diff options
author | Anthony Liguori <aliguori@us.ibm.com> | 2010-12-17 08:25:17 -0600 |
---|---|---|
committer | Anthony Liguori <aliguori@us.ibm.com> | 2010-12-17 08:25:17 -0600 |
commit | 9d861fa595c93f22d1d55b723a691531c36c9672 (patch) | |
tree | 85140ebe32222b5cf367382fd9d72f8ab01b1a91 | |
parent | 4a493c6fac4db5d9094906a1e9b6d19c1dfff1ed (diff) | |
parent | 72f24d155ceffa0eb888fd277fa09584bcd1b04c (diff) |
Merge remote branch 'arm/for-anthony' into staging
-rw-r--r-- | fpu/softfloat-specialize.h | 38 | ||||
-rw-r--r-- | fpu/softfloat.c | 136 | ||||
-rw-r--r-- | fpu/softfloat.h | 16 | ||||
-rw-r--r-- | linux-user/main.c | 2 | ||||
-rw-r--r-- | target-arm/helper.c | 43 | ||||
-rw-r--r-- | target-arm/translate.c | 119 |
6 files changed, 312 insertions, 42 deletions
diff --git a/fpu/softfloat-specialize.h b/fpu/softfloat-specialize.h index 8e6aceb552..07468786f9 100644 --- a/fpu/softfloat-specialize.h +++ b/fpu/softfloat-specialize.h @@ -102,6 +102,25 @@ int float32_is_signaling_nan( float32 a_ ) } /*---------------------------------------------------------------------------- +| Returns a quiet NaN if the single-precision floating point value `a' is a +| signaling NaN; otherwise returns `a'. +*----------------------------------------------------------------------------*/ + +float32 float32_maybe_silence_nan( float32 a_ ) +{ + if (float32_is_signaling_nan(a_)) { + uint32_t a = float32_val(a_); +#if SNAN_BIT_IS_ONE + a &= ~(1 << 22); +#else + a |= (1 << 22); +#endif + return make_float32(a); + } + return a_; +} + +/*---------------------------------------------------------------------------- | Returns the result of converting the single-precision floating-point NaN | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid | exception is raised. @@ -234,6 +253,25 @@ int float64_is_signaling_nan( float64 a_ ) } /*---------------------------------------------------------------------------- +| Returns a quiet NaN if the double-precision floating point value `a' is a +| signaling NaN; otherwise returns `a'. +*----------------------------------------------------------------------------*/ + +float64 float64_maybe_silence_nan( float64 a_ ) +{ + if (float64_is_signaling_nan(a_)) { + bits64 a = float64_val(a_); +#if SNAN_BIT_IS_ONE + a &= ~LIT64( 0x0008000000000000 ); +#else + a |= LIT64( 0x0008000000000000 ); +#endif + return make_float64(a); + } + return a_; +} + +/*---------------------------------------------------------------------------- | Returns the result of converting the double-precision floating-point NaN | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid | exception is raised. diff --git a/fpu/softfloat.c b/fpu/softfloat.c index 0b8279798c..6f5b05d5fe 100644 --- a/fpu/softfloat.c +++ b/fpu/softfloat.c @@ -1355,6 +1355,55 @@ int32 float32_to_int32_round_to_zero( float32 a STATUS_PARAM ) /*---------------------------------------------------------------------------- | Returns the result of converting the single-precision floating-point value +| `a' to the 16-bit two's complement integer format. The conversion is +| performed according to the IEC/IEEE Standard for Binary Floating-Point +| Arithmetic, except that the conversion is always rounded toward zero. +| If `a' is a NaN, the largest positive integer is returned. Otherwise, if +| the conversion overflows, the largest integer with the same sign as `a' is +| returned. +*----------------------------------------------------------------------------*/ + +int16 float32_to_int16_round_to_zero( float32 a STATUS_PARAM ) +{ + flag aSign; + int16 aExp, shiftCount; + bits32 aSig; + int32 z; + + aSig = extractFloat32Frac( a ); + aExp = extractFloat32Exp( a ); + aSign = extractFloat32Sign( a ); + shiftCount = aExp - 0x8E; + if ( 0 <= shiftCount ) { + if ( float32_val(a) != 0xC7000000 ) { + float_raise( float_flag_invalid STATUS_VAR); + if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) { + return 0x7FFF; + } + } + return (sbits32) 0xffff8000; + } + else if ( aExp <= 0x7E ) { + if ( aExp | aSig ) { + STATUS(float_exception_flags) |= float_flag_inexact; + } + return 0; + } + shiftCount -= 0x10; + aSig = ( aSig | 0x00800000 )<<8; + z = aSig>>( - shiftCount ); + if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) { + STATUS(float_exception_flags) |= float_flag_inexact; + } + if ( aSign ) { + z = - z; + } + return z; + +} + +/*---------------------------------------------------------------------------- +| Returns the result of converting the single-precision floating-point value | `a' to the 64-bit two's complement integer format. The conversion is | performed according to the IEC/IEEE Standard for Binary Floating-Point | Arithmetic---which means in particular that the conversion is rounded @@ -2412,6 +2461,57 @@ int32 float64_to_int32_round_to_zero( float64 a STATUS_PARAM ) /*---------------------------------------------------------------------------- | Returns the result of converting the double-precision floating-point value +| `a' to the 16-bit two's complement integer format. The conversion is +| performed according to the IEC/IEEE Standard for Binary Floating-Point +| Arithmetic, except that the conversion is always rounded toward zero. +| If `a' is a NaN, the largest positive integer is returned. Otherwise, if +| the conversion overflows, the largest integer with the same sign as `a' is +| returned. +*----------------------------------------------------------------------------*/ + +int16 float64_to_int16_round_to_zero( float64 a STATUS_PARAM ) +{ + flag aSign; + int16 aExp, shiftCount; + bits64 aSig, savedASig; + int32 z; + + aSig = extractFloat64Frac( a ); + aExp = extractFloat64Exp( a ); + aSign = extractFloat64Sign( a ); + if ( 0x40E < aExp ) { + if ( ( aExp == 0x7FF ) && aSig ) { + aSign = 0; + } + goto invalid; + } + else if ( aExp < 0x3FF ) { + if ( aExp || aSig ) { + STATUS(float_exception_flags) |= float_flag_inexact; + } + return 0; + } + aSig |= LIT64( 0x0010000000000000 ); + shiftCount = 0x433 - aExp; + savedASig = aSig; + aSig >>= shiftCount; + z = aSig; + if ( aSign ) { + z = - z; + } + if ( ( (int16_t)z < 0 ) ^ aSign ) { + invalid: + float_raise( float_flag_invalid STATUS_VAR); + return aSign ? (sbits32) 0xffff8000 : 0x7FFF; + } + if ( ( aSig<<shiftCount ) != savedASig ) { + STATUS(float_exception_flags) |= float_flag_inexact; + } + return z; +} + +/*---------------------------------------------------------------------------- +| Returns the result of converting the double-precision floating-point value | `a' to the 64-bit two's complement integer format. The conversion is | performed according to the IEC/IEEE Standard for Binary Floating-Point | Arithmetic---which means in particular that the conversion is rounded @@ -5632,6 +5732,24 @@ unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM ) return res; } +unsigned int float32_to_uint16_round_to_zero( float32 a STATUS_PARAM ) +{ + int64_t v; + unsigned int res; + + v = float32_to_int64_round_to_zero(a STATUS_VAR); + if (v < 0) { + res = 0; + float_raise( float_flag_invalid STATUS_VAR); + } else if (v > 0xffff) { + res = 0xffff; + float_raise( float_flag_invalid STATUS_VAR); + } else { + res = v; + } + return res; +} + unsigned int float64_to_uint32( float64 a STATUS_PARAM ) { int64_t v; @@ -5668,6 +5786,24 @@ unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM ) return res; } +unsigned int float64_to_uint16_round_to_zero( float64 a STATUS_PARAM ) +{ + int64_t v; + unsigned int res; + + v = float64_to_int64_round_to_zero(a STATUS_VAR); + if (v < 0) { + res = 0; + float_raise( float_flag_invalid STATUS_VAR); + } else if (v > 0xffff) { + res = 0xffff; + float_raise( float_flag_invalid STATUS_VAR); + } else { + res = v; + } + return res; +} + /* FIXME: This looks broken. */ uint64_t float64_to_uint64 (float64 a STATUS_PARAM) { diff --git a/fpu/softfloat.h b/fpu/softfloat.h index 9528825522..1c1004de97 100644 --- a/fpu/softfloat.h +++ b/fpu/softfloat.h @@ -251,6 +251,8 @@ float32 float16_to_float32( bits16, flag STATUS_PARAM ); /*---------------------------------------------------------------------------- | Software IEC/IEEE single-precision conversion routines. *----------------------------------------------------------------------------*/ +int float32_to_int16_round_to_zero( float32 STATUS_PARAM ); +unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM ); int float32_to_int32( float32 STATUS_PARAM ); int float32_to_int32_round_to_zero( float32 STATUS_PARAM ); unsigned int float32_to_uint32( float32 STATUS_PARAM ); @@ -287,6 +289,7 @@ int float32_compare( float32, float32 STATUS_PARAM ); int float32_compare_quiet( float32, float32 STATUS_PARAM ); int float32_is_nan( float32 ); int float32_is_signaling_nan( float32 ); +float32 float32_maybe_silence_nan( float32 ); float32 float32_scalbn( float32, int STATUS_PARAM ); INLINE float32 float32_abs(float32 a) @@ -314,6 +317,11 @@ INLINE int float32_is_zero(float32 a) return (float32_val(a) & 0x7fffffff) == 0; } +INLINE int float32_is_any_nan(float32 a) +{ + return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL); +} + #define float32_zero make_float32(0) #define float32_one make_float32(0x3f800000) #define float32_ln2 make_float32(0x3f317218) @@ -321,6 +329,8 @@ INLINE int float32_is_zero(float32 a) /*---------------------------------------------------------------------------- | Software IEC/IEEE double-precision conversion routines. *----------------------------------------------------------------------------*/ +int float64_to_int16_round_to_zero( float64 STATUS_PARAM ); +unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM ); int float64_to_int32( float64 STATUS_PARAM ); int float64_to_int32_round_to_zero( float64 STATUS_PARAM ); unsigned int float64_to_uint32( float64 STATUS_PARAM ); @@ -359,6 +369,7 @@ int float64_compare( float64, float64 STATUS_PARAM ); int float64_compare_quiet( float64, float64 STATUS_PARAM ); int float64_is_nan( float64 a ); int float64_is_signaling_nan( float64 ); +float64 float64_maybe_silence_nan( float64 ); float64 float64_scalbn( float64, int STATUS_PARAM ); INLINE float64 float64_abs(float64 a) @@ -386,6 +397,11 @@ INLINE int float64_is_zero(float64 a) return (float64_val(a) & 0x7fffffffffffffffLL) == 0; } +INLINE int float64_is_any_nan(float64 a) +{ + return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL); +} + #define float64_zero make_float64(0) #define float64_one make_float64(0x3ff0000000000000LL) #define float64_ln2 make_float64(0x3fe62e42fefa39efLL) diff --git a/linux-user/main.c b/linux-user/main.c index 7d41d4ab88..0d627d68dd 100644 --- a/linux-user/main.c +++ b/linux-user/main.c @@ -589,7 +589,7 @@ static int do_strex(CPUARMState *env) } if (size == 3) { val = env->regs[(env->exclusive_info >> 12) & 0xf]; - segv = put_user_u32(val, addr); + segv = put_user_u32(val, addr + 4); if (segv) { env->cp15.c6_data = addr + 4; goto done; diff --git a/target-arm/helper.c b/target-arm/helper.c index 2a1f44860b..9ba2f4fe15 100644 --- a/target-arm/helper.c +++ b/target-arm/helper.c @@ -2463,53 +2463,85 @@ float64 VFP_HELPER(sito, d)(float32 x, CPUState *env) /* Float to integer conversion. */ float32 VFP_HELPER(toui, s)(float32 x, CPUState *env) { + if (float32_is_any_nan(x)) { + return float32_zero; + } return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status)); } float32 VFP_HELPER(toui, d)(float64 x, CPUState *env) { + if (float64_is_any_nan(x)) { + return float32_zero; + } return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status)); } float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env) { + if (float32_is_any_nan(x)) { + return float32_zero; + } return vfp_itos(float32_to_int32(x, &env->vfp.fp_status)); } float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env) { + if (float64_is_any_nan(x)) { + return float32_zero; + } return vfp_itos(float64_to_int32(x, &env->vfp.fp_status)); } float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env) { + if (float32_is_any_nan(x)) { + return float32_zero; + } return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status)); } float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env) { + if (float64_is_any_nan(x)) { + return float32_zero; + } return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status)); } float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env) { + if (float32_is_any_nan(x)) { + return float32_zero; + } return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status)); } float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env) { + if (float64_is_any_nan(x)) { + return float32_zero; + } return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status)); } /* floating point conversion */ float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env) { - return float32_to_float64(x, &env->vfp.fp_status); + float64 r = float32_to_float64(x, &env->vfp.fp_status); + /* ARM requires that S<->D conversion of any kind of NaN generates + * a quiet NaN by forcing the most significant frac bit to 1. + */ + return float64_maybe_silence_nan(r); } float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env) { - return float64_to_float32(x, &env->vfp.fp_status); + float32 r = float64_to_float32(x, &env->vfp.fp_status); + /* ARM requires that S<->D conversion of any kind of NaN generates + * a quiet NaN by forcing the most significant frac bit to 1. + */ + return float32_maybe_silence_nan(r); } /* VFP3 fixed point conversion. */ @@ -2517,15 +2549,18 @@ float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env) ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \ { \ ftype tmp; \ - tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \ + tmp = sign##int32_to_##ftype ((itype##_t)vfp_##p##toi(x), \ &env->vfp.fp_status); \ return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \ } \ ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \ { \ ftype tmp; \ + if (ftype##_is_any_nan(x)) { \ + return ftype##_zero; \ + } \ tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \ - return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \ + return vfp_ito##p(ftype##_to_##itype##_round_to_zero(tmp, \ &env->vfp.fp_status)); \ } diff --git a/target-arm/translate.c b/target-arm/translate.c index 99464ab730..d4a0666be5 100644 --- a/target-arm/translate.c +++ b/target-arm/translate.c @@ -2870,16 +2870,18 @@ static int disas_vfp_insn(CPUState * env, DisasContext *s, uint32_t insn) VFP_DREG_N(rn, insn); } - if (op == 15 && (rn == 15 || rn > 17)) { + if (op == 15 && (rn == 15 || ((rn & 0x1c) == 0x18))) { /* Integer or single precision destination. */ rd = VFP_SREG_D(insn); } else { VFP_DREG_D(rd, insn); } - - if (op == 15 && (rn == 16 || rn == 17)) { - /* Integer source. */ - rm = ((insn << 1) & 0x1e) | ((insn >> 5) & 1); + if (op == 15 && + (((rn & 0x1c) == 0x10) || ((rn & 0x14) == 0x14))) { + /* VCVT from int is always from S reg regardless of dp bit. + * VCVT with immediate frac_bits has same format as SREG_M + */ + rm = VFP_SREG_M(insn); } else { VFP_DREG_M(rm, insn); } @@ -2891,6 +2893,9 @@ static int disas_vfp_insn(CPUState * env, DisasContext *s, uint32_t insn) } else { rd = VFP_SREG_D(insn); } + /* NB that we implicitly rely on the encoding for the frac_bits + * in VCVT of fixed to float being the same as that of an SREG_M + */ rm = VFP_SREG_M(insn); } @@ -3179,8 +3184,8 @@ static int disas_vfp_insn(CPUState * env, DisasContext *s, uint32_t insn) /* Write back the result. */ if (op == 15 && (rn >= 8 && rn <= 11)) ; /* Comparison, do nothing. */ - else if (op == 15 && rn > 17) - /* Integer result. */ + else if (op == 15 && dp && ((rn & 0x1c) == 0x18)) + /* VCVT double to int: always integer result. */ gen_mov_vreg_F0(0, rd); else if (op == 15 && rn == 15) /* conversion */ @@ -4845,11 +4850,15 @@ static int disas_neon_data_insn(CPUState * env, DisasContext *s, uint32_t insn) } neon_store_reg64(cpu_V0, rd + pass); } - } else if (op == 15 || op == 16) { + } else if (op >= 14) { /* VCVT fixed-point. */ + /* We have already masked out the must-be-1 top bit of imm6, + * hence this 32-shift where the ARM ARM has 64-imm6. + */ + shift = 32 - shift; for (pass = 0; pass < (q ? 4 : 2); pass++) { tcg_gen_ld_f32(cpu_F0s, cpu_env, neon_reg_offset(rm, pass)); - if (op & 1) { + if (!(op & 1)) { if (u) gen_vfp_ulto(0, shift); else @@ -5655,16 +5664,16 @@ static int disas_neon_data_insn(CPUState * env, DisasContext *s, uint32_t insn) gen_helper_rsqrte_f32(cpu_F0s, cpu_F0s, cpu_env); break; case 60: /* VCVT.F32.S32 */ - gen_vfp_tosiz(0); + gen_vfp_sito(0); break; case 61: /* VCVT.F32.U32 */ - gen_vfp_touiz(0); + gen_vfp_uito(0); break; case 62: /* VCVT.S32.F32 */ - gen_vfp_sito(0); + gen_vfp_tosiz(0); break; case 63: /* VCVT.U32.F32 */ - gen_vfp_uito(0); + gen_vfp_touiz(0); break; default: /* Reserved: 21, 29, 39-56 */ @@ -5926,8 +5935,10 @@ static void gen_load_exclusive(DisasContext *s, int rt, int rt2, tcg_gen_mov_i32(cpu_exclusive_val, tmp); store_reg(s, rt, tmp); if (size == 3) { - tcg_gen_addi_i32(addr, addr, 4); - tmp = gen_ld32(addr, IS_USER(s)); + TCGv tmp2 = new_tmp(); + tcg_gen_addi_i32(tmp2, addr, 4); + tmp = gen_ld32(tmp2, IS_USER(s)); + dead_tmp(tmp2); tcg_gen_mov_i32(cpu_exclusive_high, tmp); store_reg(s, rt2, tmp); } @@ -5987,7 +5998,7 @@ static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, if (size == 3) { TCGv tmp2 = new_tmp(); tcg_gen_addi_i32(tmp2, addr, 4); - tmp = gen_ld32(addr, IS_USER(s)); + tmp = gen_ld32(tmp2, IS_USER(s)); dead_tmp(tmp2); tcg_gen_brcond_i32(TCG_COND_NE, tmp, cpu_exclusive_high, fail_label); dead_tmp(tmp); @@ -6346,7 +6357,14 @@ static void disas_arm_insn(CPUState * env, DisasContext *s) dead_tmp(tmp2); store_reg(s, rd, tmp); break; - case 7: /* bkpt */ + case 7: + /* SMC instruction (op1 == 3) + and undefined instructions (op1 == 0 || op1 == 2) + will trap */ + if (op1 != 1) { + goto illegal_op; + } + /* bkpt */ gen_set_condexec(s); gen_set_pc_im(s->pc - 4); gen_exception(EXCP_BKPT); @@ -7601,27 +7619,54 @@ static int disas_thumb2_insn(CPUState *env, DisasContext *s, uint16_t insn_hw1) } } break; - case 5: /* Data processing register constant shift. */ - if (rn == 15) { - tmp = new_tmp(); - tcg_gen_movi_i32(tmp, 0); - } else { - tmp = load_reg(s, rn); - } - tmp2 = load_reg(s, rm); + case 5: + op = (insn >> 21) & 0xf; - shiftop = (insn >> 4) & 3; - shift = ((insn >> 6) & 3) | ((insn >> 10) & 0x1c); - conds = (insn & (1 << 20)) != 0; - logic_cc = (conds && thumb2_logic_op(op)); - gen_arm_shift_im(tmp2, shiftop, shift, logic_cc); - if (gen_thumb2_data_op(s, op, conds, 0, tmp, tmp2)) - goto illegal_op; - dead_tmp(tmp2); - if (rd != 15) { + if (op == 6) { + /* Halfword pack. */ + tmp = load_reg(s, rn); + tmp2 = load_reg(s, rm); + shift = ((insn >> 10) & 0x1c) | ((insn >> 6) & 0x3); + if (insn & (1 << 5)) { + /* pkhtb */ + if (shift == 0) + shift = 31; + tcg_gen_sari_i32(tmp2, tmp2, shift); + tcg_gen_andi_i32(tmp, tmp, 0xffff0000); + tcg_gen_ext16u_i32(tmp2, tmp2); + } else { + /* pkhbt */ + if (shift) + tcg_gen_shli_i32(tmp2, tmp2, shift); + tcg_gen_ext16u_i32(tmp, tmp); + tcg_gen_andi_i32(tmp2, tmp2, 0xffff0000); + } + tcg_gen_or_i32(tmp, tmp, tmp2); + dead_tmp(tmp2); store_reg(s, rd, tmp); } else { - dead_tmp(tmp); + /* Data processing register constant shift. */ + if (rn == 15) { + tmp = new_tmp(); + tcg_gen_movi_i32(tmp, 0); + } else { + tmp = load_reg(s, rn); + } + tmp2 = load_reg(s, rm); + + shiftop = (insn >> 4) & 3; + shift = ((insn >> 6) & 3) | ((insn >> 10) & 0x1c); + conds = (insn & (1 << 20)) != 0; + logic_cc = (conds && thumb2_logic_op(op)); + gen_arm_shift_im(tmp2, shiftop, shift, logic_cc); + if (gen_thumb2_data_op(s, op, conds, 0, tmp, tmp2)) + goto illegal_op; + dead_tmp(tmp2); + if (rd != 15) { + store_reg(s, rd, tmp); + } else { + dead_tmp(tmp); + } } break; case 13: /* Misc data processing. */ @@ -7686,9 +7731,9 @@ static int disas_thumb2_insn(CPUState *env, DisasContext *s, uint16_t insn_hw1) /* Saturating add/subtract. */ tmp = load_reg(s, rn); tmp2 = load_reg(s, rm); - if (op & 2) - gen_helper_double_saturate(tmp, tmp); if (op & 1) + gen_helper_double_saturate(tmp, tmp); + if (op & 2) gen_helper_sub_saturate(tmp, tmp2, tmp); else gen_helper_add_saturate(tmp, tmp, tmp2); |