstate_tlbemb = {
.name = "cpu/tlb6xx",
.version_id = 1,
@@ -739,13 +609,8 @@ static const VMStateDescription vmstate_tlbemb = {
env.nb_tlb,
vmstate_tlbemb_entry,
ppcemb_tlb_t),
- /* 403 protection registers */
VMSTATE_END_OF_LIST()
},
- .subsections = (const VMStateDescription*[]) {
- &vmstate_pbr403,
- NULL
- }
};
static const VMStateDescription vmstate_tlbmas_entry = {
@@ -808,7 +673,6 @@ const VMStateDescription vmstate_ppc_cpu = {
.version_id = 5,
.minimum_version_id = 5,
.minimum_version_id_old = 4,
- .load_state_old = cpu_load_old,
.pre_save = cpu_pre_save,
.post_load = cpu_post_load,
.fields = (VMStateField[]) {
diff --git a/target/ppc/misc_helper.c b/target/ppc/misc_helper.c
index c33f5f39b9..1bcefa7c84 100644
--- a/target/ppc/misc_helper.c
+++ b/target/ppc/misc_helper.c
@@ -226,15 +226,6 @@ void helper_store_hid0_601(CPUPPCState *env, target_ulong val)
}
}
-void helper_store_403_pbr(CPUPPCState *env, uint32_t num, target_ulong value)
-{
- if (likely(env->pb[num] != value)) {
- env->pb[num] = value;
- /* Should be optimized */
- tlb_flush(env_cpu(env));
- }
-}
-
void helper_store_40x_dbcr0(CPUPPCState *env, target_ulong val)
{
/* Bits 26 & 27 affect single-stepping. */
diff --git a/target/ppc/translate.c b/target/ppc/translate.c
index 40232201bb..9d2adc0cae 100644
--- a/target/ppc/translate.c
+++ b/target/ppc/translate.c
@@ -911,22 +911,8 @@ void spr_write_booke_tsr(DisasContext *ctx, int sprn, int gprn)
}
#endif
-/* PowerPC 403 specific registers */
-/* PBL1 / PBU1 / PBL2 / PBU2 */
+/* PIR */
#if !defined(CONFIG_USER_ONLY)
-void spr_read_403_pbr(DisasContext *ctx, int gprn, int sprn)
-{
- tcg_gen_ld_tl(cpu_gpr[gprn], cpu_env,
- offsetof(CPUPPCState, pb[sprn - SPR_403_PBL1]));
-}
-
-void spr_write_403_pbr(DisasContext *ctx, int sprn, int gprn)
-{
- TCGv_i32 t0 = tcg_const_i32(sprn - SPR_403_PBL1);
- gen_helper_store_403_pbr(cpu_env, t0, cpu_gpr[gprn]);
- tcg_temp_free_i32(t0);
-}
-
void spr_write_pir(DisasContext *ctx, int sprn, int gprn)
{
TCGv t0 = tcg_temp_new();
diff --git a/tests/avocado/ppc_74xx.py b/tests/avocado/ppc_74xx.py
new file mode 100644
index 0000000000..556a9a7da9
--- /dev/null
+++ b/tests/avocado/ppc_74xx.py
@@ -0,0 +1,123 @@
+# Smoke tests for 74xx cpus (aka G4).
+#
+# Copyright (c) 2021, IBM Corp.
+#
+# This work is licensed under the terms of the GNU GPL, version 2 or
+# later. See the COPYING file in the top-level directory.
+
+from avocado_qemu import QemuSystemTest
+from avocado_qemu import wait_for_console_pattern
+
+class ppc74xxCpu(QemuSystemTest):
+ """
+ :avocado: tags=arch:ppc
+ """
+ timeout = 5
+
+ def test_ppc_7400(self):
+ """
+ :avocado: tags=cpu:7400
+ """
+ self.vm.set_console()
+ self.vm.launch()
+ wait_for_console_pattern(self, '>> OpenBIOS')
+ wait_for_console_pattern(self, '>> CPU type PowerPC,G4')
+
+ def test_ppc_7410(self):
+ """
+ :avocado: tags=cpu:7410
+ """
+ self.vm.set_console()
+ self.vm.launch()
+ wait_for_console_pattern(self, '>> OpenBIOS')
+ wait_for_console_pattern(self, '>> CPU type PowerPC,74xx')
+
+ def test_ppc_7441(self):
+ """
+ :avocado: tags=cpu:7441
+ """
+ self.vm.set_console()
+ self.vm.launch()
+ wait_for_console_pattern(self, '>> OpenBIOS')
+ wait_for_console_pattern(self, '>> CPU type PowerPC,G4')
+
+ def test_ppc_7445(self):
+ """
+ :avocado: tags=cpu:7445
+ """
+ self.vm.set_console()
+ self.vm.launch()
+ wait_for_console_pattern(self, '>> OpenBIOS')
+ wait_for_console_pattern(self, '>> CPU type PowerPC,G4')
+
+ def test_ppc_7447(self):
+ """
+ :avocado: tags=cpu:7447
+ """
+ self.vm.set_console()
+ self.vm.launch()
+ wait_for_console_pattern(self, '>> OpenBIOS')
+ wait_for_console_pattern(self, '>> CPU type PowerPC,G4')
+
+ def test_ppc_7447a(self):
+ """
+ :avocado: tags=cpu:7447a
+ """
+ self.vm.set_console()
+ self.vm.launch()
+ wait_for_console_pattern(self, '>> OpenBIOS')
+ wait_for_console_pattern(self, '>> CPU type PowerPC,G4')
+
+ def test_ppc_7448(self):
+ """
+ :avocado: tags=cpu:7448
+ """
+ self.vm.set_console()
+ self.vm.launch()
+ wait_for_console_pattern(self, '>> OpenBIOS')
+ wait_for_console_pattern(self, '>> CPU type PowerPC,MPC86xx')
+
+ def test_ppc_7450(self):
+ """
+ :avocado: tags=cpu:7450
+ """
+ self.vm.set_console()
+ self.vm.launch()
+ wait_for_console_pattern(self, '>> OpenBIOS')
+ wait_for_console_pattern(self, '>> CPU type PowerPC,G4')
+
+ def test_ppc_7451(self):
+ """
+ :avocado: tags=cpu:7451
+ """
+ self.vm.set_console()
+ self.vm.launch()
+ wait_for_console_pattern(self, '>> OpenBIOS')
+ wait_for_console_pattern(self, '>> CPU type PowerPC,G4')
+
+ def test_ppc_7455(self):
+ """
+ :avocado: tags=cpu:7455
+ """
+ self.vm.set_console()
+ self.vm.launch()
+ wait_for_console_pattern(self, '>> OpenBIOS')
+ wait_for_console_pattern(self, '>> CPU type PowerPC,G4')
+
+ def test_ppc_7457(self):
+ """
+ :avocado: tags=cpu:7457
+ """
+ self.vm.set_console()
+ self.vm.launch()
+ wait_for_console_pattern(self, '>> OpenBIOS')
+ wait_for_console_pattern(self, '>> CPU type PowerPC,G4')
+
+ def test_ppc_7457a(self):
+ """
+ :avocado: tags=cpu:7457a
+ """
+ self.vm.set_console()
+ self.vm.launch()
+ wait_for_console_pattern(self, '>> OpenBIOS')
+ wait_for_console_pattern(self, '>> CPU type PowerPC,G4')