diff options
author | Peter Maydell <peter.maydell@linaro.org> | 2021-06-04 10:04:11 +0100 |
---|---|---|
committer | Peter Maydell <peter.maydell@linaro.org> | 2021-06-04 10:04:11 +0100 |
commit | 5a95f5ce3cd5842cc8f61a91ecd4fb4e8d10104f (patch) | |
tree | 16fd0e145c30eda1500cb96918580d3d6fbb9b7b | |
parent | 453d9c61dd5681159051c6e4d07e7b2633de2e70 (diff) | |
parent | 5d0204b82ade0ea0630d6add894954135ee54ab1 (diff) |
Merge remote-tracking branch 'remotes/rth-gitlab/tags/pull-fpu-20210603' into staging
Finish conversion of float128 and floatx80 to FloatParts.
Implement float128_muladd and float128_{min,max}*.
Optimize int-to-float conversion with hard-float.
# gpg: Signature made Thu 03 Jun 2021 22:13:10 BST
# gpg: using RSA key 7A481E78868B4DB6A85A05C064DF38E8AF7E215F
# gpg: issuer "richard.henderson@linaro.org"
# gpg: Good signature from "Richard Henderson <richard.henderson@linaro.org>" [full]
# Primary key fingerprint: 7A48 1E78 868B 4DB6 A85A 05C0 64DF 38E8 AF7E 215F
* remotes/rth-gitlab/tags/pull-fpu-20210603: (29 commits)
softfloat: Use hard-float for {u}int64_to_float{32,64}
tests/fp: Enable more tests
softfloat: Convert modrem operations to FloatParts
softfloat: Move floatN_log2 to softfloat-parts.c.inc
softfloat: Convert float32_exp2 to FloatParts
softfloat: Convert floatx80 compare to FloatParts
softfloat: Convert floatx80_scalbn to FloatParts
softfloat: Convert floatx80 to integer to FloatParts
softfloat: Convert floatx80 float conversions to FloatParts
softfloat: Convert integer to floatx80 to FloatParts
softfloat: Convert floatx80_round_to_int to FloatParts
softfloat: Convert floatx80_round to FloatParts
softfloat: Convert floatx80_sqrt to FloatParts
softfloat: Convert floatx80_div to FloatParts
softfloat: Convert floatx80_mul to FloatParts
softfloat: Convert floatx80_add/sub to FloatParts
tests/fp/fp-test: Reverse order of floatx80 precision tests
softfloat: Adjust parts_uncanon_normal for floatx80
softfloat: Introduce Floatx80RoundPrec
softfloat: Reduce FloatFmt
...
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
-rw-r--r-- | fpu/softfloat-parts.c.inc | 747 | ||||
-rw-r--r-- | fpu/softfloat-specialize.c.inc | 340 | ||||
-rw-r--r-- | fpu/softfloat.c | 4417 | ||||
-rw-r--r-- | include/fpu/softfloat-helpers.h | 5 | ||||
-rw-r--r-- | include/fpu/softfloat-macros.h | 34 | ||||
-rw-r--r-- | include/fpu/softfloat-types.h | 10 | ||||
-rw-r--r-- | include/fpu/softfloat.h | 10 | ||||
-rw-r--r-- | linux-user/arm/nwfpe/fpa11.c | 41 | ||||
-rw-r--r-- | target/i386/tcg/fpu_helper.c | 79 | ||||
-rw-r--r-- | target/m68k/fpu_helper.c | 50 | ||||
-rw-r--r-- | target/m68k/softfloat.c | 90 | ||||
-rw-r--r-- | tests/fp/fp-test-log2.c | 118 | ||||
-rw-r--r-- | tests/fp/fp-test.c | 9 | ||||
-rw-r--r-- | tests/fp/meson.build | 27 | ||||
-rw-r--r-- | tests/fp/wrap.c.inc | 2 |
15 files changed, 2165 insertions, 3814 deletions
diff --git a/fpu/softfloat-parts.c.inc b/fpu/softfloat-parts.c.inc index 7f69da1d8f..dddee92d6e 100644 --- a/fpu/softfloat-parts.c.inc +++ b/fpu/softfloat-parts.c.inc @@ -140,46 +140,28 @@ static void partsN(canonicalize)(FloatPartsN *p, float_status *status, * fraction; these bits will be removed. The exponent will be biased * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0]. */ -static void partsN(uncanon)(FloatPartsN *p, float_status *s, - const FloatFmt *fmt) +static void partsN(uncanon_normal)(FloatPartsN *p, float_status *s, + const FloatFmt *fmt) { const int exp_max = fmt->exp_max; const int frac_shift = fmt->frac_shift; - const uint64_t frac_lsb = fmt->frac_lsb; - const uint64_t frac_lsbm1 = fmt->frac_lsbm1; const uint64_t round_mask = fmt->round_mask; - const uint64_t roundeven_mask = fmt->roundeven_mask; + const uint64_t frac_lsb = round_mask + 1; + const uint64_t frac_lsbm1 = round_mask ^ (round_mask >> 1); + const uint64_t roundeven_mask = round_mask | frac_lsb; uint64_t inc; - bool overflow_norm; + bool overflow_norm = false; int exp, flags = 0; - if (unlikely(p->cls != float_class_normal)) { - switch (p->cls) { - case float_class_zero: - p->exp = 0; - frac_clear(p); - return; - case float_class_inf: - g_assert(!fmt->arm_althp); - p->exp = fmt->exp_max; - frac_clear(p); - return; - case float_class_qnan: - case float_class_snan: - g_assert(!fmt->arm_althp); - p->exp = fmt->exp_max; - frac_shr(p, fmt->frac_shift); - return; - default: - break; - } - g_assert_not_reached(); - } - - overflow_norm = false; switch (s->float_rounding_mode) { case float_round_nearest_even: - inc = ((p->frac_lo & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0); + if (N > 64 && frac_lsb == 0) { + inc = ((p->frac_hi & 1) || (p->frac_lo & round_mask) != frac_lsbm1 + ? frac_lsbm1 : 0); + } else { + inc = ((p->frac_lo & roundeven_mask) != frac_lsbm1 + ? frac_lsbm1 : 0); + } break; case float_round_ties_away: inc = frac_lsbm1; @@ -200,7 +182,11 @@ static void partsN(uncanon)(FloatPartsN *p, float_status *s, overflow_norm = true; /* fall through */ case float_round_to_odd_inf: - inc = p->frac_lo & frac_lsb ? 0 : round_mask; + if (N > 64 && frac_lsb == 0) { + inc = p->frac_hi & 1 ? 0 : round_mask; + } else { + inc = p->frac_lo & frac_lsb ? 0 : round_mask; + } break; default: g_assert_not_reached(); @@ -215,8 +201,8 @@ static void partsN(uncanon)(FloatPartsN *p, float_status *s, p->frac_hi |= DECOMPOSED_IMPLICIT_BIT; exp++; } + p->frac_lo &= ~round_mask; } - frac_shr(p, frac_shift); if (fmt->arm_althp) { /* ARM Alt HP eschews Inf and NaN for a wider exponent. */ @@ -225,18 +211,21 @@ static void partsN(uncanon)(FloatPartsN *p, float_status *s, flags = float_flag_invalid; exp = exp_max; frac_allones(p); + p->frac_lo &= ~round_mask; } } else if (unlikely(exp >= exp_max)) { flags |= float_flag_overflow | float_flag_inexact; if (overflow_norm) { exp = exp_max - 1; frac_allones(p); + p->frac_lo &= ~round_mask; } else { p->cls = float_class_inf; exp = exp_max; frac_clear(p); } } + frac_shr(p, frac_shift); } else if (s->flush_to_zero) { flags |= float_flag_output_denormal; p->cls = float_class_zero; @@ -256,18 +245,29 @@ static void partsN(uncanon)(FloatPartsN *p, float_status *s, /* Need to recompute round-to-even/round-to-odd. */ switch (s->float_rounding_mode) { case float_round_nearest_even: - inc = ((p->frac_lo & roundeven_mask) != frac_lsbm1 - ? frac_lsbm1 : 0); + if (N > 64 && frac_lsb == 0) { + inc = ((p->frac_hi & 1) || + (p->frac_lo & round_mask) != frac_lsbm1 + ? frac_lsbm1 : 0); + } else { + inc = ((p->frac_lo & roundeven_mask) != frac_lsbm1 + ? frac_lsbm1 : 0); + } break; case float_round_to_odd: case float_round_to_odd_inf: - inc = p->frac_lo & frac_lsb ? 0 : round_mask; + if (N > 64 && frac_lsb == 0) { + inc = p->frac_hi & 1 ? 0 : round_mask; + } else { + inc = p->frac_lo & frac_lsb ? 0 : round_mask; + } break; default: break; } flags |= float_flag_inexact; frac_addi(p, p, inc); + p->frac_lo &= ~round_mask; } exp = (p->frac_hi & DECOMPOSED_IMPLICIT_BIT) != 0; @@ -284,6 +284,35 @@ static void partsN(uncanon)(FloatPartsN *p, float_status *s, float_raise(flags, s); } +static void partsN(uncanon)(FloatPartsN *p, float_status *s, + const FloatFmt *fmt) +{ + if (likely(p->cls == float_class_normal)) { + parts_uncanon_normal(p, s, fmt); + } else { + switch (p->cls) { + case float_class_zero: + p->exp = 0; + frac_clear(p); + return; + case float_class_inf: + g_assert(!fmt->arm_althp); + p->exp = fmt->exp_max; + frac_clear(p); + return; + case float_class_qnan: + case float_class_snan: + g_assert(!fmt->arm_althp); + p->exp = fmt->exp_max; + frac_shr(p, fmt->frac_shift); + return; + default: + break; + } + g_assert_not_reached(); + } +} + /* * Returns the result of adding or subtracting the values of the * floating-point values `a' and `b'. The operation is performed @@ -598,6 +627,246 @@ static FloatPartsN *partsN(div)(FloatPartsN *a, FloatPartsN *b, } /* + * Floating point remainder, per IEC/IEEE, or modulus. + */ +static FloatPartsN *partsN(modrem)(FloatPartsN *a, FloatPartsN *b, + uint64_t *mod_quot, float_status *s) +{ + int ab_mask = float_cmask(a->cls) | float_cmask(b->cls); + + if (likely(ab_mask == float_cmask_normal)) { + frac_modrem(a, b, mod_quot); + return a; + } + + if (mod_quot) { + *mod_quot = 0; + } + + /* All the NaN cases */ + if (unlikely(ab_mask & float_cmask_anynan)) { + return parts_pick_nan(a, b, s); + } + + /* Inf % N; N % 0 */ + if (a->cls == float_class_inf || b->cls == float_class_zero) { + float_raise(float_flag_invalid, s); + parts_default_nan(a, s); + return a; + } + + /* N % Inf; 0 % N */ + g_assert(b->cls == float_class_inf || a->cls == float_class_zero); + return a; +} + +/* + * Square Root + * + * The base algorithm is lifted from + * https://git.musl-libc.org/cgit/musl/tree/src/math/sqrtf.c + * https://git.musl-libc.org/cgit/musl/tree/src/math/sqrt.c + * https://git.musl-libc.org/cgit/musl/tree/src/math/sqrtl.c + * and is thus MIT licenced. + */ +static void partsN(sqrt)(FloatPartsN *a, float_status *status, + const FloatFmt *fmt) +{ + const uint32_t three32 = 3u << 30; + const uint64_t three64 = 3ull << 62; + uint32_t d32, m32, r32, s32, u32; /* 32-bit computation */ + uint64_t d64, m64, r64, s64, u64; /* 64-bit computation */ + uint64_t dh, dl, rh, rl, sh, sl, uh, ul; /* 128-bit computation */ + uint64_t d0h, d0l, d1h, d1l, d2h, d2l; + uint64_t discard; + bool exp_odd; + size_t index; + + if (unlikely(a->cls != float_class_normal)) { + switch (a->cls) { + case float_class_snan: + case float_class_qnan: + parts_return_nan(a, status); + return; + case float_class_zero: + return; + case float_class_inf: + if (unlikely(a->sign)) { + goto d_nan; + } + return; + default: + g_assert_not_reached(); + } + } + + if (unlikely(a->sign)) { + goto d_nan; + } + + /* + * Argument reduction. + * x = 4^e frac; with integer e, and frac in [1, 4) + * m = frac fixed point at bit 62, since we're in base 4. + * If base-2 exponent is odd, exchange that for multiply by 2, + * which results in no shift. + */ + exp_odd = a->exp & 1; + index = extract64(a->frac_hi, 57, 6) | (!exp_odd << 6); + if (!exp_odd) { + frac_shr(a, 1); + } + + /* + * Approximate r ~= 1/sqrt(m) and s ~= sqrt(m) when m in [1, 4). + * + * Initial estimate: + * 7-bit lookup table (1-bit exponent and 6-bit significand). + * + * The relative error (e = r0*sqrt(m)-1) of a linear estimate + * (r0 = a*m + b) is |e| < 0.085955 ~ 0x1.6p-4 at best; + * a table lookup is faster and needs one less iteration. + * The 7-bit table gives |e| < 0x1.fdp-9. + * + * A Newton-Raphson iteration for r is + * s = m*r + * d = s*r + * u = 3 - d + * r = r*u/2 + * + * Fixed point representations: + * m, s, d, u, three are all 2.30; r is 0.32 + */ + m64 = a->frac_hi; + m32 = m64 >> 32; + + r32 = rsqrt_tab[index] << 16; + /* |r*sqrt(m) - 1| < 0x1.FDp-9 */ + + s32 = ((uint64_t)m32 * r32) >> 32; + d32 = ((uint64_t)s32 * r32) >> 32; + u32 = three32 - d32; + + if (N == 64) { + /* float64 or smaller */ + + r32 = ((uint64_t)r32 * u32) >> 31; + /* |r*sqrt(m) - 1| < 0x1.7Bp-16 */ + + s32 = ((uint64_t)m32 * r32) >> 32; + d32 = ((uint64_t)s32 * r32) >> 32; + u32 = three32 - d32; + + if (fmt->frac_size <= 23) { + /* float32 or smaller */ + + s32 = ((uint64_t)s32 * u32) >> 32; /* 3.29 */ + s32 = (s32 - 1) >> 6; /* 9.23 */ + /* s < sqrt(m) < s + 0x1.08p-23 */ + + /* compute nearest rounded result to 2.23 bits */ + uint32_t d0 = (m32 << 16) - s32 * s32; + uint32_t d1 = s32 - d0; + uint32_t d2 = d1 + s32 + 1; + s32 += d1 >> 31; + a->frac_hi = (uint64_t)s32 << (64 - 25); + + /* increment or decrement for inexact */ + if (d2 != 0) { + a->frac_hi += ((int32_t)(d1 ^ d2) < 0 ? -1 : 1); + } + goto done; + } + + /* float64 */ + + r64 = (uint64_t)r32 * u32 * 2; + /* |r*sqrt(m) - 1| < 0x1.37-p29; convert to 64-bit arithmetic */ + mul64To128(m64, r64, &s64, &discard); + mul64To128(s64, r64, &d64, &discard); + u64 = three64 - d64; + + mul64To128(s64, u64, &s64, &discard); /* 3.61 */ + s64 = (s64 - 2) >> 9; /* 12.52 */ + + /* Compute nearest rounded result */ + uint64_t d0 = (m64 << 42) - s64 * s64; + uint64_t d1 = s64 - d0; + uint64_t d2 = d1 + s64 + 1; + s64 += d1 >> 63; + a->frac_hi = s64 << (64 - 54); + + /* increment or decrement for inexact */ + if (d2 != 0) { + a->frac_hi += ((int64_t)(d1 ^ d2) < 0 ? -1 : 1); + } + goto done; + } + + r64 = (uint64_t)r32 * u32 * 2; + /* |r*sqrt(m) - 1| < 0x1.7Bp-16; convert to 64-bit arithmetic */ + + mul64To128(m64, r64, &s64, &discard); + mul64To128(s64, r64, &d64, &discard); + u64 = three64 - d64; + mul64To128(u64, r64, &r64, &discard); + r64 <<= 1; + /* |r*sqrt(m) - 1| < 0x1.a5p-31 */ + + mul64To128(m64, r64, &s64, &discard); + mul64To128(s64, r64, &d64, &discard); + u64 = three64 - d64; + mul64To128(u64, r64, &rh, &rl); + add128(rh, rl, rh, rl, &rh, &rl); + /* |r*sqrt(m) - 1| < 0x1.c001p-59; change to 128-bit arithmetic */ + + mul128To256(a->frac_hi, a->frac_lo, rh, rl, &sh, &sl, &discard, &discard); + mul128To256(sh, sl, rh, rl, &dh, &dl, &discard, &discard); + sub128(three64, 0, dh, dl, &uh, &ul); + mul128To256(uh, ul, sh, sl, &sh, &sl, &discard, &discard); /* 3.125 */ + /* -0x1p-116 < s - sqrt(m) < 0x3.8001p-125 */ + + sub128(sh, sl, 0, 4, &sh, &sl); + shift128Right(sh, sl, 13, &sh, &sl); /* 16.112 */ + /* s < sqrt(m) < s + 1ulp */ + + /* Compute nearest rounded result */ + mul64To128(sl, sl, &d0h, &d0l); + d0h += 2 * sh * sl; + sub128(a->frac_lo << 34, 0, d0h, d0l, &d0h, &d0l); + sub128(sh, sl, d0h, d0l, &d1h, &d1l); + add128(sh, sl, 0, 1, &d2h, &d2l); + add128(d2h, d2l, d1h, d1l, &d2h, &d2l); + add128(sh, sl, 0, d1h >> 63, &sh, &sl); + shift128Left(sh, sl, 128 - 114, &sh, &sl); + + /* increment or decrement for inexact */ + if (d2h | d2l) { + if ((int64_t)(d1h ^ d2h) < 0) { + sub128(sh, sl, 0, 1, &sh, &sl); + } else { + add128(sh, sl, 0, 1, &sh, &sl); + } + } + a->frac_lo = sl; + a->frac_hi = sh; + + done: + /* Convert back from base 4 to base 2. */ + a->exp >>= 1; + if (!(a->frac_hi & DECOMPOSED_IMPLICIT_BIT)) { + frac_add(a, a, a); + } else { + a->exp += 1; + } + return; + + d_nan: + float_raise(float_flag_invalid, status); + parts_default_nan(a, status); +} + +/* * Rounds the floating-point value `a' to an integer, and returns the * result as a floating-point value. The operation is performed * according to the IEC/IEEE Standard for Binary Floating-Point @@ -763,7 +1032,7 @@ static void partsN(round_to_int)(FloatPartsN *a, FloatRoundMode rmode, * the largest positive integer is returned. Otherwise, if the * conversion overflows, the largest integer with the same sign as `a' * is returned. -*/ + */ static int64_t partsN(float_to_sint)(FloatPartsN *p, FloatRoundMode rmode, int scale, int64_t min, int64_t max, float_status *s) @@ -817,3 +1086,407 @@ static int64_t partsN(float_to_sint)(FloatPartsN *p, FloatRoundMode rmode, float_raise(flags, s); return r; } + +/* + * Returns the result of converting the floating-point value `a' to + * the unsigned integer format. The conversion is performed according + * to the IEC/IEEE Standard for Binary Floating-Point + * Arithmetic---which means in particular that the conversion is + * rounded according to the current rounding mode. If `a' is a NaN, + * the largest unsigned integer is returned. Otherwise, if the + * conversion overflows, the largest unsigned integer is returned. If + * the 'a' is negative, the result is rounded and zero is returned; + * values that do not round to zero will raise the inexact exception + * flag. + */ +static uint64_t partsN(float_to_uint)(FloatPartsN *p, FloatRoundMode rmode, + int scale, uint64_t max, float_status *s) +{ + int flags = 0; + uint64_t r; + + switch (p->cls) { + case float_class_snan: + case float_class_qnan: + flags = float_flag_invalid; + r = max; + break; + + case float_class_inf: + flags = float_flag_invalid; + r = p->sign ? 0 : max; + break; + + case float_class_zero: + return 0; + + case float_class_normal: + /* TODO: N - 2 is frac_size for rounding; could use input fmt. */ + if (parts_round_to_int_normal(p, rmode, scale, N - 2)) { + flags = float_flag_inexact; + if (p->cls == float_class_zero) { + r = 0; + break; + } + } + + if (p->sign) { + flags = float_flag_invalid; + r = 0; + } else if (p->exp > DECOMPOSED_BINARY_POINT) { + flags = float_flag_invalid; + r = max; + } else { + r = p->frac_hi >> (DECOMPOSED_BINARY_POINT - p->exp); + if (r > max) { + flags = float_flag_invalid; + r = max; + } + } + break; + + default: + g_assert_not_reached(); + } + + float_raise(flags, s); + return r; +} + +/* + * Integer to float conversions + * + * Returns the result of converting the two's complement integer `a' + * to the floating-point format. The conversion is performed according + * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. + */ +static void partsN(sint_to_float)(FloatPartsN *p, int64_t a, + int scale, float_status *s) +{ + uint64_t f = a; + int shift; + + memset(p, 0, sizeof(*p)); + + if (a == 0) { + p->cls = float_class_zero; + return; + } + + p->cls = float_class_normal; + if (a < 0) { + f = -f; + p->sign = true; + } + shift = clz64(f); + scale = MIN(MAX(scale, -0x10000), 0x10000); + + p->exp = DECOMPOSED_BINARY_POINT - shift + scale; + p->frac_hi = f << shift; +} + +/* + * Unsigned Integer to float conversions + * + * Returns the result of converting the unsigned integer `a' to the + * floating-point format. The conversion is performed according to the + * IEC/IEEE Standard for Binary Floating-Point Arithmetic. + */ +static void partsN(uint_to_float)(FloatPartsN *p, uint64_t a, + int scale, float_status *status) +{ + memset(p, 0, sizeof(*p)); + + if (a == 0) { + p->cls = float_class_zero; + } else { + int shift = clz64(a); + scale = MIN(MAX(scale, -0x10000), 0x10000); + p->cls = float_class_normal; + p->exp = DECOMPOSED_BINARY_POINT - shift + scale; + p->frac_hi = a << shift; + } +} + +/* + * Float min/max. + */ +static FloatPartsN *partsN(minmax)(FloatPartsN *a, FloatPartsN *b, + float_status *s, int flags) +{ + int ab_mask = float_cmask(a->cls) | float_cmask(b->cls); + int a_exp, b_exp, cmp; + + if (unlikely(ab_mask & float_cmask_anynan)) { + /* + * For minnum/maxnum, if one operand is a QNaN, and the other + * operand is numerical, then return numerical argument. + */ + if ((flags & minmax_isnum) + && !(ab_mask & float_cmask_snan) + && (ab_mask & ~float_cmask_qnan)) { + return is_nan(a->cls) ? b : a; + } + return parts_pick_nan(a, b, s); + } + + a_exp = a->exp; + b_exp = b->exp; + + if (unlikely(ab_mask != float_cmask_normal)) { + switch (a->cls) { + case float_class_normal: + break; + case float_class_inf: + a_exp = INT16_MAX; + break; + case float_class_zero: + a_exp = INT16_MIN; + break; + default: + g_assert_not_reached(); + break; + } + switch (b->cls) { + case float_class_normal: + break; + case float_class_inf: + b_exp = INT16_MAX; + break; + case float_class_zero: + b_exp = INT16_MIN; + break; + default: + g_assert_not_reached(); + break; + } + } + + /* Compare magnitudes. */ + cmp = a_exp - b_exp; + if (cmp == 0) { + cmp = frac_cmp(a, b); + } + + /* + * Take the sign into account. + * For ismag, only do this if the magnitudes are equal. + */ + if (!(flags & minmax_ismag) || cmp == 0) { + if (a->sign != b->sign) { + /* For differing signs, the negative operand is less. */ + cmp = a->sign ? -1 : 1; + } else if (a->sign) { + /* For two negative operands, invert the magnitude comparison. */ + cmp = -cmp; + } + } + + if (flags & minmax_ismin) { + cmp = -cmp; + } + return cmp < 0 ? b : a; +} + +/* + * Floating point compare + */ +static FloatRelation partsN(compare)(FloatPartsN *a, FloatPartsN *b, + float_status *s, bool is_quiet) +{ + int ab_mask = float_cmask(a->cls) | float_cmask(b->cls); + int cmp; + + if (likely(ab_mask == float_cmask_normal)) { + if (a->sign != b->sign) { + goto a_sign; + } + if (a->exp != b->exp) { + cmp = a->exp < b->exp ? -1 : 1; + } else { + cmp = frac_cmp(a, b); + } + if (a->sign) { + cmp = -cmp; + } + return cmp; + } + + if (unlikely(ab_mask & float_cmask_anynan)) { + if (!is_quiet || (ab_mask & float_cmask_snan)) { + float_raise(float_flag_invalid, s); + } + return float_relation_unordered; + } + + if (ab_mask & float_cmask_zero) { + if (ab_mask == float_cmask_zero) { + return float_relation_equal; + } else if (a->cls == float_class_zero) { + goto b_sign; + } else { + goto a_sign; + } + } + + if (ab_mask == float_cmask_inf) { + if (a->sign == b->sign) { + return float_relation_equal; + } + } else if (b->cls == float_class_inf) { + goto b_sign; + } else { + g_assert(a->cls == float_class_inf); + } + + a_sign: + return a->sign ? float_relation_less : float_relation_greater; + b_sign: + return b->sign ? float_relation_greater : float_relation_less; +} + +/* + * Multiply A by 2 raised to the power N. + */ +static void partsN(scalbn)(FloatPartsN *a, int n, float_status *s) +{ + switch (a->cls) { + case float_class_snan: + case float_class_qnan: + parts_return_nan(a, s); + break; + case float_class_zero: + case float_class_inf: + break; + case float_class_normal: + a->exp += MIN(MAX(n, -0x10000), 0x10000); + break; + default: + g_assert_not_reached(); + } +} + +/* + * Return log2(A) + */ +static void partsN(log2)(FloatPartsN *a, float_status *s, const FloatFmt *fmt) +{ + uint64_t a0, a1, r, t, ign; + FloatPartsN f; + int i, n, a_exp, f_exp; + + if (unlikely(a->cls != float_class_normal)) { + switch (a->cls) { + case float_class_snan: + case float_class_qnan: + parts_return_nan(a, s); + return; + case float_class_zero: + /* log2(0) = -inf */ + a->cls = float_class_inf; + a->sign = 1; + return; + case float_class_inf: + if (unlikely(a->sign)) { + goto d_nan; + } + return; + default: + break; + } + g_assert_not_reached(); + } + if (unlikely(a->sign)) { + goto d_nan; + } + + /* TODO: This algorithm looses bits too quickly for float128. */ + g_assert(N == 64); + + a_exp = a->exp; + f_exp = -1; + + r = 0; + t = DECOMPOSED_IMPLICIT_BIT; + a0 = a->frac_hi; + a1 = 0; + + n = fmt->frac_size + 2; + if (unlikely(a_exp == -1)) { + /* + * When a_exp == -1, we're computing the log2 of a value [0.5,1.0). + * When the value is very close to 1.0, there are lots of 1's in + * the msb parts of the fraction. At the end, when we subtract + * this value from -1.0, we can see a catastrophic loss of precision, + * as 0x800..000 - 0x7ff..ffx becomes 0x000..00y, leaving only the + * bits of y in the final result. To minimize this, compute as many + * digits as we can. + * ??? This case needs another algorithm to avoid this. + */ + n = fmt->frac_size * 2 + 2; + /* Don't compute a value overlapping the sticky bit */ + n = MIN(n, 62); + } + + for (i = 0; i < n; i++) { + if (a1) { + mul128To256(a0, a1, a0, a1, &a0, &a1, &ign, &ign); + } else if (a0 & 0xffffffffull) { + mul64To128(a0, a0, &a0, &a1); + } else if (a0 & ~DECOMPOSED_IMPLICIT_BIT) { + a0 >>= 32; + a0 *= a0; + } else { + goto exact; + } + + if (a0 & DECOMPOSED_IMPLICIT_BIT) { + if (unlikely(a_exp == 0 && r == 0)) { + /* + * When a_exp == 0, we're computing the log2 of a value + * [1.0,2.0). When the value is very close to 1.0, there + * are lots of 0's in the msb parts of the fraction. + * We need to compute more digits to produce a correct + * result -- restart at the top of the fraction. + * ??? This is likely to lose precision quickly, as for + * float128; we may need another method. + */ + f_exp -= i; + t = r = DECOMPOSED_IMPLICIT_BIT; + i = 0; + } else { + r |= t; + } + } else { + add128(a0, a1, a0, a1, &a0, &a1); + } + t >>= 1; + } + + /* Set sticky for inexact. */ + r |= (a1 || a0 & ~DECOMPOSED_IMPLICIT_BIT); + + exact: + parts_sint_to_float(a, a_exp, 0, s); + if (r == 0) { + return; + } + + memset(&f, 0, sizeof(f)); + f.cls = float_class_normal; + f.frac_hi = r; + f.exp = f_exp - frac_normalize(&f); + + if (a_exp < 0) { + parts_sub_normal(a, &f); + } else if (a_exp > 0) { + parts_add_normal(a, &f); + } else { + *a = f; + } + return; + + d_nan: + float_raise(float_flag_invalid, s); + parts_default_nan(a, s); +} diff --git a/fpu/softfloat-specialize.c.inc b/fpu/softfloat-specialize.c.inc index c895733e79..12467bb9bb 100644 --- a/fpu/softfloat-specialize.c.inc +++ b/fpu/softfloat-specialize.c.inc @@ -257,14 +257,6 @@ const floatx80 floatx80_infinity = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low); /*---------------------------------------------------------------------------- -| Internal canonical NaN format. -*----------------------------------------------------------------------------*/ -typedef struct { - bool sign; - uint64_t high, low; -} commonNaNT; - -/*---------------------------------------------------------------------------- | Returns 1 if the half-precision floating-point value `a' is a quiet | NaN; otherwise returns 0. *----------------------------------------------------------------------------*/ @@ -380,46 +372,6 @@ bool float32_is_signaling_nan(float32 a_, float_status *status) } /*---------------------------------------------------------------------------- -| Returns the result of converting the single-precision floating-point NaN -| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -| exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT float32ToCommonNaN(float32 a, float_status *status) -{ - commonNaNT z; - - if (float32_is_signaling_nan(a, status)) { - float_raise(float_flag_invalid, status); - } - z.sign = float32_val(a) >> 31; - z.low = 0; - z.high = ((uint64_t)float32_val(a)) << 41; - return z; -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the single- -| precision floating-point format. -*----------------------------------------------------------------------------*/ - -static float32 commonNaNToFloat32(commonNaNT a, float_status *status) -{ - uint32_t mantissa = a.high >> 41; - - if (status->default_nan_mode) { - return float32_default_nan(status); - } - - if (mantissa) { - return make_float32( - (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41)); - } else { - return float32_default_nan(status); - } -} - -/*---------------------------------------------------------------------------- | Select which NaN to propagate for a two-input operation. | IEEE754 doesn't specify all the details of this, so the | algorithm is target-specific. @@ -690,62 +642,6 @@ static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls, } /*---------------------------------------------------------------------------- -| Takes two single-precision floating-point values `a' and `b', one of which -| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a -| signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status) -{ - bool aIsLargerSignificand; - uint32_t av, bv; - FloatClass a_cls, b_cls; - - /* This is not complete, but is good enough for pickNaN. */ - a_cls = (!float32_is_any_nan(a) - ? float_class_normal - : float32_is_signaling_nan(a, status) - ? float_class_snan - : float_class_qnan); - b_cls = (!float32_is_any_nan(b) - ? float_class_normal - : float32_is_signaling_nan(b, status) - ? float_class_snan - : float_class_qnan); - - av = float32_val(a); - bv = float32_val(b); - - if (is_snan(a_cls) || is_snan(b_cls)) { - float_raise(float_flag_invalid, status); - } - - if (status->default_nan_mode) { - return float32_default_nan(status); - } - - if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) { - aIsLargerSignificand = 0; - } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) { - aIsLargerSignificand = 1; - } else { - aIsLargerSignificand = (av < bv) ? 1 : 0; - } - - if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) { - if (is_snan(b_cls)) { - return float32_silence_nan(b, status); - } - return b; - } else { - if (is_snan(a_cls)) { - return float32_silence_nan(a, status); - } - return a; - } -} - -/*---------------------------------------------------------------------------- | Returns 1 if the double-precision floating-point value `a' is a quiet | NaN; otherwise returns 0. *----------------------------------------------------------------------------*/ @@ -786,104 +682,6 @@ bool float64_is_signaling_nan(float64 a_, float_status *status) } /*---------------------------------------------------------------------------- -| Returns the result of converting the double-precision floating-point NaN -| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -| exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT float64ToCommonNaN(float64 a, float_status *status) -{ - commonNaNT z; - - if (float64_is_signaling_nan(a, status)) { - float_raise(float_flag_invalid, status); - } - z.sign = float64_val(a) >> 63; - z.low = 0; - z.high = float64_val(a) << 12; - return z; -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the double- -| precision floating-point format. -*----------------------------------------------------------------------------*/ - -static float64 commonNaNToFloat64(commonNaNT a, float_status *status) -{ - uint64_t mantissa = a.high >> 12; - - if (status->default_nan_mode) { - return float64_default_nan(status); - } - - if (mantissa) { - return make_float64( - (((uint64_t) a.sign) << 63) - | UINT64_C(0x7FF0000000000000) - | (a.high >> 12)); - } else { - return float64_default_nan(status); - } -} - -/*---------------------------------------------------------------------------- -| Takes two double-precision floating-point values `a' and `b', one of which -| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a -| signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status) -{ - bool aIsLargerSignificand; - uint64_t av, bv; - FloatClass a_cls, b_cls; - - /* This is not complete, but is good enough for pickNaN. */ - a_cls = (!float64_is_any_nan(a) - ? float_class_normal - : float64_is_signaling_nan(a, status) - ? float_class_snan - : float_class_qnan); - b_cls = (!float64_is_any_nan(b) - ? float_class_normal - : float64_is_signaling_nan(b, status) - ? float_class_snan - : float_class_qnan); - - av = float64_val(a); - bv = float64_val(b); - - if (is_snan(a_cls) || is_snan(b_cls)) { - float_raise(float_flag_invalid, status); - } - - if (status->default_nan_mode) { - return float64_default_nan(status); - } - - if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) { - aIsLargerSignificand = 0; - } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) { - aIsLargerSignificand = 1; - } else { - aIsLargerSignificand = (av < bv) ? 1 : 0; - } - - if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) { - if (is_snan(b_cls)) { - return float64_silence_nan(b, status); - } - return b; - } else { - if (is_snan(a_cls)) { - return float64_silence_nan(a, status); - } - return a; - } -} - -/*---------------------------------------------------------------------------- | Returns 1 if the extended double-precision floating-point value `a' is a | quiet NaN; otherwise returns 0. This slightly differs from the same | function for other types as floatx80 has an explicit bit. @@ -947,55 +745,6 @@ floatx80 floatx80_silence_nan(floatx80 a, float_status *status) } /*---------------------------------------------------------------------------- -| Returns the result of converting the extended double-precision floating- -| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the -| invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status) -{ - floatx80 dflt; - commonNaNT z; - - if (floatx80_is_signaling_nan(a, status)) { - float_raise(float_flag_invalid, status); - } - if (a.low >> 63) { - z.sign = a.high >> 15; - z.low = 0; - z.high = a.low << 1; - } else { - dflt = floatx80_default_nan(status); - z.sign = dflt.high >> 15; - z.low = 0; - z.high = dflt.low << 1; - } - return z; -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the extended -| double-precision floating-point format. -*----------------------------------------------------------------------------*/ - -static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status) -{ - floatx80 z; - - if (status->default_nan_mode) { - return floatx80_default_nan(status); - } - - if (a.high >> 1) { - z.low = UINT64_C(0x8000000000000000) | a.high >> 1; - z.high = (((uint16_t)a.sign) << 15) | 0x7FFF; - } else { - z = floatx80_default_nan(status); - } - return z; -} - -/*---------------------------------------------------------------------------- | Takes two extended double-precision floating-point values `a' and `b', one | of which is a NaN, and returns the appropriate NaN result. If either `a' or | `b' is a signaling NaN, the invalid exception is raised. @@ -1086,92 +835,3 @@ bool float128_is_signaling_nan(float128 a, float_status *status) } } } - -/*---------------------------------------------------------------------------- -| Returns the result of converting the quadruple-precision floating-point NaN -| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid -| exception is raised. -*----------------------------------------------------------------------------*/ - -static commonNaNT float128ToCommonNaN(float128 a, float_status *status) -{ - commonNaNT z; - - if (float128_is_signaling_nan(a, status)) { - float_raise(float_flag_invalid, status); - } - z.sign = a.high >> 63; - shortShift128Left(a.high, a.low, 16, &z.high, &z.low); - return z; -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the canonical NaN `a' to the quadruple- -| precision floating-point format. -*----------------------------------------------------------------------------*/ - -static float128 commonNaNToFloat128(commonNaNT a, float_status *status) -{ - float128 z; - - if (status->default_nan_mode) { - return float128_default_nan(status); - } - - shift128Right(a.high, a.low, 16, &z.high, &z.low); - z.high |= (((uint64_t)a.sign) << 63) | UINT64_C(0x7FFF000000000000); - return z; -} - -/*---------------------------------------------------------------------------- -| Takes two quadruple-precision floating-point values `a' and `b', one of -| which is a NaN, and returns the appropriate NaN result. If either `a' or -| `b' is a signaling NaN, the invalid exception is raised. -*----------------------------------------------------------------------------*/ - -static float128 propagateFloat128NaN(float128 a, float128 b, - float_status *status) -{ - bool aIsLargerSignificand; - FloatClass a_cls, b_cls; - - /* This is not complete, but is good enough for pickNaN. */ - a_cls = (!float128_is_any_nan(a) - ? float_class_normal - : float128_is_signaling_nan(a, status) - ? float_class_snan - : float_class_qnan); - b_cls = (!float128_is_any_nan(b) - ? float_class_normal - : float128_is_signaling_nan(b, status) - ? float_class_snan - : float_class_qnan); - - if (is_snan(a_cls) || is_snan(b_cls)) { - float_raise(float_flag_invalid, status); - } - - if (status->default_nan_mode) { - return float128_default_nan(status); - } - - if (lt128(a.high << 1, a.low, b.high << 1, b.low)) { - aIsLargerSignificand = 0; - } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) { - aIsLargerSignificand = 1; - } else { - aIsLargerSignificand = (a.high < b.high) ? 1 : 0; - } - - if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) { - if (is_snan(b_cls)) { - return float128_silence_nan(b, status); - } - return b; - } else { - if (is_snan(a_cls)) { - return float128_silence_nan(a, status); - } - return a; - } -} diff --git a/fpu/softfloat.c b/fpu/softfloat.c index 0dc2203477..1cb162882b 100644 --- a/fpu/softfloat.c +++ b/fpu/softfloat.c @@ -401,60 +401,6 @@ float64_gen2(float64 xa, float64 xb, float_status *s, return soft(ua.s, ub.s, s); } -/*---------------------------------------------------------------------------- -| Returns the fraction bits of the single-precision floating-point value `a'. -*----------------------------------------------------------------------------*/ - -static inline uint32_t extractFloat32Frac(float32 a) -{ - return float32_val(a) & 0x007FFFFF; -} - -/*---------------------------------------------------------------------------- -| Returns the exponent bits of the single-precision floating-point value `a'. -*----------------------------------------------------------------------------*/ - -static inline int extractFloat32Exp(float32 a) -{ - return (float32_val(a) >> 23) & 0xFF; -} - -/*---------------------------------------------------------------------------- -| Returns the sign bit of the single-precision floating-point value `a'. -*----------------------------------------------------------------------------*/ - -static inline bool extractFloat32Sign(float32 a) -{ - return float32_val(a) >> 31; -} - -/*---------------------------------------------------------------------------- -| Returns the fraction bits of the double-precision floating-point value `a'. -*----------------------------------------------------------------------------*/ - -static inline uint64_t extractFloat64Frac(float64 a) -{ - return float64_val(a) & UINT64_C(0x000FFFFFFFFFFFFF); -} - -/*---------------------------------------------------------------------------- -| Returns the exponent bits of the double-precision floating-point value `a'. -*----------------------------------------------------------------------------*/ - -static inline int extractFloat64Exp(float64 a) -{ - return (float64_val(a) >> 52) & 0x7FF; -} - -/*---------------------------------------------------------------------------- -| Returns the sign bit of the double-precision floating-point value `a'. -*----------------------------------------------------------------------------*/ - -static inline bool extractFloat64Sign(float64 a) -{ - return float64_val(a) >> 63; -} - /* * Classify a floating point number. Everything above float_class_qnan * is a NaN so cls >= float_class_qnan is any NaN. @@ -482,6 +428,15 @@ enum { float_cmask_anynan = float_cmask_qnan | float_cmask_snan, }; +/* Flags for parts_minmax. */ +enum { + /* Set for minimum; clear for maximum. */ + minmax_ismin = 1, + /* Set for the IEEE 754-2008 minNum() and maxNum() operations. */ + minmax_isnum = 2, + /* Set for the IEEE 754-2008 minNumMag() and minNumMag() operations. */ + minmax_ismag = 4, +}; /* Simple helpers for checking if, or what kind of, NaN we have */ static inline __attribute__((unused)) bool is_nan(FloatClass c) @@ -554,9 +509,7 @@ typedef struct { * frac_size: the size of the fraction field * frac_shift: shift to normalise the fraction with DECOMPOSED_BINARY_POINT * The following are computed based the size of fraction - * frac_lsb: least significant bit of fraction - * frac_lsbm1: the bit below the least significant bit (for rounding) - * round_mask/roundeven_mask: masks used for rounding + * round_mask: bits below lsb which must be rounded * The following optional modifiers are available: * arm_althp: handle ARM Alternative Half Precision */ @@ -566,24 +519,21 @@ typedef struct { int exp_max; int frac_size; int frac_shift; - uint64_t frac_lsb; - uint64_t frac_lsbm1; - uint64_t round_mask; - uint64_t roundeven_mask; bool arm_althp; + uint64_t round_mask; } FloatFmt; /* Expand fields based on the size of exponent and fraction */ -#define FLOAT_PARAMS(E, F) \ - .exp_size = E, \ - .exp_bias = ((1 << E) - 1) >> 1, \ - .exp_max = (1 << E) - 1, \ - .frac_size = F, \ - .frac_shift = (-F - 1) & 63, \ - .frac_lsb = 1ull << ((-F - 1) & 63), \ - .frac_lsbm1 = 1ull << ((-F - 2) & 63), \ - .round_mask = (1ull << ((-F - 1) & 63)) - 1, \ - .roundeven_mask = (2ull << ((-F - 1) & 63)) - 1 +#define FLOAT_PARAMS_(E) \ + .exp_size = E, \ + .exp_bias = ((1 << E) - 1) >> 1, \ + .exp_max = (1 << E) - 1 + +#define FLOAT_PARAMS(E, F) \ + FLOAT_PARAMS_(E), \ + .frac_size = F, \ + .frac_shift = (-F - 1) & 63, \ + .round_mask = (1ull << ((-F - 1) & 63)) - 1 static const FloatFmt float16_params = { FLOAT_PARAMS(5, 10) @@ -610,6 +560,18 @@ static const FloatFmt float128_params = { FLOAT_PARAMS(15, 112) }; +#define FLOATX80_PARAMS(R) \ + FLOAT_PARAMS_(15), \ + .frac_size = R == 64 ? 63 : R, \ + .frac_shift = 0, \ + .round_mask = R == 64 ? -1 : (1ull << ((-R - 1) & 63)) - 1 + +static const FloatFmt floatx80_params[3] = { + [floatx80_precision_s] = { FLOATX80_PARAMS(23) }, + [floatx80_precision_d] = { FLOATX80_PARAMS(52) }, + [floatx80_precision_x] = { FLOATX80_PARAMS(64) }, +}; + /* Unpack a float to parts, but do not canonicalize. */ static void unpack_raw64(FloatParts64 *r, const FloatFmt *fmt, uint64_t raw) { @@ -644,6 +606,16 @@ static inline void float64_unpack_raw(FloatParts64 *p, float64 f) unpack_raw64(p, &float64_params, f); } +static void floatx80_unpack_raw(FloatParts128 *p, floatx80 f) +{ + *p = (FloatParts128) { + .cls = float_class_unclassified, + .sign = extract32(f.high, 15, 1), + .exp = extract32(f.high, 0, 15), + .frac_hi = f.low + }; +} + static void float128_unpack_raw(FloatParts128 *p, float128 f) { const int f_size = float128_params.frac_size - 64; @@ -755,6 +727,14 @@ static void parts128_canonicalize(FloatParts128 *p, float_status *status, #define parts_canonicalize(A, S, F) \ PARTS_GENERIC_64_128(canonicalize, A)(A, S, F) +static void parts64_uncanon_normal(FloatParts64 *p, float_status *status, + const FloatFmt *fmt); +static void parts128_uncanon_normal(FloatParts128 *p, float_status *status, + const FloatFmt *fmt); + +#define parts_uncanon_normal(A, S, F) \ + PARTS_GENERIC_64_128(uncanon_normal, A)(A, S, F) + static void parts64_uncanon(FloatParts64 *p, float_status *status, const FloatFmt *fmt); static void parts128_uncanon(FloatParts128 *p, float_status *status, @@ -811,6 +791,20 @@ static FloatParts128 *parts128_div(FloatParts128 *a, FloatParts128 *b, #define parts_div(A, B, S) \ PARTS_GENERIC_64_128(div, A)(A, B, S) +static FloatParts64 *parts64_modrem(FloatParts64 *a, FloatParts64 *b, + uint64_t *mod_quot, float_status *s); +static FloatParts128 *parts128_modrem(FloatParts128 *a, FloatParts128 *b, + uint64_t *mod_quot, float_status *s); + +#define parts_modrem(A, B, Q, S) \ + PARTS_GENERIC_64_128(modrem, A)(A, B, Q, S) + +static void parts64_sqrt(FloatParts64 *a, float_status *s, const FloatFmt *f); +static void parts128_sqrt(FloatParts128 *a, float_status *s, const FloatFmt *f); + +#define parts_sqrt(A, S, F) \ + PARTS_GENERIC_64_128(sqrt, A)(A, S, F) + static bool parts64_round_to_int_normal(FloatParts64 *a, FloatRoundMode rm, int scale, int frac_size); static bool parts128_round_to_int_normal(FloatParts128 *a, FloatRoundMode r, @@ -839,6 +833,60 @@ static int64_t parts128_float_to_sint(FloatParts128 *p, FloatRoundMode rmode, #define parts_float_to_sint(P, R, Z, MN, MX, S) \ PARTS_GENERIC_64_128(float_to_sint, P)(P, R, Z, MN, MX, S) +static uint64_t parts64_float_to_uint(FloatParts64 *p, FloatRoundMode rmode, + int scale, uint64_t max, + float_status *s); +static uint64_t parts128_float_to_uint(FloatParts128 *p, FloatRoundMode rmode, + int scale, uint64_t max, + float_status *s); + +#define parts_float_to_uint(P, R, Z, M, S) \ + PARTS_GENERIC_64_128(float_to_uint, P)(P, R, Z, M, S) + +static void parts64_sint_to_float(FloatParts64 *p, int64_t a, + int scale, float_status *s); +static void parts128_sint_to_float(FloatParts128 *p, int64_t a, + int scale, float_status *s); + +#define parts_sint_to_float(P, I, Z, S) \ + PARTS_GENERIC_64_128(sint_to_float, P)(P, I, Z, S) + +static void parts64_uint_to_float(FloatParts64 *p, uint64_t a, + int scale, float_status *s); +static void parts128_uint_to_float(FloatParts128 *p, uint64_t a, + int scale, float_status *s); + +#define parts_uint_to_float(P, I, Z, S) \ + PARTS_GENERIC_64_128(uint_to_float, P)(P, I, Z, S) + +static FloatParts64 *parts64_minmax(FloatParts64 *a, FloatParts64 *b, + float_status *s, int flags); +static FloatParts128 *parts128_minmax(FloatParts128 *a, FloatParts128 *b, + float_status *s, int flags); + +#define parts_minmax(A, B, S, F) \ + PARTS_GENERIC_64_128(minmax, A)(A, B, S, F) + +static int parts64_compare(FloatParts64 *a, FloatParts64 *b, + float_status *s, bool q); +static int parts128_compare(FloatParts128 *a, FloatParts128 *b, + float_status *s, bool q); + +#define parts_compare(A, B, S, Q) \ + PARTS_GENERIC_64_128(compare, A)(A, B, S, Q) + +static void parts64_scalbn(FloatParts64 *a, int n, float_status *s); +static void parts128_scalbn(FloatParts128 *a, int n, float_status *s); + +#define parts_scalbn(A, N, S) \ + PARTS_GENERIC_64_128(scalbn, A)(A, N, S) + +static void parts64_log2(FloatParts64 *a, float_status *s, const FloatFmt *f); +static void parts128_log2(FloatParts128 *a, float_status *s, const FloatFmt *f); + +#define parts_log2(A, S, F) \ + PARTS_GENERIC_64_128(log2, A)(A, S, F) + /* * Helper functions for softfloat-parts.c.inc, per-size operations. */ @@ -1135,6 +1183,186 @@ static int frac256_normalize(FloatParts256 *a) #define frac_normalize(A) FRAC_GENERIC_64_128_256(normalize, A)(A) +static void frac64_modrem(FloatParts64 *a, FloatParts64 *b, uint64_t *mod_quot) +{ + uint64_t a0, a1, b0, t0, t1, q, quot; + int exp_diff = a->exp - b->exp; + int shift; + + a0 = a->frac; + a1 = 0; + + if (exp_diff < -1) { + if (mod_quot) { + *mod_quot = 0; + } + return; + } + if (exp_diff == -1) { + a0 >>= 1; + exp_diff = 0; + } + + b0 = b->frac; + quot = q = b0 <= a0; + if (q) { + a0 -= b0; + } + + exp_diff -= 64; + while (exp_diff > 0) { + q = estimateDiv128To64(a0, a1, b0); + q = q > 2 ? q - 2 : 0; + mul64To128(b0, q, &t0, &t1); + sub128(a0, a1, t0, t1, &a0, &a1); + shortShift128Left(a0, a1, 62, &a0, &a1); + exp_diff -= 62; + quot = (quot << 62) + q; + } + + exp_diff += 64; + if (exp_diff > 0) { + q = estimateDiv128To64(a0, a1, b0); + q = q > 2 ? (q - 2) >> (64 - exp_diff) : 0; + mul64To128(b0, q << (64 - exp_diff), &t0, &t1); + sub128(a0, a1, t0, t1, &a0, &a1); + shortShift128Left(0, b0, 64 - exp_diff, &t0, &t1); + while (le128(t0, t1, a0, a1)) { + ++q; + sub128(a0, a1, t0, t1, &a0, &a1); + } + quot = (exp_diff < 64 ? quot << exp_diff : 0) + q; + } else { + t0 = b0; + t1 = 0; + } + + if (mod_quot) { + *mod_quot = quot; + } else { + sub128(t0, t1, a0, a1, &t0, &t1); + if (lt128(t0, t1, a0, a1) || + (eq128(t0, t1, a0, a1) && (q & 1))) { + a0 = t0; + a1 = t1; + a->sign = !a->sign; + } + } + + if (likely(a0)) { + shift = clz64(a0); + shortShift128Left(a0, a1, shift, &a0, &a1); + } else if (likely(a1)) { + shift = clz64(a1); + a0 = a1 << shift; + a1 = 0; + shift += 64; + } else { + a->cls = float_class_zero; + return; + } + + a->exp = b->exp + exp_diff - shift; + a->frac = a0 | (a1 != 0); +} + +static void frac128_modrem(FloatParts128 *a, FloatParts128 *b, + uint64_t *mod_quot) +{ + uint64_t a0, a1, a2, b0, b1, t0, t1, t2, q, quot; + int exp_diff = a->exp - b->exp; + int shift; + + a0 = a->frac_hi; + a1 = a->frac_lo; + a2 = 0; + + if (exp_diff < -1) { + if (mod_quot) { + *mod_quot = 0; + } + return; + } + if (exp_diff == -1) { + shift128Right(a0, a1, 1, &a0, &a1); + exp_diff = 0; + } + + b0 = b->frac_hi; + b1 = b->frac_lo; + + quot = q = le128(b0, b1, a0, a1); + if (q) { + sub128(a0, a1, b0, b1, &a0, &a1); + } + + exp_diff -= 64; + while (exp_diff > 0) { + q = estimateDiv128To64(a0, a1, b0); + q = q > 4 ? q - 4 : 0; + mul128By64To192(b0, b1, q, &t0, &t1, &t2); + sub192(a0, a1, a2, t0, t1, t2, &a0, &a1, &a2); + shortShift192Left(a0, a1, a2, 61, &a0, &a1, &a2); + exp_diff -= 61; + quot = (quot << 61) + q; + } + + exp_diff += 64; + if (exp_diff > 0) { + q = estimateDiv128To64(a0, a1, b0); + q = q > 4 ? (q - 4) >> (64 - exp_diff) : 0; + mul128By64To192(b0, b1, q << (64 - exp_diff), &t0, &t1, &t2); + sub192(a0, a1, a2, t0, t1, t2, &a0, &a1, &a2); + shortShift192Left(0, b0, b1, 64 - exp_diff, &t0, &t1, &t2); + while (le192(t0, t1, t2, a0, a1, a2)) { + ++q; + sub192(a0, a1, a2, t0, t1, t2, &a0, &a1, &a2); + } + quot = (exp_diff < 64 ? quot << exp_diff : 0) + q; + } else { + t0 = b0; + t1 = b1; + t2 = 0; + } + + if (mod_quot) { + *mod_quot = quot; + } else { + sub192(t0, t1, t2, a0, a1, a2, &t0, &t1, &t2); + if (lt192(t0, t1, t2, a0, a1, a2) || + (eq192(t0, t1, t2, a0, a1, a2) && (q & 1))) { + a0 = t0; + a1 = t1; + a2 = t2; + a->sign = !a->sign; + } + } + + if (likely(a0)) { + shift = clz64(a0); + shortShift192Left(a0, a1, a2, shift, &a0, &a1, &a2); + } else if (likely(a1)) { + shift = clz64(a1); + shortShift128Left(a1, a2, shift, &a0, &a1); + a2 = 0; + shift += 64; + } else if (likely(a2)) { + shift = clz64(a2); + a0 = a2 << shift; + a1 = a2 = 0; + shift += 128; + } else { + a->cls = float_class_zero; + return; + } + + a->exp = b->exp + exp_diff - shift; + a->frac_hi = a0; + a->frac_lo = a1 | (a2 != 0); +} + +#define frac_modrem(A, B, Q) FRAC_GENERIC_64_128(modrem, A)(A, B, Q) + static void frac64_shl(FloatParts64 *a, int c) { a->frac <<= c; @@ -1329,6 +1557,30 @@ static void frac128_widen(FloatParts256 *r, FloatParts128 *a) #define frac_widen(A, B) FRAC_GENERIC_64_128(widen, B)(A, B) +/* + * Reciprocal sqrt table. 1 bit of exponent, 6-bits of mantessa. + * From https://git.musl-libc.org/cgit/musl/tree/src/math/sqrt_data.c + * and thus MIT licenced. + */ +static const uint16_t rsqrt_tab[128] = { + 0xb451, 0xb2f0, 0xb196, 0xb044, 0xaef9, 0xadb6, 0xac79, 0xab43, + 0xaa14, 0xa8eb, 0xa7c8, 0xa6aa, 0xa592, 0xa480, 0xa373, 0xa26b, + 0xa168, 0xa06a, 0x9f70, 0x9e7b, 0x9d8a, 0x9c9d, 0x9bb5, 0x9ad1, + 0x99f0, 0x9913, 0x983a, 0x9765, 0x9693, 0x95c4, 0x94f8, 0x9430, + 0x936b, 0x92a9, 0x91ea, 0x912e, 0x9075, 0x8fbe, 0x8f0a, 0x8e59, + 0x8daa, 0x8cfe, 0x8c54, 0x8bac, 0x8b07, 0x8a64, 0x89c4, 0x8925, + 0x8889, 0x87ee, 0x8756, 0x86c0, 0x862b, 0x8599, 0x8508, 0x8479, + 0x83ec, 0x8361, 0x82d8, 0x8250, 0x81c9, 0x8145, 0x80c2, 0x8040, + 0xff02, 0xfd0e, 0xfb25, 0xf947, 0xf773, 0xf5aa, 0xf3ea, 0xf234, + 0xf087, 0xeee3, 0xed47, 0xebb3, 0xea27, 0xe8a3, 0xe727, 0xe5b2, + 0xe443, 0xe2dc, 0xe17a, 0xe020, 0xdecb, 0xdd7d, 0xdc34, 0xdaf1, + 0xd9b3, 0xd87b, 0xd748, 0xd61a, 0xd4f1, 0xd3cd, 0xd2ad, 0xd192, + 0xd07b, 0xcf69, 0xce5b, 0xcd51, 0xcc4a, 0xcb48, 0xca4a, 0xc94f, + 0xc858, 0xc764, 0xc674, 0xc587, 0xc49d, 0xc3b7, 0xc2d4, 0xc1f4, + 0xc116, 0xc03c, 0xbf65, 0xbe90, 0xbdbe, 0xbcef, 0xbc23, 0xbb59, + 0xba91, 0xb9cc, 0xb90a, 0xb84a, 0xb78c, 0xb6d0, 0xb617, 0xb560, +}; + #define partsN(NAME) glue(glue(glue(parts,N),_),NAME) #define FloatPartsN glue(FloatParts,N) #define FloatPartsW glue(FloatParts,W) @@ -1446,6 +1698,92 @@ static float128 float128_round_pack_canonical(FloatParts128 *p, return float128_pack_raw(p); } +/* Returns false if the encoding is invalid. */ +static bool floatx80_unpack_canonical(FloatParts128 *p, floatx80 f, + float_status *s) +{ + /* Ensure rounding precision is set before beginning. */ + switch (s->floatx80_rounding_precision) { + case floatx80_precision_x: + case floatx80_precision_d: + case floatx80_precision_s: + break; + default: + g_assert_not_reached(); + } + + if (unlikely(floatx80_invalid_encoding(f))) { + float_raise(float_flag_invalid, s); + return false; + } + + floatx80_unpack_raw(p, f); + + if (likely(p->exp != floatx80_params[floatx80_precision_x].exp_max)) { + parts_canonicalize(p, s, &floatx80_params[floatx80_precision_x]); + } else { + /* The explicit integer bit is ignored, after invalid checks. */ + p->frac_hi &= MAKE_64BIT_MASK(0, 63); + p->cls = (p->frac_hi == 0 ? float_class_inf + : parts_is_snan_frac(p->frac_hi, s) + ? float_class_snan : float_class_qnan); + } + return true; +} + +static floatx80 floatx80_round_pack_canonical(FloatParts128 *p, + float_status *s) +{ + const FloatFmt *fmt = &floatx80_params[s->floatx80_rounding_precision]; + uint64_t frac; + int exp; + + switch (p->cls) { + case float_class_normal: + if (s->floatx80_rounding_precision == floatx80_precision_x) { + parts_uncanon_normal(p, s, fmt); + frac = p->frac_hi; + exp = p->exp; + } else { + FloatParts64 p64; + + p64.sign = p->sign; + p64.exp = p->exp; + frac_truncjam(&p64, p); + parts_uncanon_normal(&p64, s, fmt); + frac = p64.frac; + exp = p64.exp; + } + if (exp != fmt->exp_max) { + break; + } + /* rounded to inf -- fall through to set frac correctly */ + + case float_class_inf: + /* x86 and m68k differ in the setting of the integer bit. */ + frac = floatx80_infinity_low; + exp = fmt->exp_max; + break; + + case float_class_zero: + frac = 0; + exp = 0; + break; + + case float_class_snan: + case float_class_qnan: + /* NaNs have the integer bit set. */ + frac = p->frac_hi | (1ull << 63); + exp = fmt->exp_max; + break; + + default: + g_assert_not_reached(); + } + + return packFloatx80(p->sign, exp, frac); +} + /* * Addition and subtraction */ @@ -1635,6 +1973,30 @@ float128 float128_sub(float128 a, float128 b, float_status *status) return float128_addsub(a, b, status, true); } +static floatx80 QEMU_FLATTEN +floatx80_addsub(floatx80 a, floatx80 b, float_status *status, bool subtract) +{ + FloatParts128 pa, pb, *pr; + + if (!floatx80_unpack_canonical(&pa, a, status) || + !floatx80_unpack_canonical(&pb, b, status)) { + return floatx80_default_nan(status); + } + + pr = parts_addsub(&pa, &pb, status, subtract); + return floatx80_round_pack_canonical(pr, status); +} + +floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status) +{ + return floatx80_addsub(a, b, status, false); +} + +floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status) +{ + return floatx80_addsub(a, b, status, true); +} + /* * Multiplication */ @@ -1722,6 +2084,20 @@ float128_mul(float128 a, float128 b, float_status *status) return float128_round_pack_canonical(pr, status); } +floatx80 QEMU_FLATTEN +floatx80_mul(floatx80 a, floatx80 b, float_status *status) +{ + FloatParts128 pa, pb, *pr; + + if (!floatx80_unpack_canonical(&pa, a, status) || + !floatx80_unpack_canonical(&pb, b, status)) { + return floatx80_default_nan(status); + } + + pr = parts_mul(&pa, &pb, status); + return floatx80_round_pack_canonical(pr, status); +} + /* * Fused multiply-add */ @@ -2058,6 +2434,92 @@ float128_div(float128 a, float128 b, float_status *status) return float128_round_pack_canonical(pr, status); } +floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status) +{ + FloatParts128 pa, pb, *pr; + + if (!floatx80_unpack_canonical(&pa, a, status) || + !floatx80_unpack_canonical(&pb, b, status)) { + return floatx80_default_nan(status); + } + + pr = parts_div(&pa, &pb, status); + return floatx80_round_pack_canonical(pr, status); +} + +/* + * Remainder + */ + +float32 float32_rem(float32 a, float32 b, float_status *status) +{ + FloatParts64 pa, pb, *pr; + + float32_unpack_canonical(&pa, a, status); + float32_unpack_canonical(&pb, b, status); + pr = parts_modrem(&pa, &pb, NULL, status); + + return float32_round_pack_canonical(pr, status); +} + +float64 float64_rem(float64 a, float64 b, float_status *status) +{ + FloatParts64 pa, pb, *pr; + + float64_unpack_canonical(&pa, a, status); + float64_unpack_canonical(&pb, b, status); + pr = parts_modrem(&pa, &pb, NULL, status); + + return float64_round_pack_canonical(pr, status); +} + +float128 float128_rem(float128 a, float128 b, float_status *status) +{ + FloatParts128 pa, pb, *pr; + + float128_unpack_canonical(&pa, a, status); + float128_unpack_canonical(&pb, b, status); + pr = parts_modrem(&pa, &pb, NULL, status); + + return float128_round_pack_canonical(pr, status); +} + +/* + * Returns the remainder of the extended double-precision floating-point value + * `a' with respect to the corresponding value `b'. + * If 'mod' is false, the operation is performed according to the IEC/IEEE + * Standard for Binary Floating-Point Arithmetic. If 'mod' is true, return + * the remainder based on truncating the quotient toward zero instead and + * *quotient is set to the low 64 bits of the absolute value of the integer + * quotient. + */ +floatx80 floatx80_modrem(floatx80 a, floatx80 b, bool mod, + uint64_t *quotient, float_status *status) +{ + FloatParts128 pa, pb, *pr; + + *quotient = 0; + if (!floatx80_unpack_canonical(&pa, a, status) || + !floatx80_unpack_canonical(&pb, b, status)) { + return floatx80_default_nan(status); + } + pr = parts_modrem(&pa, &pb, mod ? quotient : NULL, status); + + return floatx80_round_pack_canonical(pr, status); +} + +floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status) +{ + uint64_t quotient; + return floatx80_modrem(a, b, false, "ient, status); +} + +floatx80 floatx80_mod(floatx80 a, floatx80 b, float_status *status) +{ + uint64_t quotient; + return floatx80_modrem(a, b, true, "ient, status); +} + /* * Float to Float conversions * @@ -2312,6 +2774,73 @@ float128 float64_to_float128(float64 a, float_status *s) return float128_round_pack_canonical(&p128, s); } +float32 floatx80_to_float32(floatx80 a, float_status *s) +{ + FloatParts64 p64; + FloatParts128 p128; + + if (floatx80_unpack_canonical(&p128, a, s)) { + parts_float_to_float_narrow(&p64, &p128, s); + } else { + parts_default_nan(&p64, s); + } + return float32_round_pack_canonical(&p64, s); +} + +float64 floatx80_to_float64(floatx80 a, float_status *s) +{ + FloatParts64 p64; + FloatParts128 p128; + + if (floatx80_unpack_canonical(&p128, a, s)) { + parts_float_to_float_narrow(&p64, &p128, s); + } else { + parts_default_nan(&p64, s); + } + return float64_round_pack_canonical(&p64, s); +} + +float128 floatx80_to_float128(floatx80 a, float_status *s) +{ + FloatParts128 p; + + if (floatx80_unpack_canonical(&p, a, s)) { + parts_float_to_float(&p, s); + } else { + parts_default_nan(&p, s); + } + return float128_round_pack_canonical(&p, s); +} + +floatx80 float32_to_floatx80(float32 a, float_status *s) +{ + FloatParts64 p64; + FloatParts128 p128; + + float32_unpack_canonical(&p64, a, s); + parts_float_to_float_widen(&p128, &p64, s); + return floatx80_round_pack_canonical(&p128, s); +} + +floatx80 float64_to_floatx80(float64 a, float_status *s) +{ + FloatParts64 p64; + FloatParts128 p128; + + float64_unpack_canonical(&p64, a, s); + parts_float_to_float_widen(&p128, &p64, s); + return floatx80_round_pack_canonical(&p128, s); +} + +floatx80 float128_to_floatx80(float128 a, float_status *s) +{ + FloatParts128 p; + + float128_unpack_canonical(&p, a, s); + parts_float_to_float(&p, s); + return floatx80_round_pack_canonical(&p, s); +} + /* * Round to integral value */ @@ -2361,6 +2890,19 @@ float128 float128_round_to_int(float128 a, float_status *s) return float128_round_pack_canonical(&p, s); } +floatx80 floatx80_round_to_int(floatx80 a, float_status *status) +{ + FloatParts128 p; + + if (!floatx80_unpack_canonical(&p, a, status)) { + return floatx80_default_nan(status); + } + + parts_round_to_int(&p, status->float_rounding_mode, 0, status, + &floatx80_params[status->floatx80_rounding_precision]); + return floatx80_round_pack_canonical(&p, status); +} + /* * Floating-point to signed integer conversions */ @@ -2500,6 +3042,28 @@ static int64_t float128_to_int64_scalbn(float128 a, FloatRoundMode rmode, return parts_float_to_sint(&p, rmode, scale, INT64_MIN, INT64_MAX, s); } +static int32_t floatx80_to_int32_scalbn(floatx80 a, FloatRoundMode rmode, + int scale, float_status *s) +{ + FloatParts128 p; + + if (!floatx80_unpack_canonical(&p, a, s)) { + parts_default_nan(&p, s); + } + return parts_float_to_sint(&p, rmode, scale, INT32_MIN, INT32_MAX, s); +} + +static int64_t floatx80_to_int64_scalbn(floatx80 a, FloatRoundMode rmode, + int scale, float_status *s) +{ + FloatParts128 p; + + if (!floatx80_unpack_canonical(&p, a, s)) { + parts_default_nan(&p, s); + } + return parts_float_to_sint(&p, rmode, scale, INT64_MIN, INT64_MAX, s); +} + int8_t float16_to_int8(float16 a, float_status *s) { return float16_to_int8_scalbn(a, s->float_rounding_mode, 0, s); @@ -2560,6 +3124,16 @@ int64_t float128_to_int64(float128 a, float_status *s) return float128_to_int64_scalbn(a, s->float_rounding_mode, 0, s); } +int32_t floatx80_to_int32(floatx80 a, float_status *s) +{ + return floatx80_to_int32_scalbn(a, s->float_rounding_mode, 0, s); +} + +int64_t floatx80_to_int64(floatx80 a, float_status *s) +{ + return floatx80_to_int64_scalbn(a, s->float_rounding_mode, 0, s); +} + int16_t float16_to_int16_round_to_zero(float16 a, float_status *s) { return float16_to_int16_scalbn(a, float_round_to_zero, 0, s); @@ -2615,6 +3189,16 @@ int64_t float128_to_int64_round_to_zero(float128 a, float_status *s) return float128_to_int64_scalbn(a, float_round_to_zero, 0, s); } +int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *s) +{ + return floatx80_to_int32_scalbn(a, float_round_to_zero, 0, s); +} + +int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *s) +{ + return floatx80_to_int64_scalbn(a, float_round_to_zero, 0, s); +} + int16_t bfloat16_to_int16(bfloat16 a, float_status *s) { return bfloat16_to_int16_scalbn(a, s->float_rounding_mode, 0, s); @@ -2646,80 +3230,16 @@ int64_t bfloat16_to_int64_round_to_zero(bfloat16 a, float_status *s) } /* - * Returns the result of converting the floating-point value `a' to - * the unsigned integer format. The conversion is performed according - * to the IEC/IEEE Standard for Binary Floating-Point - * Arithmetic---which means in particular that the conversion is - * rounded according to the current rounding mode. If `a' is a NaN, - * the largest unsigned integer is returned. Otherwise, if the - * conversion overflows, the largest unsigned integer is returned. If - * the 'a' is negative, the result is rounded and zero is returned; - * values that do not round to zero will raise the inexact exception - * flag. + * Floating-point to unsigned integer conversions */ -static uint64_t round_to_uint_and_pack(FloatParts64 p, FloatRoundMode rmode, - int scale, uint64_t max, - float_status *s) -{ - int flags = 0; - uint64_t r; - - switch (p.cls) { - case float_class_snan: - case float_class_qnan: - flags = float_flag_invalid; - r = max; - break; - - case float_class_inf: - flags = float_flag_invalid; - r = p.sign ? 0 : max; - break; - - case float_class_zero: - return 0; - - case float_class_normal: - /* TODO: 62 = N - 2, frac_size for rounding */ - if (parts_round_to_int_normal(&p, rmode, scale, 62)) { - flags = float_flag_inexact; - if (p.cls == float_class_zero) { - r = 0; - break; - } - } - - if (p.sign) { - flags = float_flag_invalid; - r = 0; - } else if (p.exp > DECOMPOSED_BINARY_POINT) { - flags = float_flag_invalid; - r = max; - } else { - r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp); - if (r > max) { - flags = float_flag_invalid; - r = max; - } - } - break; - - default: - g_assert_not_reached(); - } - - float_raise(flags, s); - return r; -} - uint8_t float16_to_uint8_scalbn(float16 a, FloatRoundMode rmode, int scale, float_status *s) { FloatParts64 p; float16_unpack_canonical(&p, a, s); - return round_to_uint_and_pack(p, rmode, scale, UINT8_MAX, s); + return parts_float_to_uint(&p, rmode, scale, UINT8_MAX, s); } uint16_t float16_to_uint16_scalbn(float16 a, FloatRoundMode rmode, int scale, @@ -2728,7 +3248,7 @@ uint16_t float16_to_uint16_scalbn(float16 a, FloatRoundMode rmode, int scale, FloatParts64 p; float16_unpack_canonical(&p, a, s); - return round_to_uint_and_pack(p, rmode, scale, UINT16_MAX, s); + return parts_float_to_uint(&p, rmode, scale, UINT16_MAX, s); } uint32_t float16_to_uint32_scalbn(float16 a, FloatRoundMode rmode, int scale, @@ -2737,7 +3257,7 @@ uint32_t float16_to_uint32_scalbn(float16 a, FloatRoundMode rmode, int scale, FloatParts64 p; float16_unpack_canonical(&p, a, s); - return round_to_uint_and_pack(p, rmode, scale, UINT32_MAX, s); + return parts_float_to_uint(&p, rmode, scale, UINT32_MAX, s); } uint64_t float16_to_uint64_scalbn(float16 a, FloatRoundMode rmode, int scale, @@ -2746,7 +3266,7 @@ uint64_t float16_to_uint64_scalbn(float16 a, FloatRoundMode rmode, int scale, FloatParts64 p; float16_unpack_canonical(&p, a, s); - return round_to_uint_and_pack(p, rmode, scale, UINT64_MAX, s); + return parts_float_to_uint(&p, rmode, scale, UINT64_MAX, s); } uint16_t float32_to_uint16_scalbn(float32 a, FloatRoundMode rmode, int scale, @@ -2755,7 +3275,7 @@ uint16_t float32_to_uint16_scalbn(float32 a, FloatRoundMode rmode, int scale, FloatParts64 p; float32_unpack_canonical(&p, a, s); - return round_to_uint_and_pack(p, rmode, scale, UINT16_MAX, s); + return parts_float_to_uint(&p, rmode, scale, UINT16_MAX, s); } uint32_t float32_to_uint32_scalbn(float32 a, FloatRoundMode rmode, int scale, @@ -2764,7 +3284,7 @@ uint32_t float32_to_uint32_scalbn(float32 a, FloatRoundMode rmode, int scale, FloatParts64 p; float32_unpack_canonical(&p, a, s); - return round_to_uint_and_pack(p, rmode, scale, UINT32_MAX, s); + return parts_float_to_uint(&p, rmode, scale, UINT32_MAX, s); } uint64_t float32_to_uint64_scalbn(float32 a, FloatRoundMode rmode, int scale, @@ -2773,7 +3293,7 @@ uint64_t float32_to_uint64_scalbn(float32 a, FloatRoundMode rmode, int scale, FloatParts64 p; float32_unpack_canonical(&p, a, s); - return round_to_uint_and_pack(p, rmode, scale, UINT64_MAX, s); + return parts_float_to_uint(&p, rmode, scale, UINT64_MAX, s); } uint16_t float64_to_uint16_scalbn(float64 a, FloatRoundMode rmode, int scale, @@ -2782,7 +3302,7 @@ uint16_t float64_to_uint16_scalbn(float64 a, FloatRoundMode rmode, int scale, FloatParts64 p; float64_unpack_canonical(&p, a, s); - return round_to_uint_and_pack(p, rmode, scale, UINT16_MAX, s); + return parts_float_to_uint(&p, rmode, scale, UINT16_MAX, s); } uint32_t float64_to_uint32_scalbn(float64 a, FloatRoundMode rmode, int scale, @@ -2791,7 +3311,7 @@ uint32_t float64_to_uint32_scalbn(float64 a, FloatRoundMode rmode, int scale, FloatParts64 p; float64_unpack_canonical(&p, a, s); - return round_to_uint_and_pack(p, rmode, scale, UINT32_MAX, s); + return parts_float_to_uint(&p, rmode, scale, UINT32_MAX, s); } uint64_t float64_to_uint64_scalbn(float64 a, FloatRoundMode rmode, int scale, @@ -2800,7 +3320,52 @@ uint64_t float64_to_uint64_scalbn(float64 a, FloatRoundMode rmode, int scale, FloatParts64 p; float64_unpack_canonical(&p, a, s); - return round_to_uint_and_pack(p, rmode, scale, UINT64_MAX, s); + return parts_float_to_uint(&p, rmode, scale, UINT64_MAX, s); +} + +uint16_t bfloat16_to_uint16_scalbn(bfloat16 a, FloatRoundMode rmode, + int scale, float_status *s) +{ + FloatParts64 p; + + bfloat16_unpack_canonical(&p, a, s); + return parts_float_to_uint(&p, rmode, scale, UINT16_MAX, s); +} + +uint32_t bfloat16_to_uint32_scalbn(bfloat16 a, FloatRoundMode rmode, + int scale, float_status *s) +{ + FloatParts64 p; + + bfloat16_unpack_canonical(&p, a, s); + return parts_float_to_uint(&p, rmode, scale, UINT32_MAX, s); +} + +uint64_t bfloat16_to_uint64_scalbn(bfloat16 a, FloatRoundMode rmode, + int scale, float_status *s) +{ + FloatParts64 p; + + bfloat16_unpack_canonical(&p, a, s); + return parts_float_to_uint(&p, rmode, scale, UINT64_MAX, s); +} + +static uint32_t float128_to_uint32_scalbn(float128 a, FloatRoundMode rmode, + int scale, float_status *s) +{ + FloatParts128 p; + + float128_unpack_canonical(&p, a, s); + return parts_float_to_uint(&p, rmode, scale, UINT32_MAX, s); +} + +static uint64_t float128_to_uint64_scalbn(float128 a, FloatRoundMode rmode, + int scale, float_status *s) +{ + FloatParts128 p; + + float128_unpack_canonical(&p, a, s); + return parts_float_to_uint(&p, rmode, scale, UINT64_MAX, s); } uint8_t float16_to_uint8(float16 a, float_status *s) @@ -2853,6 +3418,16 @@ uint64_t float64_to_uint64(float64 a, float_status *s) return float64_to_uint64_scalbn(a, s->float_rounding_mode, 0, s); } +uint32_t float128_to_uint32(float128 a, float_status *s) +{ + return float128_to_uint32_scalbn(a, s->float_rounding_mode, 0, s); +} + +uint64_t float128_to_uint64(float128 a, float_status *s) +{ + return float128_to_uint64_scalbn(a, s->float_rounding_mode, 0, s); +} + uint16_t float16_to_uint16_round_to_zero(float16 a, float_status *s) { return float16_to_uint16_scalbn(a, float_round_to_zero, 0, s); @@ -2898,36 +3473,14 @@ uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *s) return float64_to_uint64_scalbn(a, float_round_to_zero, 0, s); } -/* - * Returns the result of converting the bfloat16 value `a' to - * the unsigned integer format. - */ - -uint16_t bfloat16_to_uint16_scalbn(bfloat16 a, FloatRoundMode rmode, - int scale, float_status *s) -{ - FloatParts64 p; - - bfloat16_unpack_canonical(&p, a, s); - return round_to_uint_and_pack(p, rmode, scale, UINT16_MAX, s); -} - -uint32_t bfloat16_to_uint32_scalbn(bfloat16 a, FloatRoundMode rmode, - int scale, float_status *s) +uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *s) { - FloatParts64 p; - - bfloat16_unpack_canonical(&p, a, s); - return round_to_uint_and_pack(p, rmode, scale, UINT32_MAX, s); + return float128_to_uint32_scalbn(a, float_round_to_zero, 0, s); } -uint64_t bfloat16_to_uint64_scalbn(bfloat16 a, FloatRoundMode rmode, - int scale, float_status *s) +uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *s) { - FloatParts64 p; - - bfloat16_unpack_canonical(&p, a, s); - return round_to_uint_and_pack(p, rmode, scale, UINT64_MAX, s); + return float128_to_uint64_scalbn(a, float_round_to_zero, 0, s); } uint16_t bfloat16_to_uint16(bfloat16 a, float_status *s) @@ -2961,42 +3514,15 @@ uint64_t bfloat16_to_uint64_round_to_zero(bfloat16 a, float_status *s) } /* - * Integer to float conversions - * - * Returns the result of converting the two's complement integer `a' - * to the floating-point format. The conversion is performed according - * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. + * Signed integer to floating-point conversions */ -static FloatParts64 int_to_float(int64_t a, int scale, float_status *status) -{ - FloatParts64 r = { .sign = false }; - - if (a == 0) { - r.cls = float_class_zero; - } else { - uint64_t f = a; - int shift; - - r.cls = float_class_normal; - if (a < 0) { - f = -f; - r.sign = true; - } - shift = clz64(f); - scale = MIN(MAX(scale, -0x10000), 0x10000); - - r.exp = DECOMPOSED_BINARY_POINT - shift + scale; - r.frac = f << shift; - } - - return r; -} - float16 int64_to_float16_scalbn(int64_t a, int scale, float_status *status) { - FloatParts64 pa = int_to_float(a, scale, status); - return float16_round_pack_canonical(&pa, status); + FloatParts64 p; + + parts_sint_to_float(&p, a, scale, status); + return float16_round_pack_canonical(&p, status); } float16 int32_to_float16_scalbn(int32_t a, int scale, float_status *status) @@ -3031,8 +3557,17 @@ float16 int8_to_float16(int8_t a, float_status *status) float32 int64_to_float32_scalbn(int64_t a, int scale, float_status *status) { - FloatParts64 pa = int_to_float(a, scale, status); - return float32_round_pack_canonical(&pa, status); + FloatParts64 p; + + /* Without scaling, there are no overflow concerns. */ + if (likely(scale == 0) && can_use_fpu(status)) { + union_float32 ur; + ur.h = a; + return ur.s; + } + + parts64_sint_to_float(&p, a, scale, status); + return float32_round_pack_canonical(&p, status); } float32 int32_to_float32_scalbn(int32_t a, int scale, float_status *status) @@ -3062,8 +3597,17 @@ float32 int16_to_float32(int16_t a, float_status *status) float64 int64_to_float64_scalbn(int64_t a, int scale, float_status *status) { - FloatParts64 pa = int_to_float(a, scale, status); - return float64_round_pack_canonical(&pa, status); + FloatParts64 p; + + /* Without scaling, there are no overflow concerns. */ + if (likely(scale == 0) && can_use_fpu(status)) { + union_float64 ur; + ur.h = a; + return ur.s; + } + + parts_sint_to_float(&p, a, scale, status); + return float64_round_pack_canonical(&p, status); } float64 int32_to_float64_scalbn(int32_t a, int scale, float_status *status) @@ -3091,15 +3635,12 @@ float64 int16_to_float64(int16_t a, float_status *status) return int64_to_float64_scalbn(a, 0, status); } -/* - * Returns the result of converting the two's complement integer `a' - * to the bfloat16 format. - */ - bfloat16 int64_to_bfloat16_scalbn(int64_t a, int scale, float_status *status) { - FloatParts64 pa = int_to_float(a, scale, status); - return bfloat16_round_pack_canonical(&pa, status); + FloatParts64 p; + + parts_sint_to_float(&p, a, scale, status); + return bfloat16_round_pack_canonical(&p, status); } bfloat16 int32_to_bfloat16_scalbn(int32_t a, int scale, float_status *status) @@ -3127,36 +3668,42 @@ bfloat16 int16_to_bfloat16(int16_t a, float_status *status) return int64_to_bfloat16_scalbn(a, 0, status); } -/* - * Unsigned Integer to float conversions - * - * Returns the result of converting the unsigned integer `a' to the - * floating-point format. The conversion is performed according to the - * IEC/IEEE Standard for Binary Floating-Point Arithmetic. - */ +float128 int64_to_float128(int64_t a, float_status *status) +{ + FloatParts128 p; -static FloatParts64 uint_to_float(uint64_t a, int scale, float_status *status) + parts_sint_to_float(&p, a, 0, status); + return float128_round_pack_canonical(&p, status); +} + +float128 int32_to_float128(int32_t a, float_status *status) { - FloatParts64 r = { .sign = false }; - int shift; + return int64_to_float128(a, status); +} - if (a == 0) { - r.cls = float_class_zero; - } else { - scale = MIN(MAX(scale, -0x10000), 0x10000); - shift = clz64(a); - r.cls = float_class_normal; - r.exp = DECOMPOSED_BINARY_POINT - shift + scale; - r.frac = a << shift; - } +floatx80 int64_to_floatx80(int64_t a, float_status *status) +{ + FloatParts128 p; - return r; + parts_sint_to_float(&p, a, 0, status); + return floatx80_round_pack_canonical(&p, status); +} + +floatx80 int32_to_floatx80(int32_t a, float_status *status) +{ + return int64_to_floatx80(a, status); } +/* + * Unsigned Integer to floating-point conversions + */ + float16 uint64_to_float16_scalbn(uint64_t a, int scale, float_status *status) { - FloatParts64 pa = uint_to_float(a, scale, status); - return float16_round_pack_canonical(&pa, status); + FloatParts64 p; + + parts_uint_to_float(&p, a, scale, status); + return float16_round_pack_canonical(&p, status); } float16 uint32_to_float16_scalbn(uint32_t a, int scale, float_status *status) @@ -3191,8 +3738,17 @@ float16 uint8_to_float16(uint8_t a, float_status *status) float32 uint64_to_float32_scalbn(uint64_t a, int scale, float_status *status) { - FloatParts64 pa = uint_to_float(a, scale, status); - return float32_round_pack_canonical(&pa, status); + FloatParts64 p; + + /* Without scaling, there are no overflow concerns. */ + if (likely(scale == 0) && can_use_fpu(status)) { + union_float32 ur; + ur.h = a; + return ur.s; + } + + parts_uint_to_float(&p, a, scale, status); + return float32_round_pack_canonical(&p, status); } float32 uint32_to_float32_scalbn(uint32_t a, int scale, float_status *status) @@ -3222,8 +3778,17 @@ float32 uint16_to_float32(uint16_t a, float_status *status) float64 uint64_to_float64_scalbn(uint64_t a, int scale, float_status *status) { - FloatParts64 pa = uint_to_float(a, scale, status); - return float64_round_pack_canonical(&pa, status); + FloatParts64 p; + + /* Without scaling, there are no overflow concerns. */ + if (likely(scale == 0) && can_use_fpu(status)) { + union_float64 ur; + ur.h = a; + return ur.s; + } + + parts_uint_to_float(&p, a, scale, status); + return float64_round_pack_canonical(&p, status); } float64 uint32_to_float64_scalbn(uint32_t a, int scale, float_status *status) @@ -3251,15 +3816,12 @@ float64 uint16_to_float64(uint16_t a, float_status *status) return uint64_to_float64_scalbn(a, 0, status); } -/* - * Returns the result of converting the unsigned integer `a' to the - * bfloat16 format. - */ - bfloat16 uint64_to_bfloat16_scalbn(uint64_t a, int scale, float_status *status) { - FloatParts64 pa = uint_to_float(a, scale, status); - return bfloat16_round_pack_canonical(&pa, status); + FloatParts64 p; + + parts_uint_to_float(&p, a, scale, status); + return bfloat16_round_pack_canonical(&p, status); } bfloat16 uint32_to_bfloat16_scalbn(uint32_t a, int scale, float_status *status) @@ -3287,232 +3849,132 @@ bfloat16 uint16_to_bfloat16(uint16_t a, float_status *status) return uint64_to_bfloat16_scalbn(a, 0, status); } -/* Float Min/Max */ -/* min() and max() functions. These can't be implemented as - * 'compare and pick one input' because that would mishandle - * NaNs and +0 vs -0. - * - * minnum() and maxnum() functions. These are similar to the min() - * and max() functions but if one of the arguments is a QNaN and - * the other is numerical then the numerical argument is returned. - * SNaNs will get quietened before being returned. - * minnum() and maxnum correspond to the IEEE 754-2008 minNum() - * and maxNum() operations. min() and max() are the typical min/max - * semantics provided by many CPUs which predate that specification. - * - * minnummag() and maxnummag() functions correspond to minNumMag() - * and minNumMag() from the IEEE-754 2008. +float128 uint64_to_float128(uint64_t a, float_status *status) +{ + FloatParts128 p; + + parts_uint_to_float(&p, a, 0, status); + return float128_round_pack_canonical(&p, status); +} + +/* + * Minimum and maximum */ -static FloatParts64 minmax_floats(FloatParts64 a, FloatParts64 b, bool ismin, - bool ieee, bool ismag, float_status *s) -{ - if (unlikely(is_nan(a.cls) || is_nan(b.cls))) { - if (ieee) { - /* Takes two floating-point values `a' and `b', one of - * which is a NaN, and returns the appropriate NaN - * result. If either `a' or `b' is a signaling NaN, - * the invalid exception is raised. - */ - if (is_snan(a.cls) || is_snan(b.cls)) { - return *parts_pick_nan(&a, &b, s); - } else if (is_nan(a.cls) && !is_nan(b.cls)) { - return b; - } else if (is_nan(b.cls) && !is_nan(a.cls)) { - return a; - } - } - return *parts_pick_nan(&a, &b, s); - } else { - int a_exp, b_exp; - switch (a.cls) { - case float_class_normal: - a_exp = a.exp; - break; - case float_class_inf: - a_exp = INT_MAX; - break; - case float_class_zero: - a_exp = INT_MIN; - break; - default: - g_assert_not_reached(); - break; - } - switch (b.cls) { - case float_class_normal: - b_exp = b.exp; - break; - case float_class_inf: - b_exp = INT_MAX; - break; - case float_class_zero: - b_exp = INT_MIN; - break; - default: - g_assert_not_reached(); - break; - } +static float16 float16_minmax(float16 a, float16 b, float_status *s, int flags) +{ + FloatParts64 pa, pb, *pr; - if (ismag && (a_exp != b_exp || a.frac != b.frac)) { - bool a_less = a_exp < b_exp; - if (a_exp == b_exp) { - a_less = a.frac < b.frac; - } - return a_less ^ ismin ? b : a; - } + float16_unpack_canonical(&pa, a, s); + float16_unpack_canonical(&pb, b, s); + pr = parts_minmax(&pa, &pb, s, flags); - if (a.sign == b.sign) { - bool a_less = a_exp < b_exp; - if (a_exp == b_exp) { - a_less = a.frac < b.frac; - } - return a.sign ^ a_less ^ ismin ? b : a; - } else { - return a.sign ^ ismin ? b : a; - } - } + return float16_round_pack_canonical(pr, s); } -#define MINMAX(sz, name, ismin, isiee, ismag) \ -float ## sz float ## sz ## _ ## name(float ## sz a, float ## sz b, \ - float_status *s) \ -{ \ - FloatParts64 pa, pb, pr; \ - float ## sz ## _unpack_canonical(&pa, a, s); \ - float ## sz ## _unpack_canonical(&pb, b, s); \ - pr = minmax_floats(pa, pb, ismin, isiee, ismag, s); \ - return float ## sz ## _round_pack_canonical(&pr, s); \ -} - -MINMAX(16, min, true, false, false) -MINMAX(16, minnum, true, true, false) -MINMAX(16, minnummag, true, true, true) -MINMAX(16, max, false, false, false) -MINMAX(16, maxnum, false, true, false) -MINMAX(16, maxnummag, false, true, true) - -MINMAX(32, min, true, false, false) -MINMAX(32, minnum, true, true, false) -MINMAX(32, minnummag, true, true, true) -MINMAX(32, max, false, false, false) -MINMAX(32, maxnum, false, true, false) -MINMAX(32, maxnummag, false, true, true) - -MINMAX(64, min, true, false, false) -MINMAX(64, minnum, true, true, false) -MINMAX(64, minnummag, true, true, true) -MINMAX(64, max, false, false, false) -MINMAX(64, maxnum, false, true, false) -MINMAX(64, maxnummag, false, true, true) - -#undef MINMAX - -#define BF16_MINMAX(name, ismin, isiee, ismag) \ -bfloat16 bfloat16_ ## name(bfloat16 a, bfloat16 b, float_status *s) \ -{ \ - FloatParts64 pa, pb, pr; \ - bfloat16_unpack_canonical(&pa, a, s); \ - bfloat16_unpack_canonical(&pb, b, s); \ - pr = minmax_floats(pa, pb, ismin, isiee, ismag, s); \ - return bfloat16_round_pack_canonical(&pr, s); \ -} - -BF16_MINMAX(min, true, false, false) -BF16_MINMAX(minnum, true, true, false) -BF16_MINMAX(minnummag, true, true, true) -BF16_MINMAX(max, false, false, false) -BF16_MINMAX(maxnum, false, true, false) -BF16_MINMAX(maxnummag, false, true, true) - -#undef BF16_MINMAX - -/* Floating point compare */ -static FloatRelation compare_floats(FloatParts64 a, FloatParts64 b, bool is_quiet, - float_status *s) -{ - if (is_nan(a.cls) || is_nan(b.cls)) { - if (!is_quiet || - a.cls == float_class_snan || - b.cls == float_class_snan) { - float_raise(float_flag_invalid, s); - } - return float_relation_unordered; - } +static bfloat16 bfloat16_minmax(bfloat16 a, bfloat16 b, + float_status *s, int flags) +{ + FloatParts64 pa, pb, *pr; - if (a.cls == float_class_zero) { - if (b.cls == float_class_zero) { - return float_relation_equal; - } - return b.sign ? float_relation_greater : float_relation_less; - } else if (b.cls == float_class_zero) { - return a.sign ? float_relation_less : float_relation_greater; - } + bfloat16_unpack_canonical(&pa, a, s); + bfloat16_unpack_canonical(&pb, b, s); + pr = parts_minmax(&pa, &pb, s, flags); - /* The only really important thing about infinity is its sign. If - * both are infinities the sign marks the smallest of the two. - */ - if (a.cls == float_class_inf) { - if ((b.cls == float_class_inf) && (a.sign == b.sign)) { - return float_relation_equal; - } - return a.sign ? float_relation_less : float_relation_greater; - } else if (b.cls == float_class_inf) { - return b.sign ? float_relation_greater : float_relation_less; - } + return bfloat16_round_pack_canonical(pr, s); +} - if (a.sign != b.sign) { - return a.sign ? float_relation_less : float_relation_greater; - } +static float32 float32_minmax(float32 a, float32 b, float_status *s, int flags) +{ + FloatParts64 pa, pb, *pr; - if (a.exp == b.exp) { - if (a.frac == b.frac) { - return float_relation_equal; - } - if (a.sign) { - return a.frac > b.frac ? - float_relation_less : float_relation_greater; - } else { - return a.frac > b.frac ? - float_relation_greater : float_relation_less; - } - } else { - if (a.sign) { - return a.exp > b.exp ? float_relation_less : float_relation_greater; - } else { - return a.exp > b.exp ? float_relation_greater : float_relation_less; - } - } + float32_unpack_canonical(&pa, a, s); + float32_unpack_canonical(&pb, b, s); + pr = parts_minmax(&pa, &pb, s, flags); + + return float32_round_pack_canonical(pr, s); } -#define COMPARE(name, attr, sz) \ -static int attr \ -name(float ## sz a, float ## sz b, bool is_quiet, float_status *s) \ -{ \ - FloatParts64 pa, pb; \ - float ## sz ## _unpack_canonical(&pa, a, s); \ - float ## sz ## _unpack_canonical(&pb, b, s); \ - return compare_floats(pa, pb, is_quiet, s); \ +static float64 float64_minmax(float64 a, float64 b, float_status *s, int flags) +{ + FloatParts64 pa, pb, *pr; + + float64_unpack_canonical(&pa, a, s); + float64_unpack_canonical(&pb, b, s); + pr = parts_minmax(&pa, &pb, s, flags); + + return float64_round_pack_canonical(pr, s); } -COMPARE(soft_f16_compare, QEMU_FLATTEN, 16) -COMPARE(soft_f32_compare, QEMU_SOFTFLOAT_ATTR, 32) -COMPARE(soft_f64_compare, QEMU_SOFTFLOAT_ATTR, 64) +static float128 float128_minmax(float128 a, float128 b, + float_status *s, int flags) +{ + FloatParts128 pa, pb, *pr; + + float128_unpack_canonical(&pa, a, s); + float128_unpack_canonical(&pb, b, s); + pr = parts_minmax(&pa, &pb, s, flags); + + return float128_round_pack_canonical(pr, s); +} -#undef COMPARE +#define MINMAX_1(type, name, flags) \ + type type##_##name(type a, type b, float_status *s) \ + { return type##_minmax(a, b, s, flags); } + +#define MINMAX_2(type) \ + MINMAX_1(type, max, 0) \ + MINMAX_1(type, maxnum, minmax_isnum) \ + MINMAX_1(type, maxnummag, minmax_isnum | minmax_ismag) \ + MINMAX_1(type, min, minmax_ismin) \ + MINMAX_1(type, minnum, minmax_ismin | minmax_isnum) \ + MINMAX_1(type, minnummag, minmax_ismin | minmax_isnum | minmax_ismag) + +MINMAX_2(float16) +MINMAX_2(bfloat16) +MINMAX_2(float32) +MINMAX_2(float64) +MINMAX_2(float128) + +#undef MINMAX_1 +#undef MINMAX_2 + +/* + * Floating point compare + */ + +static FloatRelation QEMU_FLATTEN +float16_do_compare(float16 a, float16 b, float_status *s, bool is_quiet) +{ + FloatParts64 pa, pb; + + float16_unpack_canonical(&pa, a, s); + float16_unpack_canonical(&pb, b, s); + return parts_compare(&pa, &pb, s, is_quiet); +} FloatRelation float16_compare(float16 a, float16 b, float_status *s) { - return soft_f16_compare(a, b, false, s); + return float16_do_compare(a, b, s, false); } FloatRelation float16_compare_quiet(float16 a, float16 b, float_status *s) { - return soft_f16_compare(a, b, true, s); + return float16_do_compare(a, b, s, true); +} + +static FloatRelation QEMU_SOFTFLOAT_ATTR +float32_do_compare(float32 a, float32 b, float_status *s, bool is_quiet) +{ + FloatParts64 pa, pb; + + float32_unpack_canonical(&pa, a, s); + float32_unpack_canonical(&pb, b, s); + return parts_compare(&pa, &pb, s, is_quiet); } static FloatRelation QEMU_FLATTEN -f32_compare(float32 xa, float32 xb, bool is_quiet, float_status *s) +float32_hs_compare(float32 xa, float32 xb, float_status *s, bool is_quiet) { union_float32 ua, ub; @@ -3533,25 +3995,36 @@ f32_compare(float32 xa, float32 xb, bool is_quiet, float_status *s) if (likely(isless(ua.h, ub.h))) { return float_relation_less; } - /* The only condition remaining is unordered. + /* + * The only condition remaining is unordered. * Fall through to set flags. */ soft: - return soft_f32_compare(ua.s, ub.s, is_quiet, s); + return float32_do_compare(ua.s, ub.s, s, is_quiet); } FloatRelation float32_compare(float32 a, float32 b, float_status *s) { - return f32_compare(a, b, false, s); + return float32_hs_compare(a, b, s, false); } FloatRelation float32_compare_quiet(float32 a, float32 b, float_status *s) { - return f32_compare(a, b, true, s); + return float32_hs_compare(a, b, s, true); +} + +static FloatRelation QEMU_SOFTFLOAT_ATTR +float64_do_compare(float64 a, float64 b, float_status *s, bool is_quiet) +{ + FloatParts64 pa, pb; + + float64_unpack_canonical(&pa, a, s); + float64_unpack_canonical(&pb, b, s); + return parts_compare(&pa, &pb, s, is_quiet); } static FloatRelation QEMU_FLATTEN -f64_compare(float64 xa, float64 xb, bool is_quiet, float_status *s) +float64_hs_compare(float64 xa, float64 xb, float_status *s, bool is_quiet) { union_float64 ua, ub; @@ -3572,196 +4045,177 @@ f64_compare(float64 xa, float64 xb, bool is_quiet, float_status *s) if (likely(isless(ua.h, ub.h))) { return float_relation_less; } - /* The only condition remaining is unordered. + /* + * The only condition remaining is unordered. * Fall through to set flags. */ soft: - return soft_f64_compare(ua.s, ub.s, is_quiet, s); + return float64_do_compare(ua.s, ub.s, s, is_quiet); } FloatRelation float64_compare(float64 a, float64 b, float_status *s) { - return f64_compare(a, b, false, s); + return float64_hs_compare(a, b, s, false); } FloatRelation float64_compare_quiet(float64 a, float64 b, float_status *s) { - return f64_compare(a, b, true, s); + return float64_hs_compare(a, b, s, true); } static FloatRelation QEMU_FLATTEN -soft_bf16_compare(bfloat16 a, bfloat16 b, bool is_quiet, float_status *s) +bfloat16_do_compare(bfloat16 a, bfloat16 b, float_status *s, bool is_quiet) { FloatParts64 pa, pb; bfloat16_unpack_canonical(&pa, a, s); bfloat16_unpack_canonical(&pb, b, s); - return compare_floats(pa, pb, is_quiet, s); + return parts_compare(&pa, &pb, s, is_quiet); } FloatRelation bfloat16_compare(bfloat16 a, bfloat16 b, float_status *s) { - return soft_bf16_compare(a, b, false, s); + return bfloat16_do_compare(a, b, s, false); } FloatRelation bfloat16_compare_quiet(bfloat16 a, bfloat16 b, float_status *s) { - return soft_bf16_compare(a, b, true, s); + return bfloat16_do_compare(a, b, s, true); } -/* Multiply A by 2 raised to the power N. */ -static FloatParts64 scalbn_decomposed(FloatParts64 a, int n, float_status *s) +static FloatRelation QEMU_FLATTEN +float128_do_compare(float128 a, float128 b, float_status *s, bool is_quiet) { - if (unlikely(is_nan(a.cls))) { - parts_return_nan(&a, s); - } - if (a.cls == float_class_normal) { - /* The largest float type (even though not supported by FloatParts64) - * is float128, which has a 15 bit exponent. Bounding N to 16 bits - * still allows rounding to infinity, without allowing overflow - * within the int32_t that backs FloatParts64.exp. - */ - n = MIN(MAX(n, -0x10000), 0x10000); - a.exp += n; - } - return a; + FloatParts128 pa, pb; + + float128_unpack_canonical(&pa, a, s); + float128_unpack_canonical(&pb, b, s); + return parts_compare(&pa, &pb, s, is_quiet); } -float16 float16_scalbn(float16 a, int n, float_status *status) +FloatRelation float128_compare(float128 a, float128 b, float_status *s) { - FloatParts64 pa, pr; - - float16_unpack_canonical(&pa, a, status); - pr = scalbn_decomposed(pa, n, status); - return float16_round_pack_canonical(&pr, status); + return float128_do_compare(a, b, s, false); } -float32 float32_scalbn(float32 a, int n, float_status *status) +FloatRelation float128_compare_quiet(float128 a, float128 b, float_status *s) { - FloatParts64 pa, pr; - - float32_unpack_canonical(&pa, a, status); - pr = scalbn_decomposed(pa, n, status); - return float32_round_pack_canonical(&pr, status); + return float128_do_compare(a, b, s, true); } -float64 float64_scalbn(float64 a, int n, float_status *status) +static FloatRelation QEMU_FLATTEN +floatx80_do_compare(floatx80 a, floatx80 b, float_status *s, bool is_quiet) { - FloatParts64 pa, pr; + FloatParts128 pa, pb; - float64_unpack_canonical(&pa, a, status); - pr = scalbn_decomposed(pa, n, status); - return float64_round_pack_canonical(&pr, status); + if (!floatx80_unpack_canonical(&pa, a, s) || + !floatx80_unpack_canonical(&pb, b, s)) { + return float_relation_unordered; + } + return parts_compare(&pa, &pb, s, is_quiet); } -bfloat16 bfloat16_scalbn(bfloat16 a, int n, float_status *status) +FloatRelation floatx80_compare(floatx80 a, floatx80 b, float_status *s) { - FloatParts64 pa, pr; + return floatx80_do_compare(a, b, s, false); +} - bfloat16_unpack_canonical(&pa, a, status); - pr = scalbn_decomposed(pa, n, status); - return bfloat16_round_pack_canonical(&pr, status); +FloatRelation floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *s) +{ + return floatx80_do_compare(a, b, s, true); } /* - * Square Root - * - * The old softfloat code did an approximation step before zeroing in - * on the final result. However for simpleness we just compute the - * square root by iterating down from the implicit bit to enough extra - * bits to ensure we get a correctly rounded result. - * - * This does mean however the calculation is slower than before, - * especially for 64 bit floats. + * Scale by 2**N */ -static FloatParts64 sqrt_float(FloatParts64 a, float_status *s, const FloatFmt *p) +float16 float16_scalbn(float16 a, int n, float_status *status) { - uint64_t a_frac, r_frac, s_frac; - int bit, last_bit; + FloatParts64 p; - if (is_nan(a.cls)) { - parts_return_nan(&a, s); - return a; - } - if (a.cls == float_class_zero) { - return a; /* sqrt(+-0) = +-0 */ - } - if (a.sign) { - float_raise(float_flag_invalid, s); - parts_default_nan(&a, s); - return a; - } - if (a.cls == float_class_inf) { - return a; /* sqrt(+inf) = +inf */ - } + float16_unpack_canonical(&p, a, status); + parts_scalbn(&p, n, status); + return float16_round_pack_canonical(&p, status); +} - assert(a.cls == float_class_normal); +float32 float32_scalbn(float32 a, int n, float_status *status) +{ + FloatParts64 p; - /* We need two overflow bits at the top. Adding room for that is a - * right shift. If the exponent is odd, we can discard the low bit - * by multiplying the fraction by 2; that's a left shift. Combine - * those and we shift right by 1 if the exponent is odd, otherwise 2. - */ - a_frac = a.frac >> (2 - (a.exp & 1)); - a.exp >>= 1; + float32_unpack_canonical(&p, a, status); + parts_scalbn(&p, n, status); + return float32_round_pack_canonical(&p, status); +} - /* Bit-by-bit computation of sqrt. */ - r_frac = 0; - s_frac = 0; +float64 float64_scalbn(float64 a, int n, float_status *status) +{ + FloatParts64 p; - /* Iterate from implicit bit down to the 3 extra bits to compute a - * properly rounded result. Remember we've inserted two more bits - * at the top, so these positions are two less. - */ - bit = DECOMPOSED_BINARY_POINT - 2; - last_bit = MAX(p->frac_shift - 4, 0); - do { - uint64_t q = 1ULL << bit; - uint64_t t_frac = s_frac + q; - if (t_frac <= a_frac) { - s_frac = t_frac + q; - a_frac -= t_frac; - r_frac += q; - } - a_frac <<= 1; - } while (--bit >= last_bit); + float64_unpack_canonical(&p, a, status); + parts_scalbn(&p, n, status); + return float64_round_pack_canonical(&p, status); +} - /* Undo the right shift done above. If there is any remaining - * fraction, the result is inexact. Set the sticky bit. - */ - a.frac = (r_frac << 2) + (a_frac != 0); +bfloat16 bfloat16_scalbn(bfloat16 a, int n, float_status *status) +{ + FloatParts64 p; - return a; + bfloat16_unpack_canonical(&p, a, status); + parts_scalbn(&p, n, status); + return bfloat16_round_pack_canonical(&p, status); +} + +float128 float128_scalbn(float128 a, int n, float_status *status) +{ + FloatParts128 p; + + float128_unpack_canonical(&p, a, status); + parts_scalbn(&p, n, status); + return float128_round_pack_canonical(&p, status); +} + +floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status) +{ + FloatParts128 p; + + if (!floatx80_unpack_canonical(&p, a, status)) { + return floatx80_default_nan(status); + } + parts_scalbn(&p, n, status); + return floatx80_round_pack_canonical(&p, status); } +/* + * Square Root + */ + float16 QEMU_FLATTEN float16_sqrt(float16 a, float_status *status) { - FloatParts64 pa, pr; + FloatParts64 p; - float16_unpack_canonical(&pa, a, status); - pr = sqrt_float(pa, status, &float16_params); - return float16_round_pack_canonical(&pr, status); + float16_unpack_canonical(&p, a, status); + parts_sqrt(&p, status, &float16_params); + return float16_round_pack_canonical(&p, status); } static float32 QEMU_SOFTFLOAT_ATTR soft_f32_sqrt(float32 a, float_status *status) { - FloatParts64 pa, pr; + FloatParts64 p; - float32_unpack_canonical(&pa, a, status); - pr = sqrt_float(pa, status, &float32_params); - return float32_round_pack_canonical(&pr, status); + float32_unpack_canonical(&p, a, status); + parts_sqrt(&p, status, &float32_params); + return float32_round_pack_canonical(&p, status); } static float64 QEMU_SOFTFLOAT_ATTR soft_f64_sqrt(float64 a, float_status *status) { - FloatParts64 pa, pr; + FloatParts64 p; - float64_unpack_canonical(&pa, a, status); - pr = sqrt_float(pa, status, &float64_params); - return float64_round_pack_canonical(&pr, status); + float64_unpack_canonical(&p, a, status); + parts_sqrt(&p, status, &float64_params); + return float64_round_pack_canonical(&p, status); } float32 QEMU_FLATTEN float32_sqrt(float32 xa, float_status *s) @@ -3820,11 +4274,52 @@ float64 QEMU_FLATTEN float64_sqrt(float64 xa, float_status *s) bfloat16 QEMU_FLATTEN bfloat16_sqrt(bfloat16 a, float_status *status) { - FloatParts64 pa, pr; + FloatParts64 p; - bfloat16_unpack_canonical(&pa, a, status); - pr = sqrt_float(pa, status, &bfloat16_params); - return bfloat16_round_pack_canonical(&pr, status); + bfloat16_unpack_canonical(&p, a, status); + parts_sqrt(&p, status, &bfloat16_params); + return bfloat16_round_pack_canonical(&p, status); +} + +float128 QEMU_FLATTEN float128_sqrt(float128 a, float_status *status) +{ + FloatParts128 p; + + float128_unpack_canonical(&p, a, status); + parts_sqrt(&p, status, &float128_params); + return float128_round_pack_canonical(&p, status); +} + +floatx80 floatx80_sqrt(floatx80 a, float_status *s) +{ + FloatParts128 p; + + if (!floatx80_unpack_canonical(&p, a, s)) { + return floatx80_default_nan(s); + } + parts_sqrt(&p, s, &floatx80_params[s->floatx80_rounding_precision]); + return floatx80_round_pack_canonical(&p, s); +} + +/* + * log2 + */ +float32 float32_log2(float32 a, float_status *status) +{ + FloatParts64 p; + + float32_unpack_canonical(&p, a, status); + parts_log2(&p, status, &float32_params); + return float32_round_pack_canonical(&p, status); +} + +float64 float64_log2(float64 a, float_status *status) +{ + FloatParts64 p; + + float64_unpack_canonical(&p, a, status); + parts_log2(&p, status, &float64_params); + return float64_round_pack_canonical(&p, status); } /*---------------------------------------------------------------------------- @@ -4003,481 +4498,6 @@ bfloat16 bfloat16_squash_input_denormal(bfloat16 a, float_status *status) } /*---------------------------------------------------------------------------- -| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 -| and 7, and returns the properly rounded 32-bit integer corresponding to the -| input. If `zSign' is 1, the input is negated before being converted to an -| integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input -| is simply rounded to an integer, with the inexact exception raised if the -| input cannot be represented exactly as an integer. However, if the fixed- -| point input is too large, the invalid exception is raised and the largest -| positive or negative integer is returned. -*----------------------------------------------------------------------------*/ - -static int32_t roundAndPackInt32(bool zSign, uint64_t absZ, - float_status *status) -{ - int8_t roundingMode; - bool roundNearestEven; - int8_t roundIncrement, roundBits; - int32_t z; - - roundingMode = status->float_rounding_mode; - roundNearestEven = ( roundingMode == float_round_nearest_even ); - switch (roundingMode) { - case float_round_nearest_even: - case float_round_ties_away: - roundIncrement = 0x40; - break; - case float_round_to_zero: - roundIncrement = 0; - break; - case float_round_up: - roundIncrement = zSign ? 0 : 0x7f; - break; - case float_round_down: - roundIncrement = zSign ? 0x7f : 0; - break; - case float_round_to_odd: - roundIncrement = absZ & 0x80 ? 0 : 0x7f; - break; - default: - abort(); - } - roundBits = absZ & 0x7F; - absZ = ( absZ + roundIncrement )>>7; - if (!(roundBits ^ 0x40) && roundNearestEven) { - absZ &= ~1; - } - z = absZ; - if ( zSign ) z = - z; - if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { - float_raise(float_flag_invalid, status); - return zSign ? INT32_MIN : INT32_MAX; - } - if (roundBits) { - float_raise(float_flag_inexact, status); - } - return z; - -} - -/*---------------------------------------------------------------------------- -| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and -| `absZ1', with binary point between bits 63 and 64 (between the input words), -| and returns the properly rounded 64-bit integer corresponding to the input. -| If `zSign' is 1, the input is negated before being converted to an integer. -| Ordinarily, the fixed-point input is simply rounded to an integer, with -| the inexact exception raised if the input cannot be represented exactly as -| an integer. However, if the fixed-point input is too large, the invalid -| exception is raised and the largest positive or negative integer is -| returned. -*----------------------------------------------------------------------------*/ - -static int64_t roundAndPackInt64(bool zSign, uint64_t absZ0, uint64_t absZ1, - float_status *status) -{ - int8_t roundingMode; - bool roundNearestEven, increment; - int64_t z; - - roundingMode = status->float_rounding_mode; - roundNearestEven = ( roundingMode == float_round_nearest_even ); - switch (roundingMode) { - case float_round_nearest_even: - case float_round_ties_away: - increment = ((int64_t) absZ1 < 0); - break; - case float_round_to_zero: - increment = 0; - break; - case float_round_up: - increment = !zSign && absZ1; - break; - case float_round_down: - increment = zSign && absZ1; - break; - case float_round_to_odd: - increment = !(absZ0 & 1) && absZ1; - break; - default: - abort(); - } - if ( increment ) { - ++absZ0; - if ( absZ0 == 0 ) goto overflow; - if (!(absZ1 << 1) && roundNearestEven) { - absZ0 &= ~1; - } - } - z = absZ0; - if ( zSign ) z = - z; - if ( z && ( ( z < 0 ) ^ zSign ) ) { - overflow: - float_raise(float_flag_invalid, status); - return zSign ? INT64_MIN : INT64_MAX; - } - if (absZ1) { - float_raise(float_flag_inexact, status); - } - return z; - -} - -/*---------------------------------------------------------------------------- -| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and -| `absZ1', with binary point between bits 63 and 64 (between the input words), -| and returns the properly rounded 64-bit unsigned integer corresponding to the -| input. Ordinarily, the fixed-point input is simply rounded to an integer, -| with the inexact exception raised if the input cannot be represented exactly -| as an integer. However, if the fixed-point input is too large, the invalid -| exception is raised and the largest unsigned integer is returned. -*----------------------------------------------------------------------------*/ - -static int64_t roundAndPackUint64(bool zSign, uint64_t absZ0, - uint64_t absZ1, float_status *status) -{ - int8_t roundingMode; - bool roundNearestEven, increment; - - roundingMode = status->float_rounding_mode; - roundNearestEven = (roundingMode == float_round_nearest_even); - switch (roundingMode) { - case float_round_nearest_even: - case float_round_ties_away: - increment = ((int64_t)absZ1 < 0); - break; - case float_round_to_zero: - increment = 0; - break; - case float_round_up: - increment = !zSign && absZ1; - break; - case float_round_down: - increment = zSign && absZ1; - break; - case float_round_to_odd: - increment = !(absZ0 & 1) && absZ1; - break; - default: - abort(); - } - if (increment) { - ++absZ0; - if (absZ0 == 0) { - float_raise(float_flag_invalid, status); - return UINT64_MAX; - } - if (!(absZ1 << 1) && roundNearestEven) { - absZ0 &= ~1; - } - } - - if (zSign && absZ0) { - float_raise(float_flag_invalid, status); - return 0; - } - - if (absZ1) { - float_raise(float_flag_inexact, status); - } - return absZ0; -} - -/*---------------------------------------------------------------------------- -| Normalizes the subnormal single-precision floating-point value represented -| by the denormalized significand `aSig'. The normalized exponent and -| significand are stored at the locations pointed to by `zExpPtr' and -| `zSigPtr', respectively. -*----------------------------------------------------------------------------*/ - -static void - normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr) -{ - int8_t shiftCount; - - shiftCount = clz32(aSig) - 8; - *zSigPtr = aSig<<shiftCount; - *zExpPtr = 1 - shiftCount; - -} - -/*---------------------------------------------------------------------------- -| Takes an abstract floating-point value having sign `zSign', exponent `zExp', -| and significand `zSig', and returns the proper single-precision floating- -| point value corresponding to the abstract input. Ordinarily, the abstract -| value is simply rounded and packed into the single-precision format, with -| the inexact exception raised if the abstract input cannot be represented -| exactly. However, if the abstract value is too large, the overflow and -| inexact exceptions are raised and an infinity or maximal finite value is -| returned. If the abstract value is too small, the input value is rounded to -| a subnormal number, and the underflow and inexact exceptions are raised if -| the abstract input cannot be represented exactly as a subnormal single- -| precision floating-point number. -| The input significand `zSig' has its binary point between bits 30 -| and 29, which is 7 bits to the left of the usual location. This shifted -| significand must be normalized or smaller. If `zSig' is not normalized, -| `zExp' must be 0; in that case, the result returned is a subnormal number, -| and it must not require rounding. In the usual case that `zSig' is -| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. -| The handling of underflow and overflow follows the IEC/IEEE Standard for -| Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -static float32 roundAndPackFloat32(bool zSign, int zExp, uint32_t zSig, - float_status *status) -{ - int8_t roundingMode; - bool roundNearestEven; - int8_t roundIncrement, roundBits; - bool isTiny; - - roundingMode = status->float_rounding_mode; - roundNearestEven = ( roundingMode == float_round_nearest_even ); - switch (roundingMode) { - case float_round_nearest_even: - case float_round_ties_away: - roundIncrement = 0x40; - break; - case float_round_to_zero: - roundIncrement = 0; - break; - case float_round_up: - roundIncrement = zSign ? 0 : 0x7f; - break; - case float_round_down: - roundIncrement = zSign ? 0x7f : 0; - break; - case float_round_to_odd: - roundIncrement = zSig & 0x80 ? 0 : 0x7f; - break; - default: - abort(); - break; - } - roundBits = zSig & 0x7F; - if ( 0xFD <= (uint16_t) zExp ) { - if ( ( 0xFD < zExp ) - || ( ( zExp == 0xFD ) - && ( (int32_t) ( zSig + roundIncrement ) < 0 ) ) - ) { - bool overflow_to_inf = roundingMode != float_round_to_odd && - roundIncrement != 0; - float_raise(float_flag_overflow | float_flag_inexact, status); - return packFloat32(zSign, 0xFF, -!overflow_to_inf); - } - if ( zExp < 0 ) { - if (status->flush_to_zero) { - float_raise(float_flag_output_denormal, status); - return packFloat32(zSign, 0, 0); - } - isTiny = status->tininess_before_rounding - || (zExp < -1) - || (zSig + roundIncrement < 0x80000000); - shift32RightJamming( zSig, - zExp, &zSig ); - zExp = 0; - roundBits = zSig & 0x7F; - if (isTiny && roundBits) { - float_raise(float_flag_underflow, status); - } - if (roundingMode == float_round_to_odd) { - /* - * For round-to-odd case, the roundIncrement depends on - * zSig which just changed. - */ - roundIncrement = zSig & 0x80 ? 0 : 0x7f; - } - } - } - if (roundBits) { - float_raise(float_flag_inexact, status); - } - zSig = ( zSig + roundIncrement )>>7; - if (!(roundBits ^ 0x40) && roundNearestEven) { - zSig &= ~1; - } - if ( zSig == 0 ) zExp = 0; - return packFloat32( zSign, zExp, zSig ); - -} - -/*---------------------------------------------------------------------------- -| Takes an abstract floating-point value having sign `zSign', exponent `zExp', -| and significand `zSig', and returns the proper single-precision floating- -| point value corresponding to the abstract input. This routine is just like -| `roundAndPackFloat32' except that `zSig' does not have to be normalized. -| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' -| floating-point exponent. -*----------------------------------------------------------------------------*/ - -static float32 - normalizeRoundAndPackFloat32(bool zSign, int zExp, uint32_t zSig, - float_status *status) -{ - int8_t shiftCount; - - shiftCount = clz32(zSig) - 1; - return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount, - status); - -} - -/*---------------------------------------------------------------------------- -| Normalizes the subnormal double-precision floating-point value represented -| by the denormalized significand `aSig'. The normalized exponent and -| significand are stored at the locations pointed to by `zExpPtr' and -| `zSigPtr', respectively. -*----------------------------------------------------------------------------*/ - -static void - normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr) -{ - int8_t shiftCount; - - shiftCount = clz64(aSig) - 11; - *zSigPtr = aSig<<shiftCount; - *zExpPtr = 1 - shiftCount; - -} - -/*---------------------------------------------------------------------------- -| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a -| double-precision floating-point value, returning the result. After being -| shifted into the proper positions, the three fields are simply added -| together to form the result. This means that any integer portion of `zSig' -| will be added into the exponent. Since a properly normalized significand -| will have an integer portion equal to 1, the `zExp' input should be 1 less -| than the desired result exponent whenever `zSig' is a complete, normalized -| significand. -*----------------------------------------------------------------------------*/ - -static inline float64 packFloat64(bool zSign, int zExp, uint64_t zSig) -{ - - return make_float64( - ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig); - -} - -/*---------------------------------------------------------------------------- -| Takes an abstract floating-point value having sign `zSign', exponent `zExp', -| and significand `zSig', and returns the proper double-precision floating- -| point value corresponding to the abstract input. Ordinarily, the abstract -| value is simply rounded and packed into the double-precision format, with -| the inexact exception raised if the abstract input cannot be represented -| exactly. However, if the abstract value is too large, the overflow and -| inexact exceptions are raised and an infinity or maximal finite value is -| returned. If the abstract value is too small, the input value is rounded to -| a subnormal number, and the underflow and inexact exceptions are raised if -| the abstract input cannot be represented exactly as a subnormal double- -| precision floating-point number. -| The input significand `zSig' has its binary point between bits 62 -| and 61, which is 10 bits to the left of the usual location. This shifted -| significand must be normalized or smaller. If `zSig' is not normalized, -| `zExp' must be 0; in that case, the result returned is a subnormal number, -| and it must not require rounding. In the usual case that `zSig' is -| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. -| The handling of underflow and overflow follows the IEC/IEEE Standard for -| Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -static float64 roundAndPackFloat64(bool zSign, int zExp, uint64_t zSig, - float_status *status) -{ - int8_t roundingMode; - bool roundNearestEven; - int roundIncrement, roundBits; - bool isTiny; - - roundingMode = status->float_rounding_mode; - roundNearestEven = ( roundingMode == float_round_nearest_even ); - switch (roundingMode) { - case float_round_nearest_even: - case float_round_ties_away: - roundIncrement = 0x200; - break; - case float_round_to_zero: - roundIncrement = 0; - break; - case float_round_up: - roundIncrement = zSign ? 0 : 0x3ff; - break; - case float_round_down: - roundIncrement = zSign ? 0x3ff : 0; - break; - case float_round_to_odd: - roundIncrement = (zSig & 0x400) ? 0 : 0x3ff; - break; - default: - abort(); - } - roundBits = zSig & 0x3FF; - if ( 0x7FD <= (uint16_t) zExp ) { - if ( ( 0x7FD < zExp ) - || ( ( zExp == 0x7FD ) - && ( (int64_t) ( zSig + roundIncrement ) < 0 ) ) - ) { - bool overflow_to_inf = roundingMode != float_round_to_odd && - roundIncrement != 0; - float_raise(float_flag_overflow | float_flag_inexact, status); - return packFloat64(zSign, 0x7FF, -(!overflow_to_inf)); - } - if ( zExp < 0 ) { - if (status->flush_to_zero) { - float_raise(float_flag_output_denormal, status); - return packFloat64(zSign, 0, 0); - } - isTiny = status->tininess_before_rounding - || (zExp < -1) - || (zSig + roundIncrement < UINT64_C(0x8000000000000000)); - shift64RightJamming( zSig, - zExp, &zSig ); - zExp = 0; - roundBits = zSig & 0x3FF; - if (isTiny && roundBits) { - float_raise(float_flag_underflow, status); - } - if (roundingMode == float_round_to_odd) { - /* - * For round-to-odd case, the roundIncrement depends on - * zSig which just changed. - */ - roundIncrement = (zSig & 0x400) ? 0 : 0x3ff; - } - } - } - if (roundBits) { - float_raise(float_flag_inexact, status); - } - zSig = ( zSig + roundIncrement )>>10; - if (!(roundBits ^ 0x200) && roundNearestEven) { - zSig &= ~1; - } - if ( zSig == 0 ) zExp = 0; - return packFloat64( zSign, zExp, zSig ); - -} - -/*---------------------------------------------------------------------------- -| Takes an abstract floating-point value having sign `zSign', exponent `zExp', -| and significand `zSig', and returns the proper double-precision floating- -| point value corresponding to the abstract input. This routine is just like -| `roundAndPackFloat64' except that `zSig' does not have to be normalized. -| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true'' -| floating-point exponent. -*----------------------------------------------------------------------------*/ - -static float64 - normalizeRoundAndPackFloat64(bool zSign, int zExp, uint64_t zSig, - float_status *status) -{ - int8_t shiftCount; - - shiftCount = clz64(zSig) - 1; - return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount, - status); - -} - -/*---------------------------------------------------------------------------- | Normalizes the subnormal extended double-precision floating-point value | represented by the denormalized significand `aSig'. The normalized exponent | and significand are stored at the locations pointed to by `zExpPtr' and @@ -4507,10 +4527,10 @@ void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr, | a subnormal number, and the underflow and inexact exceptions are raised if | the abstract input cannot be represented exactly as a subnormal extended | double-precision floating-point number. -| If `roundingPrecision' is 32 or 64, the result is rounded to the same -| number of bits as single or double precision, respectively. Otherwise, the -| result is rounded to the full precision of the extended double-precision -| format. +| If `roundingPrecision' is floatx80_precision_s or floatx80_precision_d, +| the result is rounded to the same number of bits as single or double +| precision, respectively. Otherwise, the result is rounded to the full +| precision of the extended double-precision format. | The input significand must be normalized or smaller. If the input | significand is not normalized, `zExp' must be 0; in that case, the result | returned is a subnormal number, and it must not require rounding. The @@ -4518,27 +4538,29 @@ void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr, | Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ -floatx80 roundAndPackFloatx80(int8_t roundingPrecision, bool zSign, +floatx80 roundAndPackFloatx80(FloatX80RoundPrec roundingPrecision, bool zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1, float_status *status) { - int8_t roundingMode; + FloatRoundMode roundingMode; bool roundNearestEven, increment, isTiny; int64_t roundIncrement, roundMask, roundBits; roundingMode = status->float_rounding_mode; roundNearestEven = ( roundingMode == float_round_nearest_even ); - if ( roundingPrecision == 80 ) goto precision80; - if ( roundingPrecision == 64 ) { + switch (roundingPrecision) { + case floatx80_precision_x: + goto precision80; + case floatx80_precision_d: roundIncrement = UINT64_C(0x0000000000000400); roundMask = UINT64_C(0x00000000000007FF); - } - else if ( roundingPrecision == 32 ) { + break; + case floatx80_precision_s: roundIncrement = UINT64_C(0x0000008000000000); roundMask = UINT64_C(0x000000FFFFFFFFFF); - } - else { - goto precision80; + break; + default: + g_assert_not_reached(); } zSig0 |= ( zSig1 != 0 ); switch (roundingMode) { @@ -4715,7 +4737,7 @@ floatx80 roundAndPackFloatx80(int8_t roundingPrecision, bool zSign, | normalized. *----------------------------------------------------------------------------*/ -floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision, +floatx80 normalizeRoundAndPackFloatx80(FloatX80RoundPrec roundingPrecision, bool zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1, float_status *status) @@ -4736,538 +4758,6 @@ floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision, } /*---------------------------------------------------------------------------- -| Returns the least-significant 64 fraction bits of the quadruple-precision -| floating-point value `a'. -*----------------------------------------------------------------------------*/ - -static inline uint64_t extractFloat128Frac1( float128 a ) -{ - - return a.low; - -} - -/*---------------------------------------------------------------------------- -| Returns the most-significant 48 fraction bits of the quadruple-precision -| floating-point value `a'. -*----------------------------------------------------------------------------*/ - -static inline uint64_t extractFloat128Frac0( float128 a ) -{ - - return a.high & UINT64_C(0x0000FFFFFFFFFFFF); - -} - -/*---------------------------------------------------------------------------- -| Returns the exponent bits of the quadruple-precision floating-point value -| `a'. -*----------------------------------------------------------------------------*/ - -static inline int32_t extractFloat128Exp( float128 a ) -{ - - return ( a.high>>48 ) & 0x7FFF; - -} - -/*---------------------------------------------------------------------------- -| Returns the sign bit of the quadruple-precision floating-point value `a'. -*----------------------------------------------------------------------------*/ - -static inline bool extractFloat128Sign(float128 a) -{ - return a.high >> 63; -} - -/*---------------------------------------------------------------------------- -| Normalizes the subnormal quadruple-precision floating-point value -| represented by the denormalized significand formed by the concatenation of -| `aSig0' and `aSig1'. The normalized exponent is stored at the location -| pointed to by `zExpPtr'. The most significant 49 bits of the normalized -| significand are stored at the location pointed to by `zSig0Ptr', and the -| least significant 64 bits of the normalized significand are stored at the -| location pointed to by `zSig1Ptr'. -*----------------------------------------------------------------------------*/ - -static void - normalizeFloat128Subnormal( - uint64_t aSig0, - uint64_t aSig1, - int32_t *zExpPtr, - uint64_t *zSig0Ptr, - uint64_t *zSig1Ptr - ) -{ - int8_t shiftCount; - - if ( aSig0 == 0 ) { - shiftCount = clz64(aSig1) - 15; - if ( shiftCount < 0 ) { - *zSig0Ptr = aSig1>>( - shiftCount ); - *zSig1Ptr = aSig1<<( shiftCount & 63 ); - } - else { - *zSig0Ptr = aSig1<<shiftCount; - *zSig1Ptr = 0; - } - *zExpPtr = - shiftCount - 63; - } - else { - shiftCount = clz64(aSig0) - 15; - shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr ); - *zExpPtr = 1 - shiftCount; - } - -} - -/*---------------------------------------------------------------------------- -| Packs the sign `zSign', the exponent `zExp', and the significand formed -| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision -| floating-point value, returning the result. After being shifted into the -| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply -| added together to form the most significant 32 bits of the result. This -| means that any integer portion of `zSig0' will be added into the exponent. -| Since a properly normalized significand will have an integer portion equal -| to 1, the `zExp' input should be 1 less than the desired result exponent -| whenever `zSig0' and `zSig1' concatenated form a complete, normalized -| significand. -*----------------------------------------------------------------------------*/ - -static inline float128 -packFloat128(bool zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1) -{ - float128 z; - - z.low = zSig1; - z.high = ((uint64_t)zSign << 63) + ((uint64_t)zExp << 48) + zSig0; - return z; -} - -/*---------------------------------------------------------------------------- -| Takes an abstract floating-point value having sign `zSign', exponent `zExp', -| and extended significand formed by the concatenation of `zSig0', `zSig1', -| and `zSig2', and returns the proper quadruple-precision floating-point value -| corresponding to the abstract input. Ordinarily, the abstract value is -| simply rounded and packed into the quadruple-precision format, with the -| inexact exception raised if the abstract input cannot be represented -| exactly. However, if the abstract value is too large, the overflow and -| inexact exceptions are raised and an infinity or maximal finite value is -| returned. If the abstract value is too small, the input value is rounded to -| a subnormal number, and the underflow and inexact exceptions are raised if -| the abstract input cannot be represented exactly as a subnormal quadruple- -| precision floating-point number. -| The input significand must be normalized or smaller. If the input -| significand is not normalized, `zExp' must be 0; in that case, the result -| returned is a subnormal number, and it must not require rounding. In the -| usual case that the input significand is normalized, `zExp' must be 1 less -| than the ``true'' floating-point exponent. The handling of underflow and -| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -static float128 roundAndPackFloat128(bool zSign, int32_t zExp, - uint64_t zSig0, uint64_t zSig1, - uint64_t zSig2, float_status *status) -{ - int8_t roundingMode; - bool roundNearestEven, increment, isTiny; - - roundingMode = status->float_rounding_mode; - roundNearestEven = ( roundingMode == float_round_nearest_even ); - switch (roundingMode) { - case float_round_nearest_even: - case float_round_ties_away: - increment = ((int64_t)zSig2 < 0); - break; - case float_round_to_zero: - increment = 0; - break; - case float_round_up: - increment = !zSign && zSig2; - break; - case float_round_down: - increment = zSign && zSig2; - break; - case float_round_to_odd: - increment = !(zSig1 & 0x1) && zSig2; - break; - default: - abort(); - } - if ( 0x7FFD <= (uint32_t) zExp ) { - if ( ( 0x7FFD < zExp ) - || ( ( zExp == 0x7FFD ) - && eq128( - UINT64_C(0x0001FFFFFFFFFFFF), - UINT64_C(0xFFFFFFFFFFFFFFFF), - zSig0, - zSig1 - ) - && increment - ) - ) { - float_raise(float_flag_overflow | float_flag_inexact, status); - if ( ( roundingMode == float_round_to_zero ) - || ( zSign && ( roundingMode == float_round_up ) ) - || ( ! zSign && ( roundingMode == float_round_down ) ) - || (roundingMode == float_round_to_odd) - ) { - return - packFloat128( - zSign, - 0x7FFE, - UINT64_C(0x0000FFFFFFFFFFFF), - UINT64_C(0xFFFFFFFFFFFFFFFF) - ); - } - return packFloat128( zSign, 0x7FFF, 0, 0 ); - } - if ( zExp < 0 ) { - if (status->flush_to_zero) { - float_raise(float_flag_output_denormal, status); - return packFloat128(zSign, 0, 0, 0); - } - isTiny = status->tininess_before_rounding - || (zExp < -1) - || !increment - || lt128(zSig0, zSig1, - UINT64_C(0x0001FFFFFFFFFFFF), - UINT64_C(0xFFFFFFFFFFFFFFFF)); - shift128ExtraRightJamming( - zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 ); - zExp = 0; - if (isTiny && zSig2) { - float_raise(float_flag_underflow, status); - } - switch (roundingMode) { - case float_round_nearest_even: - case float_round_ties_away: - increment = ((int64_t)zSig2 < 0); - break; - case float_round_to_zero: - increment = 0; - break; - case float_round_up: - increment = !zSign && zSig2; - break; - case float_round_down: - increment = zSign && zSig2; - break; - case float_round_to_odd: - increment = !(zSig1 & 0x1) && zSig2; - break; - default: - abort(); - } - } - } - if (zSig2) { - float_raise(float_flag_inexact, status); - } - if ( increment ) { - add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 ); - if ((zSig2 + zSig2 == 0) && roundNearestEven) { - zSig1 &= ~1; - } - } - else { - if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0; - } - return packFloat128( zSign, zExp, zSig0, zSig1 ); - -} - -/*---------------------------------------------------------------------------- -| Takes an abstract floating-point value having sign `zSign', exponent `zExp', -| and significand formed by the concatenation of `zSig0' and `zSig1', and -| returns the proper quadruple-precision floating-point value corresponding -| to the abstract input. This routine is just like `roundAndPackFloat128' -| except that the input significand has fewer bits and does not have to be -| normalized. In all cases, `zExp' must be 1 less than the ``true'' floating- -| point exponent. -*----------------------------------------------------------------------------*/ - -static float128 normalizeRoundAndPackFloat128(bool zSign, int32_t zExp, - uint64_t zSig0, uint64_t zSig1, - float_status *status) -{ - int8_t shiftCount; - uint64_t zSig2; - - if ( zSig0 == 0 ) { - zSig0 = zSig1; - zSig1 = 0; - zExp -= 64; - } - shiftCount = clz64(zSig0) - 15; - if ( 0 <= shiftCount ) { - zSig2 = 0; - shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); - } - else { - shift128ExtraRightJamming( - zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 ); - } - zExp -= shiftCount; - return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status); - -} - - -/*---------------------------------------------------------------------------- -| Returns the result of converting the 32-bit two's complement integer `a' -| to the extended double-precision floating-point format. The conversion -| is performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 int32_to_floatx80(int32_t a, float_status *status) -{ - bool zSign; - uint32_t absA; - int8_t shiftCount; - uint64_t zSig; - - if ( a == 0 ) return packFloatx80( 0, 0, 0 ); - zSign = ( a < 0 ); - absA = zSign ? - a : a; - shiftCount = clz32(absA) + 32; - zSig = absA; - return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the 32-bit two's complement integer `a' to -| the quadruple-precision floating-point format. The conversion is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 int32_to_float128(int32_t a, float_status *status) -{ - bool zSign; - uint32_t absA; - int8_t shiftCount; - uint64_t zSig0; - - if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); - zSign = ( a < 0 ); - absA = zSign ? - a : a; - shiftCount = clz32(absA) + 17; - zSig0 = absA; - return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the 64-bit two's complement integer `a' -| to the extended double-precision floating-point format. The conversion -| is performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 int64_to_floatx80(int64_t a, float_status *status) -{ - bool zSign; - uint64_t absA; - int8_t shiftCount; - - if ( a == 0 ) return packFloatx80( 0, 0, 0 ); - zSign = ( a < 0 ); - absA = zSign ? - a : a; - shiftCount = clz64(absA); - return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the 64-bit two's complement integer `a' to -| the quadruple-precision floating-point format. The conversion is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 int64_to_float128(int64_t a, float_status *status) -{ - bool zSign; - uint64_t absA; - int8_t shiftCount; - int32_t zExp; - uint64_t zSig0, zSig1; - - if ( a == 0 ) return packFloat128( 0, 0, 0, 0 ); - zSign = ( a < 0 ); - absA = zSign ? - a : a; - shiftCount = clz64(absA) + 49; - zExp = 0x406E - shiftCount; - if ( 64 <= shiftCount ) { - zSig1 = 0; - zSig0 = absA; - shiftCount -= 64; - } - else { - zSig1 = absA; - zSig0 = 0; - } - shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); - return packFloat128( zSign, zExp, zSig0, zSig1 ); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the 64-bit unsigned integer `a' -| to the quadruple-precision floating-point format. The conversion is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 uint64_to_float128(uint64_t a, float_status *status) -{ - if (a == 0) { - return float128_zero; - } - return normalizeRoundAndPackFloat128(0, 0x406E, 0, a, status); -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the single-precision floating-point value -| `a' to the extended double-precision floating-point format. The conversion -| is performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 float32_to_floatx80(float32 a, float_status *status) -{ - bool aSign; - int aExp; - uint32_t aSig; - - a = float32_squash_input_denormal(a, status); - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - if ( aExp == 0xFF ) { - if (aSig) { - floatx80 res = commonNaNToFloatx80(float32ToCommonNaN(a, status), - status); - return floatx80_silence_nan(res, status); - } - return packFloatx80(aSign, - floatx80_infinity_high, - floatx80_infinity_low); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - aSig |= 0x00800000; - return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 ); - -} - -/*---------------------------------------------------------------------------- -| Returns the remainder of the single-precision floating-point value `a' -| with respect to the corresponding value `b'. The operation is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float32_rem(float32 a, float32 b, float_status *status) -{ - bool aSign, zSign; - int aExp, bExp, expDiff; - uint32_t aSig, bSig; - uint32_t q; - uint64_t aSig64, bSig64, q64; - uint32_t alternateASig; - int32_t sigMean; - a = float32_squash_input_denormal(a, status); - b = float32_squash_input_denormal(b, status); - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - bSig = extractFloat32Frac( b ); - bExp = extractFloat32Exp( b ); - if ( aExp == 0xFF ) { - if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { - return propagateFloat32NaN(a, b, status); - } - float_raise(float_flag_invalid, status); - return float32_default_nan(status); - } - if ( bExp == 0xFF ) { - if (bSig) { - return propagateFloat32NaN(a, b, status); - } - return a; - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - float_raise(float_flag_invalid, status); - return float32_default_nan(status); - } - normalizeFloat32Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return a; - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - expDiff = aExp - bExp; - aSig |= 0x00800000; - bSig |= 0x00800000; - if ( expDiff < 32 ) { - aSig <<= 8; - bSig <<= 8; - if ( expDiff < 0 ) { - if ( expDiff < -1 ) return a; - aSig >>= 1; - } - q = ( bSig <= aSig ); - if ( q ) aSig -= bSig; - if ( 0 < expDiff ) { - q = ( ( (uint64_t) aSig )<<32 ) / bSig; - q >>= 32 - expDiff; - bSig >>= 2; - aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; - } - else { - aSig >>= 2; - bSig >>= 2; - } - } - else { - if ( bSig <= aSig ) aSig -= bSig; - aSig64 = ( (uint64_t) aSig )<<40; - bSig64 = ( (uint64_t) bSig )<<40; - expDiff -= 64; - while ( 0 < expDiff ) { - q64 = estimateDiv128To64( aSig64, 0, bSig64 ); - q64 = ( 2 < q64 ) ? q64 - 2 : 0; - aSig64 = - ( ( bSig * q64 )<<38 ); - expDiff -= 62; - } - expDiff += 64; - q64 = estimateDiv128To64( aSig64, 0, bSig64 ); - q64 = ( 2 < q64 ) ? q64 - 2 : 0; - q = q64>>( 64 - expDiff ); - bSig <<= 6; - aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; - } - do { - alternateASig = aSig; - ++q; - aSig -= bSig; - } while ( 0 <= (int32_t) aSig ); - sigMean = aSig + alternateASig; - if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { - aSig = alternateASig; - } - zSign = ( (int32_t) aSig < 0 ); - if ( zSign ) aSig = - aSig; - return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status); -} - - - -/*---------------------------------------------------------------------------- | Returns the binary exponential of the single-precision floating-point value | `a'. The operation is performed according to the IEC/IEEE Standard for | Binary Floating-Point Arithmetic. @@ -5306,542 +4796,40 @@ static const float64 float32_exp2_coefficients[15] = float32 float32_exp2(float32 a, float_status *status) { - bool aSign; - int aExp; - uint32_t aSig; - float64 r, x, xn; + FloatParts64 xp, xnp, tp, rp; int i; - a = float32_squash_input_denormal(a, status); - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - if ( aExp == 0xFF) { - if (aSig) { - return propagateFloat32NaN(a, float32_zero, status); + float32_unpack_canonical(&xp, a, status); + if (unlikely(xp.cls != float_class_normal)) { + switch (xp.cls) { + case float_class_snan: + case float_class_qnan: + parts_return_nan(&xp, status); + return float32_round_pack_canonical(&xp, status); + case float_class_inf: + return xp.sign ? float32_zero : a; + case float_class_zero: + return float32_one; + default: + break; } - return (aSign) ? float32_zero : a; - } - if (aExp == 0) { - if (aSig == 0) return float32_one; + g_assert_not_reached(); } float_raise(float_flag_inexact, status); - /* ******************************* */ - /* using float64 for approximation */ - /* ******************************* */ - x = float32_to_float64(a, status); - x = float64_mul(x, float64_ln2, status); + float64_unpack_canonical(&xnp, float64_ln2, status); + xp = *parts_mul(&xp, &tp, status); + xnp = xp; - xn = x; - r = float64_one; + float64_unpack_canonical(&rp, float64_one, status); for (i = 0 ; i < 15 ; i++) { - float64 f; - - f = float64_mul(xn, float32_exp2_coefficients[i], status); - r = float64_add(r, f, status); - - xn = float64_mul(xn, x, status); - } - - return float64_to_float32(r, status); -} - -/*---------------------------------------------------------------------------- -| Returns the binary log of the single-precision floating-point value `a'. -| The operation is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ -float32 float32_log2(float32 a, float_status *status) -{ - bool aSign, zSign; - int aExp; - uint32_t aSig, zSig, i; - - a = float32_squash_input_denormal(a, status); - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 ); - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - if ( aSign ) { - float_raise(float_flag_invalid, status); - return float32_default_nan(status); - } - if ( aExp == 0xFF ) { - if (aSig) { - return propagateFloat32NaN(a, float32_zero, status); - } - return a; - } - - aExp -= 0x7F; - aSig |= 0x00800000; - zSign = aExp < 0; - zSig = aExp << 23; - - for (i = 1 << 22; i > 0; i >>= 1) { - aSig = ( (uint64_t)aSig * aSig ) >> 23; - if ( aSig & 0x01000000 ) { - aSig >>= 1; - zSig |= i; - } - } - - if ( zSign ) - zSig = -zSig; - - return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status); -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the double-precision floating-point value -| `a' to the extended double-precision floating-point format. The conversion -| is performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 float64_to_floatx80(float64 a, float_status *status) -{ - bool aSign; - int aExp; - uint64_t aSig; - - a = float64_squash_input_denormal(a, status); - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( aExp == 0x7FF ) { - if (aSig) { - floatx80 res = commonNaNToFloatx80(float64ToCommonNaN(a, status), - status); - return floatx80_silence_nan(res, status); - } - return packFloatx80(aSign, - floatx80_infinity_high, - floatx80_infinity_low); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - } - return - packFloatx80( - aSign, aExp + 0x3C00, (aSig | UINT64_C(0x0010000000000000)) << 11); - -} - -/*---------------------------------------------------------------------------- -| Returns the remainder of the double-precision floating-point value `a' -| with respect to the corresponding value `b'. The operation is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float64_rem(float64 a, float64 b, float_status *status) -{ - bool aSign, zSign; - int aExp, bExp, expDiff; - uint64_t aSig, bSig; - uint64_t q, alternateASig; - int64_t sigMean; - - a = float64_squash_input_denormal(a, status); - b = float64_squash_input_denormal(b, status); - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - bSig = extractFloat64Frac( b ); - bExp = extractFloat64Exp( b ); - if ( aExp == 0x7FF ) { - if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { - return propagateFloat64NaN(a, b, status); - } - float_raise(float_flag_invalid, status); - return float64_default_nan(status); - } - if ( bExp == 0x7FF ) { - if (bSig) { - return propagateFloat64NaN(a, b, status); - } - return a; - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - float_raise(float_flag_invalid, status); - return float64_default_nan(status); - } - normalizeFloat64Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return a; - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - } - expDiff = aExp - bExp; - aSig = (aSig | UINT64_C(0x0010000000000000)) << 11; - bSig = (bSig | UINT64_C(0x0010000000000000)) << 11; - if ( expDiff < 0 ) { - if ( expDiff < -1 ) return a; - aSig >>= 1; - } - q = ( bSig <= aSig ); - if ( q ) aSig -= bSig; - expDiff -= 64; - while ( 0 < expDiff ) { - q = estimateDiv128To64( aSig, 0, bSig ); - q = ( 2 < q ) ? q - 2 : 0; - aSig = - ( ( bSig>>2 ) * q ); - expDiff -= 62; - } - expDiff += 64; - if ( 0 < expDiff ) { - q = estimateDiv128To64( aSig, 0, bSig ); - q = ( 2 < q ) ? q - 2 : 0; - q >>= 64 - expDiff; - bSig >>= 2; - aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; - } - else { - aSig >>= 2; - bSig >>= 2; - } - do { - alternateASig = aSig; - ++q; - aSig -= bSig; - } while ( 0 <= (int64_t) aSig ); - sigMean = aSig + alternateASig; - if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { - aSig = alternateASig; - } - zSign = ( (int64_t) aSig < 0 ); - if ( zSign ) aSig = - aSig; - return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status); - -} - -/*---------------------------------------------------------------------------- -| Returns the binary log of the double-precision floating-point value `a'. -| The operation is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ -float64 float64_log2(float64 a, float_status *status) -{ - bool aSign, zSign; - int aExp; - uint64_t aSig, aSig0, aSig1, zSig, i; - a = float64_squash_input_denormal(a, status); - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 ); - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - } - if ( aSign ) { - float_raise(float_flag_invalid, status); - return float64_default_nan(status); - } - if ( aExp == 0x7FF ) { - if (aSig) { - return propagateFloat64NaN(a, float64_zero, status); - } - return a; - } - - aExp -= 0x3FF; - aSig |= UINT64_C(0x0010000000000000); - zSign = aExp < 0; - zSig = (uint64_t)aExp << 52; - for (i = 1LL << 51; i > 0; i >>= 1) { - mul64To128( aSig, aSig, &aSig0, &aSig1 ); - aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 ); - if ( aSig & UINT64_C(0x0020000000000000) ) { - aSig >>= 1; - zSig |= i; - } - } - - if ( zSign ) - zSig = -zSig; - return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status); -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the extended double-precision floating- -| point value `a' to the 32-bit two's complement integer format. The -| conversion is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic---which means in particular that the conversion -| is rounded according to the current rounding mode. If `a' is a NaN, the -| largest positive integer is returned. Otherwise, if the conversion -| overflows, the largest integer with the same sign as `a' is returned. -*----------------------------------------------------------------------------*/ - -int32_t floatx80_to_int32(floatx80 a, float_status *status) -{ - bool aSign; - int32_t aExp, shiftCount; - uint64_t aSig; - - if (floatx80_invalid_encoding(a)) { - float_raise(float_flag_invalid, status); - return 1 << 31; - } - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; - shiftCount = 0x4037 - aExp; - if ( shiftCount <= 0 ) shiftCount = 1; - shift64RightJamming( aSig, shiftCount, &aSig ); - return roundAndPackInt32(aSign, aSig, status); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the extended double-precision floating- -| point value `a' to the 32-bit two's complement integer format. The -| conversion is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic, except that the conversion is always rounded -| toward zero. If `a' is a NaN, the largest positive integer is returned. -| Otherwise, if the conversion overflows, the largest integer with the same -| sign as `a' is returned. -*----------------------------------------------------------------------------*/ - -int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status) -{ - bool aSign; - int32_t aExp, shiftCount; - uint64_t aSig, savedASig; - int32_t z; - - if (floatx80_invalid_encoding(a)) { - float_raise(float_flag_invalid, status); - return 1 << 31; - } - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( 0x401E < aExp ) { - if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0; - goto invalid; - } - else if ( aExp < 0x3FFF ) { - if (aExp || aSig) { - float_raise(float_flag_inexact, status); - } - return 0; - } - shiftCount = 0x403E - aExp; - savedASig = aSig; - aSig >>= shiftCount; - z = aSig; - if ( aSign ) z = - z; - if ( ( z < 0 ) ^ aSign ) { - invalid: - float_raise(float_flag_invalid, status); - return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF; - } - if ( ( aSig<<shiftCount ) != savedASig ) { - float_raise(float_flag_inexact, status); - } - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the extended double-precision floating- -| point value `a' to the 64-bit two's complement integer format. The -| conversion is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic---which means in particular that the conversion -| is rounded according to the current rounding mode. If `a' is a NaN, -| the largest positive integer is returned. Otherwise, if the conversion -| overflows, the largest integer with the same sign as `a' is returned. -*----------------------------------------------------------------------------*/ - -int64_t floatx80_to_int64(floatx80 a, float_status *status) -{ - bool aSign; - int32_t aExp, shiftCount; - uint64_t aSig, aSigExtra; - - if (floatx80_invalid_encoding(a)) { - float_raise(float_flag_invalid, status); - return 1ULL << 63; - } - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - shiftCount = 0x403E - aExp; - if ( shiftCount <= 0 ) { - if ( shiftCount ) { - float_raise(float_flag_invalid, status); - if (!aSign || floatx80_is_any_nan(a)) { - return INT64_MAX; - } - return INT64_MIN; - } - aSigExtra = 0; - } - else { - shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra ); - } - return roundAndPackInt64(aSign, aSig, aSigExtra, status); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the extended double-precision floating- -| point value `a' to the 64-bit two's complement integer format. The -| conversion is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic, except that the conversion is always rounded -| toward zero. If `a' is a NaN, the largest positive integer is returned. -| Otherwise, if the conversion overflows, the largest integer with the same -| sign as `a' is returned. -*----------------------------------------------------------------------------*/ - -int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status) -{ - bool aSign; - int32_t aExp, shiftCount; - uint64_t aSig; - int64_t z; - - if (floatx80_invalid_encoding(a)) { - float_raise(float_flag_invalid, status); - return 1ULL << 63; - } - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - shiftCount = aExp - 0x403E; - if ( 0 <= shiftCount ) { - aSig &= UINT64_C(0x7FFFFFFFFFFFFFFF); - if ( ( a.high != 0xC03E ) || aSig ) { - float_raise(float_flag_invalid, status); - if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) { - return INT64_MAX; - } - } - return INT64_MIN; - } - else if ( aExp < 0x3FFF ) { - if (aExp | aSig) { - float_raise(float_flag_inexact, status); - } - return 0; + float64_unpack_canonical(&tp, float32_exp2_coefficients[i], status); + rp = *parts_muladd(&tp, &xp, &rp, 0, status); + xnp = *parts_mul(&xnp, &xp, status); } - z = aSig>>( - shiftCount ); - if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) { - float_raise(float_flag_inexact, status); - } - if ( aSign ) z = - z; - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the extended double-precision floating- -| point value `a' to the single-precision floating-point format. The -| conversion is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 floatx80_to_float32(floatx80 a, float_status *status) -{ - bool aSign; - int32_t aExp; - uint64_t aSig; - - if (floatx80_invalid_encoding(a)) { - float_raise(float_flag_invalid, status); - return float32_default_nan(status); - } - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( aExp == 0x7FFF ) { - if ( (uint64_t) ( aSig<<1 ) ) { - float32 res = commonNaNToFloat32(floatx80ToCommonNaN(a, status), - status); - return float32_silence_nan(res, status); - } - return packFloat32( aSign, 0xFF, 0 ); - } - shift64RightJamming( aSig, 33, &aSig ); - if ( aExp || aSig ) aExp -= 0x3F81; - return roundAndPackFloat32(aSign, aExp, aSig, status); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the extended double-precision floating- -| point value `a' to the double-precision floating-point format. The -| conversion is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 floatx80_to_float64(floatx80 a, float_status *status) -{ - bool aSign; - int32_t aExp; - uint64_t aSig, zSig; - - if (floatx80_invalid_encoding(a)) { - float_raise(float_flag_invalid, status); - return float64_default_nan(status); - } - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( aExp == 0x7FFF ) { - if ( (uint64_t) ( aSig<<1 ) ) { - float64 res = commonNaNToFloat64(floatx80ToCommonNaN(a, status), - status); - return float64_silence_nan(res, status); - } - return packFloat64( aSign, 0x7FF, 0 ); - } - shift64RightJamming( aSig, 1, &zSig ); - if ( aExp || aSig ) aExp -= 0x3C01; - return roundAndPackFloat64(aSign, aExp, zSig, status); - -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the extended double-precision floating- -| point value `a' to the quadruple-precision floating-point format. The -| conversion is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 floatx80_to_float128(floatx80 a, float_status *status) -{ - bool aSign; - int aExp; - uint64_t aSig, zSig0, zSig1; - - if (floatx80_invalid_encoding(a)) { - float_raise(float_flag_invalid, status); - return float128_default_nan(status); - } - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) { - float128 res = commonNaNToFloat128(floatx80ToCommonNaN(a, status), - status); - return float128_silence_nan(res, status); - } - shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 ); - return packFloat128( aSign, aExp, zSig0, zSig1 ); + return float32_round_pack_canonical(&rp, status); } /*---------------------------------------------------------------------------- @@ -5854,1195 +4842,12 @@ float128 floatx80_to_float128(floatx80 a, float_status *status) floatx80 floatx80_round(floatx80 a, float_status *status) { - return roundAndPackFloatx80(status->floatx80_rounding_precision, - extractFloatx80Sign(a), - extractFloatx80Exp(a), - extractFloatx80Frac(a), 0, status); -} - -/*---------------------------------------------------------------------------- -| Rounds the extended double-precision floating-point value `a' to an integer, -| and returns the result as an extended quadruple-precision floating-point -| value. The operation is performed according to the IEC/IEEE Standard for -| Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_round_to_int(floatx80 a, float_status *status) -{ - bool aSign; - int32_t aExp; - uint64_t lastBitMask, roundBitsMask; - floatx80 z; - - if (floatx80_invalid_encoding(a)) { - float_raise(float_flag_invalid, status); - return floatx80_default_nan(status); - } - aExp = extractFloatx80Exp( a ); - if ( 0x403E <= aExp ) { - if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) { - return propagateFloatx80NaN(a, a, status); - } - return a; - } - if ( aExp < 0x3FFF ) { - if ( ( aExp == 0 ) - && ( (uint64_t) ( extractFloatx80Frac( a ) ) == 0 ) ) { - return a; - } - float_raise(float_flag_inexact, status); - aSign = extractFloatx80Sign( a ); - switch (status->float_rounding_mode) { - case float_round_nearest_even: - if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) - ) { - return - packFloatx80( aSign, 0x3FFF, UINT64_C(0x8000000000000000)); - } - break; - case float_round_ties_away: - if (aExp == 0x3FFE) { - return packFloatx80(aSign, 0x3FFF, UINT64_C(0x8000000000000000)); - } - break; - case float_round_down: - return - aSign ? - packFloatx80( 1, 0x3FFF, UINT64_C(0x8000000000000000)) - : packFloatx80( 0, 0, 0 ); - case float_round_up: - return - aSign ? packFloatx80( 1, 0, 0 ) - : packFloatx80( 0, 0x3FFF, UINT64_C(0x8000000000000000)); - - case float_round_to_zero: - break; - default: - g_assert_not_reached(); - } - return packFloatx80( aSign, 0, 0 ); - } - lastBitMask = 1; - lastBitMask <<= 0x403E - aExp; - roundBitsMask = lastBitMask - 1; - z = a; - switch (status->float_rounding_mode) { - case float_round_nearest_even: - z.low += lastBitMask>>1; - if ((z.low & roundBitsMask) == 0) { - z.low &= ~lastBitMask; - } - break; - case float_round_ties_away: - z.low += lastBitMask >> 1; - break; - case float_round_to_zero: - break; - case float_round_up: - if (!extractFloatx80Sign(z)) { - z.low += roundBitsMask; - } - break; - case float_round_down: - if (extractFloatx80Sign(z)) { - z.low += roundBitsMask; - } - break; - default: - abort(); - } - z.low &= ~ roundBitsMask; - if ( z.low == 0 ) { - ++z.high; - z.low = UINT64_C(0x8000000000000000); - } - if (z.low != a.low) { - float_raise(float_flag_inexact, status); - } - return z; - -} - -/*---------------------------------------------------------------------------- -| Returns the result of adding the absolute values of the extended double- -| precision floating-point values `a' and `b'. If `zSign' is 1, the sum is -| negated before being returned. `zSign' is ignored if the result is a NaN. -| The addition is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, bool zSign, - float_status *status) -{ - int32_t aExp, bExp, zExp; - uint64_t aSig, bSig, zSig0, zSig1; - int32_t expDiff; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - bSig = extractFloatx80Frac( b ); - bExp = extractFloatx80Exp( b ); - expDiff = aExp - bExp; - if ( 0 < expDiff ) { - if ( aExp == 0x7FFF ) { - if ((uint64_t)(aSig << 1)) { - return propagateFloatx80NaN(a, b, status); - } - return a; - } - if ( bExp == 0 ) --expDiff; - shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); - zExp = aExp; - } - else if ( expDiff < 0 ) { - if ( bExp == 0x7FFF ) { - if ((uint64_t)(bSig << 1)) { - return propagateFloatx80NaN(a, b, status); - } - return packFloatx80(zSign, - floatx80_infinity_high, - floatx80_infinity_low); - } - if ( aExp == 0 ) ++expDiff; - shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); - zExp = bExp; - } - else { - if ( aExp == 0x7FFF ) { - if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { - return propagateFloatx80NaN(a, b, status); - } - return a; - } - zSig1 = 0; - zSig0 = aSig + bSig; - if ( aExp == 0 ) { - if ((aSig | bSig) & UINT64_C(0x8000000000000000) && zSig0 < aSig) { - /* At least one of the values is a pseudo-denormal, - * and there is a carry out of the result. */ - zExp = 1; - goto shiftRight1; - } - if (zSig0 == 0) { - return packFloatx80(zSign, 0, 0); - } - normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); - goto roundAndPack; - } - zExp = aExp; - goto shiftRight1; - } - zSig0 = aSig + bSig; - if ( (int64_t) zSig0 < 0 ) goto roundAndPack; - shiftRight1: - shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); - zSig0 |= UINT64_C(0x8000000000000000); - ++zExp; - roundAndPack: - return roundAndPackFloatx80(status->floatx80_rounding_precision, - zSign, zExp, zSig0, zSig1, status); -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the absolute values of the extended -| double-precision floating-point values `a' and `b'. If `zSign' is 1, the -| difference is negated before being returned. `zSign' is ignored if the -| result is a NaN. The subtraction is performed according to the IEC/IEEE -| Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, bool zSign, - float_status *status) -{ - int32_t aExp, bExp, zExp; - uint64_t aSig, bSig, zSig0, zSig1; - int32_t expDiff; - - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - bSig = extractFloatx80Frac( b ); - bExp = extractFloatx80Exp( b ); - expDiff = aExp - bExp; - if ( 0 < expDiff ) goto aExpBigger; - if ( expDiff < 0 ) goto bExpBigger; - if ( aExp == 0x7FFF ) { - if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) { - return propagateFloatx80NaN(a, b, status); - } - float_raise(float_flag_invalid, status); - return floatx80_default_nan(status); - } - if ( aExp == 0 ) { - aExp = 1; - bExp = 1; - } - zSig1 = 0; - if ( bSig < aSig ) goto aBigger; - if ( aSig < bSig ) goto bBigger; - return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0); - bExpBigger: - if ( bExp == 0x7FFF ) { - if ((uint64_t)(bSig << 1)) { - return propagateFloatx80NaN(a, b, status); - } - return packFloatx80(zSign ^ 1, floatx80_infinity_high, - floatx80_infinity_low); - } - if ( aExp == 0 ) ++expDiff; - shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); - bBigger: - sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); - zExp = bExp; - zSign ^= 1; - goto normalizeRoundAndPack; - aExpBigger: - if ( aExp == 0x7FFF ) { - if ((uint64_t)(aSig << 1)) { - return propagateFloatx80NaN(a, b, status); - } - return a; - } - if ( bExp == 0 ) --expDiff; - shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); - aBigger: - sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); - zExp = aExp; - normalizeRoundAndPack: - return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision, - zSign, zExp, zSig0, zSig1, status); -} - -/*---------------------------------------------------------------------------- -| Returns the result of adding the extended double-precision floating-point -| values `a' and `b'. The operation is performed according to the IEC/IEEE -| Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status) -{ - bool aSign, bSign; - - if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { - float_raise(float_flag_invalid, status); - return floatx80_default_nan(status); - } - aSign = extractFloatx80Sign( a ); - bSign = extractFloatx80Sign( b ); - if ( aSign == bSign ) { - return addFloatx80Sigs(a, b, aSign, status); - } - else { - return subFloatx80Sigs(a, b, aSign, status); - } - -} - -/*---------------------------------------------------------------------------- -| Returns the result of subtracting the extended double-precision floating- -| point values `a' and `b'. The operation is performed according to the -| IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status) -{ - bool aSign, bSign; - - if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { - float_raise(float_flag_invalid, status); - return floatx80_default_nan(status); - } - aSign = extractFloatx80Sign( a ); - bSign = extractFloatx80Sign( b ); - if ( aSign == bSign ) { - return subFloatx80Sigs(a, b, aSign, status); - } - else { - return addFloatx80Sigs(a, b, aSign, status); - } - -} - -/*---------------------------------------------------------------------------- -| Returns the result of multiplying the extended double-precision floating- -| point values `a' and `b'. The operation is performed according to the -| IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status) -{ - bool aSign, bSign, zSign; - int32_t aExp, bExp, zExp; - uint64_t aSig, bSig, zSig0, zSig1; - - if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { - float_raise(float_flag_invalid, status); - return floatx80_default_nan(status); - } - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - bSig = extractFloatx80Frac( b ); - bExp = extractFloatx80Exp( b ); - bSign = extractFloatx80Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FFF ) { - if ( (uint64_t) ( aSig<<1 ) - || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { - return propagateFloatx80NaN(a, b, status); - } - if ( ( bExp | bSig ) == 0 ) goto invalid; - return packFloatx80(zSign, floatx80_infinity_high, - floatx80_infinity_low); - } - if ( bExp == 0x7FFF ) { - if ((uint64_t)(bSig << 1)) { - return propagateFloatx80NaN(a, b, status); - } - if ( ( aExp | aSig ) == 0 ) { - invalid: - float_raise(float_flag_invalid, status); - return floatx80_default_nan(status); - } - return packFloatx80(zSign, floatx80_infinity_high, - floatx80_infinity_low); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); - normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); - normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); - } - zExp = aExp + bExp - 0x3FFE; - mul64To128( aSig, bSig, &zSig0, &zSig1 ); - if ( 0 < (int64_t) zSig0 ) { - shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); - --zExp; - } - return roundAndPackFloatx80(status->floatx80_rounding_precision, - zSign, zExp, zSig0, zSig1, status); -} - -/*---------------------------------------------------------------------------- -| Returns the result of dividing the extended double-precision floating-point -| value `a' by the corresponding value `b'. The operation is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status) -{ - bool aSign, bSign, zSign; - int32_t aExp, bExp, zExp; - uint64_t aSig, bSig, zSig0, zSig1; - uint64_t rem0, rem1, rem2, term0, term1, term2; - - if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { - float_raise(float_flag_invalid, status); - return floatx80_default_nan(status); - } - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - bSig = extractFloatx80Frac( b ); - bExp = extractFloatx80Exp( b ); - bSign = extractFloatx80Sign( b ); - zSign = aSign ^ bSign; - if ( aExp == 0x7FFF ) { - if ((uint64_t)(aSig << 1)) { - return propagateFloatx80NaN(a, b, status); - } - if ( bExp == 0x7FFF ) { - if ((uint64_t)(bSig << 1)) { - return propagateFloatx80NaN(a, b, status); - } - goto invalid; - } - return packFloatx80(zSign, floatx80_infinity_high, - floatx80_infinity_low); - } - if ( bExp == 0x7FFF ) { - if ((uint64_t)(bSig << 1)) { - return propagateFloatx80NaN(a, b, status); - } - return packFloatx80( zSign, 0, 0 ); - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - if ( ( aExp | aSig ) == 0 ) { - invalid: - float_raise(float_flag_invalid, status); - return floatx80_default_nan(status); - } - float_raise(float_flag_divbyzero, status); - return packFloatx80(zSign, floatx80_infinity_high, - floatx80_infinity_low); - } - normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); - normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); - } - zExp = aExp - bExp + 0x3FFE; - rem1 = 0; - if ( bSig <= aSig ) { - shift128Right( aSig, 0, 1, &aSig, &rem1 ); - ++zExp; - } - zSig0 = estimateDiv128To64( aSig, rem1, bSig ); - mul64To128( bSig, zSig0, &term0, &term1 ); - sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); - while ( (int64_t) rem0 < 0 ) { - --zSig0; - add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); - } - zSig1 = estimateDiv128To64( rem1, 0, bSig ); - if ( (uint64_t) ( zSig1<<1 ) <= 8 ) { - mul64To128( bSig, zSig1, &term1, &term2 ); - sub128( rem1, 0, term1, term2, &rem1, &rem2 ); - while ( (int64_t) rem1 < 0 ) { - --zSig1; - add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); - } - zSig1 |= ( ( rem1 | rem2 ) != 0 ); - } - return roundAndPackFloatx80(status->floatx80_rounding_precision, - zSign, zExp, zSig0, zSig1, status); -} - -/*---------------------------------------------------------------------------- -| Returns the remainder of the extended double-precision floating-point value -| `a' with respect to the corresponding value `b'. The operation is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic, -| if 'mod' is false; if 'mod' is true, return the remainder based on truncating -| the quotient toward zero instead. '*quotient' is set to the low 64 bits of -| the absolute value of the integer quotient. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_modrem(floatx80 a, floatx80 b, bool mod, uint64_t *quotient, - float_status *status) -{ - bool aSign, zSign; - int32_t aExp, bExp, expDiff, aExpOrig; - uint64_t aSig0, aSig1, bSig; - uint64_t q, term0, term1, alternateASig0, alternateASig1; - - *quotient = 0; - if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { - float_raise(float_flag_invalid, status); - return floatx80_default_nan(status); - } - aSig0 = extractFloatx80Frac( a ); - aExpOrig = aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - bSig = extractFloatx80Frac( b ); - bExp = extractFloatx80Exp( b ); - if ( aExp == 0x7FFF ) { - if ( (uint64_t) ( aSig0<<1 ) - || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) { - return propagateFloatx80NaN(a, b, status); - } - goto invalid; - } - if ( bExp == 0x7FFF ) { - if ((uint64_t)(bSig << 1)) { - return propagateFloatx80NaN(a, b, status); - } - if (aExp == 0 && aSig0 >> 63) { - /* - * Pseudo-denormal argument must be returned in normalized - * form. - */ - return packFloatx80(aSign, 1, aSig0); - } - return a; - } - if ( bExp == 0 ) { - if ( bSig == 0 ) { - invalid: - float_raise(float_flag_invalid, status); - return floatx80_default_nan(status); - } - normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); - } - if ( aExp == 0 ) { - if ( aSig0 == 0 ) return a; - normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); - } - zSign = aSign; - expDiff = aExp - bExp; - aSig1 = 0; - if ( expDiff < 0 ) { - if ( mod || expDiff < -1 ) { - if (aExp == 1 && aExpOrig == 0) { - /* - * Pseudo-denormal argument must be returned in - * normalized form. - */ - return packFloatx80(aSign, aExp, aSig0); - } - return a; - } - shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); - expDiff = 0; - } - *quotient = q = ( bSig <= aSig0 ); - if ( q ) aSig0 -= bSig; - expDiff -= 64; - while ( 0 < expDiff ) { - q = estimateDiv128To64( aSig0, aSig1, bSig ); - q = ( 2 < q ) ? q - 2 : 0; - mul64To128( bSig, q, &term0, &term1 ); - sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); - shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); - expDiff -= 62; - *quotient <<= 62; - *quotient += q; - } - expDiff += 64; - if ( 0 < expDiff ) { - q = estimateDiv128To64( aSig0, aSig1, bSig ); - q = ( 2 < q ) ? q - 2 : 0; - q >>= 64 - expDiff; - mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); - sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); - shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); - while ( le128( term0, term1, aSig0, aSig1 ) ) { - ++q; - sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); - } - if (expDiff < 64) { - *quotient <<= expDiff; - } else { - *quotient = 0; - } - *quotient += q; - } - else { - term1 = 0; - term0 = bSig; - } - if (!mod) { - sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); - if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) - || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) - && ( q & 1 ) ) - ) { - aSig0 = alternateASig0; - aSig1 = alternateASig1; - zSign = ! zSign; - ++*quotient; - } - } - return - normalizeRoundAndPackFloatx80( - 80, zSign, bExp + expDiff, aSig0, aSig1, status); - -} - -/*---------------------------------------------------------------------------- -| Returns the remainder of the extended double-precision floating-point value -| `a' with respect to the corresponding value `b'. The operation is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status) -{ - uint64_t quotient; - return floatx80_modrem(a, b, false, "ient, status); -} - -/*---------------------------------------------------------------------------- -| Returns the remainder of the extended double-precision floating-point value -| `a' with respect to the corresponding value `b', with the quotient truncated -| toward zero. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_mod(floatx80 a, floatx80 b, float_status *status) -{ - uint64_t quotient; - return floatx80_modrem(a, b, true, "ient, status); -} - -/*---------------------------------------------------------------------------- -| Returns the square root of the extended double-precision floating-point -| value `a'. The operation is performed according to the IEC/IEEE Standard -| for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 floatx80_sqrt(floatx80 a, float_status *status) -{ - bool aSign; - int32_t aExp, zExp; - uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0; - uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; - - if (floatx80_invalid_encoding(a)) { - float_raise(float_flag_invalid, status); - return floatx80_default_nan(status); - } - aSig0 = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - if ( aExp == 0x7FFF ) { - if ((uint64_t)(aSig0 << 1)) { - return propagateFloatx80NaN(a, a, status); - } - if ( ! aSign ) return a; - goto invalid; - } - if ( aSign ) { - if ( ( aExp | aSig0 ) == 0 ) return a; - invalid: - float_raise(float_flag_invalid, status); - return floatx80_default_nan(status); - } - if ( aExp == 0 ) { - if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); - normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); - } - zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; - zSig0 = estimateSqrt32( aExp, aSig0>>32 ); - shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 ); - zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); - doubleZSig0 = zSig0<<1; - mul64To128( zSig0, zSig0, &term0, &term1 ); - sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); - while ( (int64_t) rem0 < 0 ) { - --zSig0; - doubleZSig0 -= 2; - add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); - } - zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); - if ( ( zSig1 & UINT64_C(0x3FFFFFFFFFFFFFFF) ) <= 5 ) { - if ( zSig1 == 0 ) zSig1 = 1; - mul64To128( doubleZSig0, zSig1, &term1, &term2 ); - sub128( rem1, 0, term1, term2, &rem1, &rem2 ); - mul64To128( zSig1, zSig1, &term2, &term3 ); - sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); - while ( (int64_t) rem1 < 0 ) { - --zSig1; - shortShift128Left( 0, zSig1, 1, &term2, &term3 ); - term3 |= 1; - term2 |= doubleZSig0; - add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); - } - zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); - } - shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 ); - zSig0 |= doubleZSig0; - return roundAndPackFloatx80(status->floatx80_rounding_precision, - 0, zExp, zSig0, zSig1, status); -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the quadruple-precision floating-point value -| `a' to the 64-bit unsigned integer format. The conversion is -| performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic---which means in particular that the conversion is rounded -| according to the current rounding mode. If `a' is a NaN, the largest -| positive integer is returned. If the conversion overflows, the -| largest unsigned integer is returned. If 'a' is negative, the value is -| rounded and zero is returned; negative values that do not round to zero -| will raise the inexact exception. -*----------------------------------------------------------------------------*/ - -uint64_t float128_to_uint64(float128 a, float_status *status) -{ - bool aSign; - int aExp; - int shiftCount; - uint64_t aSig0, aSig1; - - aSig0 = extractFloat128Frac0(a); - aSig1 = extractFloat128Frac1(a); - aExp = extractFloat128Exp(a); - aSign = extractFloat128Sign(a); - if (aSign && (aExp > 0x3FFE)) { - float_raise(float_flag_invalid, status); - if (float128_is_any_nan(a)) { - return UINT64_MAX; - } else { - return 0; - } - } - if (aExp) { - aSig0 |= UINT64_C(0x0001000000000000); - } - shiftCount = 0x402F - aExp; - if (shiftCount <= 0) { - if (0x403E < aExp) { - float_raise(float_flag_invalid, status); - return UINT64_MAX; - } - shortShift128Left(aSig0, aSig1, -shiftCount, &aSig0, &aSig1); - } else { - shift64ExtraRightJamming(aSig0, aSig1, shiftCount, &aSig0, &aSig1); - } - return roundAndPackUint64(aSign, aSig0, aSig1, status); -} - -uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *status) -{ - uint64_t v; - signed char current_rounding_mode = status->float_rounding_mode; - - set_float_rounding_mode(float_round_to_zero, status); - v = float128_to_uint64(a, status); - set_float_rounding_mode(current_rounding_mode, status); - - return v; -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the quadruple-precision floating-point -| value `a' to the 32-bit unsigned integer format. The conversion -| is performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic except that the conversion is always rounded toward zero. -| If `a' is a NaN, the largest positive integer is returned. Otherwise, -| if the conversion overflows, the largest unsigned integer is returned. -| If 'a' is negative, the value is rounded and zero is returned; negative -| values that do not round to zero will raise the inexact exception. -*----------------------------------------------------------------------------*/ - -uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *status) -{ - uint64_t v; - uint32_t res; - int old_exc_flags = get_float_exception_flags(status); - - v = float128_to_uint64_round_to_zero(a, status); - if (v > 0xffffffff) { - res = 0xffffffff; - } else { - return v; - } - set_float_exception_flags(old_exc_flags, status); - float_raise(float_flag_invalid, status); - return res; -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the quadruple-precision floating-point value -| `a' to the 32-bit unsigned integer format. The conversion is -| performed according to the IEC/IEEE Standard for Binary Floating-Point -| Arithmetic---which means in particular that the conversion is rounded -| according to the current rounding mode. If `a' is a NaN, the largest -| positive integer is returned. If the conversion overflows, the -| largest unsigned integer is returned. If 'a' is negative, the value is -| rounded and zero is returned; negative values that do not round to zero -| will raise the inexact exception. -*----------------------------------------------------------------------------*/ - -uint32_t float128_to_uint32(float128 a, float_status *status) -{ - uint64_t v; - uint32_t res; - int old_exc_flags = get_float_exception_flags(status); - - v = float128_to_uint64(a, status); - if (v > 0xffffffff) { - res = 0xffffffff; - } else { - return v; - } - set_float_exception_flags(old_exc_flags, status); - float_raise(float_flag_invalid, status); - return res; -} - -/*---------------------------------------------------------------------------- -| Returns the result of converting the quadruple-precision floating-point -| value `a' to the extended double-precision floating-point format. The -| conversion is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -floatx80 float128_to_floatx80(float128 a, float_status *status) -{ - bool aSign; - int32_t aExp; - uint64_t aSig0, aSig1; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) { - floatx80 res = commonNaNToFloatx80(float128ToCommonNaN(a, status), - status); - return floatx80_silence_nan(res, status); - } - return packFloatx80(aSign, floatx80_infinity_high, - floatx80_infinity_low); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 ); - normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - else { - aSig0 |= UINT64_C(0x0001000000000000); - } - shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 ); - return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status); - -} - -/*---------------------------------------------------------------------------- -| Returns the remainder of the quadruple-precision floating-point value `a' -| with respect to the corresponding value `b'. The operation is performed -| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float128_rem(float128 a, float128 b, float_status *status) -{ - bool aSign, zSign; - int32_t aExp, bExp, expDiff; - uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2; - uint64_t allZero, alternateASig0, alternateASig1, sigMean1; - int64_t sigMean0; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - bSig1 = extractFloat128Frac1( b ); - bSig0 = extractFloat128Frac0( b ); - bExp = extractFloat128Exp( b ); - if ( aExp == 0x7FFF ) { - if ( ( aSig0 | aSig1 ) - || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) { - return propagateFloat128NaN(a, b, status); - } - goto invalid; - } - if ( bExp == 0x7FFF ) { - if (bSig0 | bSig1) { - return propagateFloat128NaN(a, b, status); - } - return a; - } - if ( bExp == 0 ) { - if ( ( bSig0 | bSig1 ) == 0 ) { - invalid: - float_raise(float_flag_invalid, status); - return float128_default_nan(status); - } - normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 ); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return a; - normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - expDiff = aExp - bExp; - if ( expDiff < -1 ) return a; - shortShift128Left( - aSig0 | UINT64_C(0x0001000000000000), - aSig1, - 15 - ( expDiff < 0 ), - &aSig0, - &aSig1 - ); - shortShift128Left( - bSig0 | UINT64_C(0x0001000000000000), bSig1, 15, &bSig0, &bSig1 ); - q = le128( bSig0, bSig1, aSig0, aSig1 ); - if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); - expDiff -= 64; - while ( 0 < expDiff ) { - q = estimateDiv128To64( aSig0, aSig1, bSig0 ); - q = ( 4 < q ) ? q - 4 : 0; - mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); - shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero ); - shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero ); - sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 ); - expDiff -= 61; - } - if ( -64 < expDiff ) { - q = estimateDiv128To64( aSig0, aSig1, bSig0 ); - q = ( 4 < q ) ? q - 4 : 0; - q >>= - expDiff; - shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); - expDiff += 52; - if ( expDiff < 0 ) { - shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 ); - } - else { - shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 ); - } - mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 ); - sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 ); - } - else { - shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 ); - shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 ); - } - do { - alternateASig0 = aSig0; - alternateASig1 = aSig1; - ++q; - sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 ); - } while ( 0 <= (int64_t) aSig0 ); - add128( - aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 ); - if ( ( sigMean0 < 0 ) - || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) { - aSig0 = alternateASig0; - aSig1 = alternateASig1; - } - zSign = ( (int64_t) aSig0 < 0 ); - if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 ); - return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1, - status); -} - -/*---------------------------------------------------------------------------- -| Returns the square root of the quadruple-precision floating-point value `a'. -| The operation is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float128 float128_sqrt(float128 a, float_status *status) -{ - bool aSign; - int32_t aExp, zExp; - uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0; - uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - if ( aExp == 0x7FFF ) { - if (aSig0 | aSig1) { - return propagateFloat128NaN(a, a, status); - } - if ( ! aSign ) return a; - goto invalid; - } - if ( aSign ) { - if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a; - invalid: - float_raise(float_flag_invalid, status); - return float128_default_nan(status); - } - if ( aExp == 0 ) { - if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 ); - normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 ); - } - zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE; - aSig0 |= UINT64_C(0x0001000000000000); - zSig0 = estimateSqrt32( aExp, aSig0>>17 ); - shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 ); - zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 ); - doubleZSig0 = zSig0<<1; - mul64To128( zSig0, zSig0, &term0, &term1 ); - sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); - while ( (int64_t) rem0 < 0 ) { - --zSig0; - doubleZSig0 -= 2; - add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 ); - } - zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 ); - if ( ( zSig1 & 0x1FFF ) <= 5 ) { - if ( zSig1 == 0 ) zSig1 = 1; - mul64To128( doubleZSig0, zSig1, &term1, &term2 ); - sub128( rem1, 0, term1, term2, &rem1, &rem2 ); - mul64To128( zSig1, zSig1, &term2, &term3 ); - sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); - while ( (int64_t) rem1 < 0 ) { - --zSig1; - shortShift128Left( 0, zSig1, 1, &term2, &term3 ); - term3 |= 1; - term2 |= doubleZSig0; - add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 ); - } - zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); - } - shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 ); - return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status); - -} - -static inline FloatRelation -floatx80_compare_internal(floatx80 a, floatx80 b, bool is_quiet, - float_status *status) -{ - bool aSign, bSign; - - if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) { - float_raise(float_flag_invalid, status); - return float_relation_unordered; - } - if (( ( extractFloatx80Exp( a ) == 0x7fff ) && - ( extractFloatx80Frac( a )<<1 ) ) || - ( ( extractFloatx80Exp( b ) == 0x7fff ) && - ( extractFloatx80Frac( b )<<1 ) )) { - if (!is_quiet || - floatx80_is_signaling_nan(a, status) || - floatx80_is_signaling_nan(b, status)) { - float_raise(float_flag_invalid, status); - } - return float_relation_unordered; - } - aSign = extractFloatx80Sign( a ); - bSign = extractFloatx80Sign( b ); - if ( aSign != bSign ) { - - if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) && - ( ( a.low | b.low ) == 0 ) ) { - /* zero case */ - return float_relation_equal; - } else { - return 1 - (2 * aSign); - } - } else { - /* Normalize pseudo-denormals before comparison. */ - if ((a.high & 0x7fff) == 0 && a.low & UINT64_C(0x8000000000000000)) { - ++a.high; - } - if ((b.high & 0x7fff) == 0 && b.low & UINT64_C(0x8000000000000000)) { - ++b.high; - } - if (a.low == b.low && a.high == b.high) { - return float_relation_equal; - } else { - return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); - } - } -} - -FloatRelation floatx80_compare(floatx80 a, floatx80 b, float_status *status) -{ - return floatx80_compare_internal(a, b, 0, status); -} - -FloatRelation floatx80_compare_quiet(floatx80 a, floatx80 b, - float_status *status) -{ - return floatx80_compare_internal(a, b, 1, status); -} - -static inline FloatRelation -float128_compare_internal(float128 a, float128 b, bool is_quiet, - float_status *status) -{ - bool aSign, bSign; - - if (( ( extractFloat128Exp( a ) == 0x7fff ) && - ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) || - ( ( extractFloat128Exp( b ) == 0x7fff ) && - ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) { - if (!is_quiet || - float128_is_signaling_nan(a, status) || - float128_is_signaling_nan(b, status)) { - float_raise(float_flag_invalid, status); - } - return float_relation_unordered; - } - aSign = extractFloat128Sign( a ); - bSign = extractFloat128Sign( b ); - if ( aSign != bSign ) { - if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) { - /* zero case */ - return float_relation_equal; - } else { - return 1 - (2 * aSign); - } - } else { - if (a.low == b.low && a.high == b.high) { - return float_relation_equal; - } else { - return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) )); - } - } -} - -FloatRelation float128_compare(float128 a, float128 b, float_status *status) -{ - return float128_compare_internal(a, b, 0, status); -} - -FloatRelation float128_compare_quiet(float128 a, float128 b, - float_status *status) -{ - return float128_compare_internal(a, b, 1, status); -} - -floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status) -{ - bool aSign; - int32_t aExp; - uint64_t aSig; + FloatParts128 p; - if (floatx80_invalid_encoding(a)) { - float_raise(float_flag_invalid, status); + if (!floatx80_unpack_canonical(&p, a, status)) { return floatx80_default_nan(status); } - aSig = extractFloatx80Frac( a ); - aExp = extractFloatx80Exp( a ); - aSign = extractFloatx80Sign( a ); - - if ( aExp == 0x7FFF ) { - if ( aSig<<1 ) { - return propagateFloatx80NaN(a, a, status); - } - return a; - } - - if (aExp == 0) { - if (aSig == 0) { - return a; - } - aExp++; - } - - if (n > 0x10000) { - n = 0x10000; - } else if (n < -0x10000) { - n = -0x10000; - } - - aExp += n; - return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision, - aSign, aExp, aSig, 0, status); -} - -float128 float128_scalbn(float128 a, int n, float_status *status) -{ - bool aSign; - int32_t aExp; - uint64_t aSig0, aSig1; - - aSig1 = extractFloat128Frac1( a ); - aSig0 = extractFloat128Frac0( a ); - aExp = extractFloat128Exp( a ); - aSign = extractFloat128Sign( a ); - if ( aExp == 0x7FFF ) { - if ( aSig0 | aSig1 ) { - return propagateFloat128NaN(a, a, status); - } - return a; - } - if (aExp != 0) { - aSig0 |= UINT64_C(0x0001000000000000); - } else if (aSig0 == 0 && aSig1 == 0) { - return a; - } else { - aExp++; - } - - if (n > 0x10000) { - n = 0x10000; - } else if (n < -0x10000) { - n = -0x10000; - } - - aExp += n - 1; - return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1 - , status); - + return floatx80_round_pack_canonical(&p, status); } static void __attribute__((constructor)) softfloat_init(void) diff --git a/include/fpu/softfloat-helpers.h b/include/fpu/softfloat-helpers.h index 2f0674fbdd..34f4cf92ae 100644 --- a/include/fpu/softfloat-helpers.h +++ b/include/fpu/softfloat-helpers.h @@ -69,7 +69,7 @@ static inline void set_float_exception_flags(int val, float_status *status) status->float_exception_flags = val; } -static inline void set_floatx80_rounding_precision(int val, +static inline void set_floatx80_rounding_precision(FloatX80RoundPrec val, float_status *status) { status->floatx80_rounding_precision = val; @@ -120,7 +120,8 @@ static inline int get_float_exception_flags(float_status *status) return status->float_exception_flags; } -static inline int get_floatx80_rounding_precision(float_status *status) +static inline FloatX80RoundPrec +get_floatx80_rounding_precision(float_status *status) { return status->floatx80_rounding_precision; } diff --git a/include/fpu/softfloat-macros.h b/include/fpu/softfloat-macros.h index ec4e27a595..81c3fe8256 100644 --- a/include/fpu/softfloat-macros.h +++ b/include/fpu/softfloat-macros.h @@ -745,4 +745,38 @@ static inline bool ne128(uint64_t a0, uint64_t a1, uint64_t b0, uint64_t b1) return a0 != b0 || a1 != b1; } +/* + * Similarly, comparisons of 192-bit values. + */ + +static inline bool eq192(uint64_t a0, uint64_t a1, uint64_t a2, + uint64_t b0, uint64_t b1, uint64_t b2) +{ + return ((a0 ^ b0) | (a1 ^ b1) | (a2 ^ b2)) == 0; +} + +static inline bool le192(uint64_t a0, uint64_t a1, uint64_t a2, + uint64_t b0, uint64_t b1, uint64_t b2) +{ + if (a0 != b0) { + return a0 < b0; + } + if (a1 != b1) { + return a1 < b1; + } + return a2 <= b2; +} + +static inline bool lt192(uint64_t a0, uint64_t a1, uint64_t a2, + uint64_t b0, uint64_t b1, uint64_t b2) +{ + if (a0 != b0) { + return a0 < b0; + } + if (a1 != b1) { + return a1 < b1; + } + return a2 < b2; +} + #endif diff --git a/include/fpu/softfloat-types.h b/include/fpu/softfloat-types.h index 3b757c3d6a..5bcbd041f7 100644 --- a/include/fpu/softfloat-types.h +++ b/include/fpu/softfloat-types.h @@ -154,6 +154,14 @@ enum { float_flag_output_denormal = 128 }; +/* + * Rounding precision for floatx80. + */ +typedef enum __attribute__((__packed__)) { + floatx80_precision_x, + floatx80_precision_d, + floatx80_precision_s, +} FloatX80RoundPrec; /* * Floating Point Status. Individual architectures may maintain @@ -165,7 +173,7 @@ enum { typedef struct float_status { FloatRoundMode float_rounding_mode; uint8_t float_exception_flags; - signed char floatx80_rounding_precision; + FloatX80RoundPrec floatx80_rounding_precision; bool tininess_before_rounding; /* should denormalised results go to zero and set the inexact flag? */ bool flush_to_zero; diff --git a/include/fpu/softfloat.h b/include/fpu/softfloat.h index 53f2c2ea3c..ec7dca0960 100644 --- a/include/fpu/softfloat.h +++ b/include/fpu/softfloat.h @@ -1152,7 +1152,7 @@ floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status); | Floating-Point Arithmetic. *----------------------------------------------------------------------------*/ -floatx80 roundAndPackFloatx80(int8_t roundingPrecision, bool zSign, +floatx80 roundAndPackFloatx80(FloatX80RoundPrec roundingPrecision, bool zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1, float_status *status); @@ -1165,7 +1165,7 @@ floatx80 roundAndPackFloatx80(int8_t roundingPrecision, bool zSign, | normalized. *----------------------------------------------------------------------------*/ -floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision, +floatx80 normalizeRoundAndPackFloatx80(FloatX80RoundPrec roundingPrecision, bool zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1, float_status *status); @@ -1204,6 +1204,12 @@ float128 float128_rem(float128, float128, float_status *status); float128 float128_sqrt(float128, float_status *status); FloatRelation float128_compare(float128, float128, float_status *status); FloatRelation float128_compare_quiet(float128, float128, float_status *status); +float128 float128_min(float128, float128, float_status *status); +float128 float128_max(float128, float128, float_status *status); +float128 float128_minnum(float128, float128, float_status *status); +float128 float128_maxnum(float128, float128, float_status *status); +float128 float128_minnummag(float128, float128, float_status *status); +float128 float128_maxnummag(float128, float128, float_status *status); bool float128_is_quiet_nan(float128, float_status *status); bool float128_is_signaling_nan(float128, float_status *status); float128 float128_silence_nan(float128, float_status *status); diff --git a/linux-user/arm/nwfpe/fpa11.c b/linux-user/arm/nwfpe/fpa11.c index f6f8163eab..9a93610d24 100644 --- a/linux-user/arm/nwfpe/fpa11.c +++ b/linux-user/arm/nwfpe/fpa11.c @@ -97,37 +97,38 @@ void SetRoundingMode(const unsigned int opcode) void SetRoundingPrecision(const unsigned int opcode) { - int rounding_precision; - FPA11 *fpa11 = GET_FPA11(); + FloatX80RoundPrec rounding_precision; + FPA11 *fpa11 = GET_FPA11(); #ifdef MAINTAIN_FPCR - fpa11->fpcr &= ~MASK_ROUNDING_PRECISION; + fpa11->fpcr &= ~MASK_ROUNDING_PRECISION; #endif - switch (opcode & MASK_ROUNDING_PRECISION) - { - case ROUND_SINGLE: - rounding_precision = 32; + switch (opcode & MASK_ROUNDING_PRECISION) { + case ROUND_SINGLE: + rounding_precision = floatx80_precision_s; #ifdef MAINTAIN_FPCR - fpa11->fpcr |= ROUND_SINGLE; + fpa11->fpcr |= ROUND_SINGLE; #endif - break; + break; - case ROUND_DOUBLE: - rounding_precision = 64; + case ROUND_DOUBLE: + rounding_precision = floatx80_precision_d; #ifdef MAINTAIN_FPCR - fpa11->fpcr |= ROUND_DOUBLE; + fpa11->fpcr |= ROUND_DOUBLE; #endif - break; + break; - case ROUND_EXTENDED: - rounding_precision = 80; + case ROUND_EXTENDED: + rounding_precision = floatx80_precision_x; #ifdef MAINTAIN_FPCR - fpa11->fpcr |= ROUND_EXTENDED; + fpa11->fpcr |= ROUND_EXTENDED; #endif - break; + break; - default: rounding_precision = 80; - } - set_floatx80_rounding_precision(rounding_precision, &fpa11->fp_status); + default: + rounding_precision = floatx80_precision_x; + break; + } + set_floatx80_rounding_precision(rounding_precision, &fpa11->fp_status); } /* Emulate the instruction in the opcode. */ diff --git a/target/i386/tcg/fpu_helper.c b/target/i386/tcg/fpu_helper.c index 1b30f1bb73..4e11965067 100644 --- a/target/i386/tcg/fpu_helper.c +++ b/target/i386/tcg/fpu_helper.c @@ -673,38 +673,40 @@ uint32_t helper_fnstcw(CPUX86State *env) void update_fp_status(CPUX86State *env) { - int rnd_type; + FloatRoundMode rnd_mode; + FloatX80RoundPrec rnd_prec; /* set rounding mode */ switch (env->fpuc & FPU_RC_MASK) { default: case FPU_RC_NEAR: - rnd_type = float_round_nearest_even; + rnd_mode = float_round_nearest_even; break; case FPU_RC_DOWN: - rnd_type = float_round_down; + rnd_mode = float_round_down; break; case FPU_RC_UP: - rnd_type = float_round_up; + rnd_mode = float_round_up; break; case FPU_RC_CHOP: - rnd_type = float_round_to_zero; + rnd_mode = float_round_to_zero; break; } - set_float_rounding_mode(rnd_type, &env->fp_status); + set_float_rounding_mode(rnd_mode, &env->fp_status); + switch ((env->fpuc >> 8) & 3) { case 0: - rnd_type = 32; + rnd_prec = floatx80_precision_s; break; case 2: - rnd_type = 64; + rnd_prec = floatx80_precision_d; break; case 3: default: - rnd_type = 80; + rnd_prec = floatx80_precision_x; break; } - set_floatx80_rounding_precision(rnd_type, &env->fp_status); + set_floatx80_rounding_precision(rnd_prec, &env->fp_status); } void helper_fldcw(CPUX86State *env, uint32_t val) @@ -1074,7 +1076,8 @@ void helper_f2xm1(CPUX86State *env) &sig2); /* This result is inexact. */ sig1 |= 1; - ST0 = normalizeRoundAndPackFloatx80(80, sign, exp, sig0, sig1, + ST0 = normalizeRoundAndPackFloatx80(floatx80_precision_x, + sign, exp, sig0, sig1, &env->fp_status); } } else { @@ -1083,9 +1086,10 @@ void helper_f2xm1(CPUX86State *env) int32_t n, aexp, bexp; uint64_t asig0, asig1, asig2, bsig0, bsig1; FloatRoundMode save_mode = env->fp_status.float_rounding_mode; - signed char save_prec = env->fp_status.floatx80_rounding_precision; + FloatX80RoundPrec save_prec = + env->fp_status.floatx80_rounding_precision; env->fp_status.float_rounding_mode = float_round_nearest_even; - env->fp_status.floatx80_rounding_precision = 80; + env->fp_status.floatx80_rounding_precision = floatx80_precision_x; /* Find the nearest multiple of 1/32 to the argument. */ tmp = floatx80_scalbn(ST0, 5, &env->fp_status); @@ -1183,7 +1187,8 @@ void helper_f2xm1(CPUX86State *env) env->fp_status.float_rounding_mode = save_mode; /* This result is inexact. */ asig1 |= 1; - ST0 = normalizeRoundAndPackFloatx80(80, asign, aexp, asig0, asig1, + ST0 = normalizeRoundAndPackFloatx80(floatx80_precision_x, + asign, aexp, asig0, asig1, &env->fp_status); } @@ -1301,8 +1306,9 @@ void helper_fpatan(CPUX86State *env) * division is exact, the result of fpatan is still inexact * (and underflowing where appropriate). */ - signed char save_prec = env->fp_status.floatx80_rounding_precision; - env->fp_status.floatx80_rounding_precision = 80; + FloatX80RoundPrec save_prec = + env->fp_status.floatx80_rounding_precision; + env->fp_status.floatx80_rounding_precision = floatx80_precision_x; ST1 = floatx80_div(ST1, ST0, &env->fp_status); env->fp_status.floatx80_rounding_precision = save_prec; if (!floatx80_is_zero(ST1) && @@ -1321,7 +1327,8 @@ void helper_fpatan(CPUX86State *env) if (exp == 0) { normalizeFloatx80Subnormal(sig, &exp, &sig); } - ST1 = normalizeRoundAndPackFloatx80(80, sign, exp, sig - 1, + ST1 = normalizeRoundAndPackFloatx80(floatx80_precision_x, + sign, exp, sig - 1, -1, &env->fp_status); } } else { @@ -1377,9 +1384,10 @@ void helper_fpatan(CPUX86State *env) uint64_t azsig2, azsig3, axsig0, axsig1; floatx80 x8; FloatRoundMode save_mode = env->fp_status.float_rounding_mode; - signed char save_prec = env->fp_status.floatx80_rounding_precision; + FloatX80RoundPrec save_prec = + env->fp_status.floatx80_rounding_precision; env->fp_status.float_rounding_mode = float_round_nearest_even; - env->fp_status.floatx80_rounding_precision = 80; + env->fp_status.floatx80_rounding_precision = floatx80_precision_x; if (arg0_exp == 0) { normalizeFloatx80Subnormal(arg0_sig, &arg0_exp, &arg0_sig); @@ -1448,7 +1456,8 @@ void helper_fpatan(CPUX86State *env) * Split x as x = t + y, where t = n/8 is the nearest * multiple of 1/8 to x. */ - x8 = normalizeRoundAndPackFloatx80(80, false, xexp + 3, xsig0, + x8 = normalizeRoundAndPackFloatx80(floatx80_precision_x, + false, xexp + 3, xsig0, xsig1, &env->fp_status); n = floatx80_to_int32(x8, &env->fp_status); if (n == 0) { @@ -1569,7 +1578,7 @@ void helper_fpatan(CPUX86State *env) /* Compute z^2. */ mul128To256(zsig0, zsig1, zsig0, zsig1, &z2sig0, &z2sig1, &z2sig2, &z2sig3); - z2 = normalizeRoundAndPackFloatx80(80, false, + z2 = normalizeRoundAndPackFloatx80(floatx80_precision_x, false, zexp + zexp - 0x3ffe, z2sig0, z2sig1, &env->fp_status); @@ -1689,7 +1698,7 @@ void helper_fpatan(CPUX86State *env) } /* This result is inexact. */ rsig1 |= 1; - ST1 = normalizeRoundAndPackFloatx80(80, rsign, rexp, + ST1 = normalizeRoundAndPackFloatx80(floatx80_precision_x, rsign, rexp, rsig0, rsig1, &env->fp_status); } @@ -1890,7 +1899,8 @@ static void helper_fyl2x_common(CPUX86State *env, floatx80 arg, int32_t *exp, */ mul128To256(tsig0, tsig1, tsig0, tsig1, &t2sig0, &t2sig1, &t2sig2, &t2sig3); - t2 = normalizeRoundAndPackFloatx80(80, false, texp + texp - 0x3ffe, + t2 = normalizeRoundAndPackFloatx80(floatx80_precision_x, false, + texp + texp - 0x3ffe, t2sig0, t2sig1, &env->fp_status); /* Compute the lower parts of the polynomial expansion. */ @@ -2004,15 +2014,17 @@ void helper_fyl2xp1(CPUX86State *env) exp += arg1_exp - 0x3ffe; /* This result is inexact. */ sig1 |= 1; - ST1 = normalizeRoundAndPackFloatx80(80, arg0_sign ^ arg1_sign, exp, + ST1 = normalizeRoundAndPackFloatx80(floatx80_precision_x, + arg0_sign ^ arg1_sign, exp, sig0, sig1, &env->fp_status); } else { int32_t aexp; uint64_t asig0, asig1, asig2; FloatRoundMode save_mode = env->fp_status.float_rounding_mode; - signed char save_prec = env->fp_status.floatx80_rounding_precision; + FloatX80RoundPrec save_prec = + env->fp_status.floatx80_rounding_precision; env->fp_status.float_rounding_mode = float_round_nearest_even; - env->fp_status.floatx80_rounding_precision = 80; + env->fp_status.floatx80_rounding_precision = floatx80_precision_x; helper_fyl2x_common(env, ST0, &aexp, &asig0, &asig1); /* @@ -2027,7 +2039,8 @@ void helper_fyl2xp1(CPUX86State *env) /* This result is inexact. */ asig1 |= 1; env->fp_status.float_rounding_mode = save_mode; - ST1 = normalizeRoundAndPackFloatx80(80, arg0_sign ^ arg1_sign, aexp, + ST1 = normalizeRoundAndPackFloatx80(floatx80_precision_x, + arg0_sign ^ arg1_sign, aexp, asig0, asig1, &env->fp_status); env->fp_status.floatx80_rounding_precision = save_prec; } @@ -2111,9 +2124,10 @@ void helper_fyl2x(CPUX86State *env) int32_t int_exp; floatx80 arg0_m1; FloatRoundMode save_mode = env->fp_status.float_rounding_mode; - signed char save_prec = env->fp_status.floatx80_rounding_precision; + FloatX80RoundPrec save_prec = + env->fp_status.floatx80_rounding_precision; env->fp_status.float_rounding_mode = float_round_nearest_even; - env->fp_status.floatx80_rounding_precision = 80; + env->fp_status.floatx80_rounding_precision = floatx80_precision_x; if (arg0_exp == 0) { normalizeFloatx80Subnormal(arg0_sig, &arg0_exp, &arg0_sig); @@ -2170,7 +2184,8 @@ void helper_fyl2x(CPUX86State *env) /* This result is inexact. */ asig1 |= 1; env->fp_status.float_rounding_mode = save_mode; - ST1 = normalizeRoundAndPackFloatx80(80, asign ^ arg1_sign, aexp, + ST1 = normalizeRoundAndPackFloatx80(floatx80_precision_x, + asign ^ arg1_sign, aexp, asig0, asig1, &env->fp_status); } @@ -2252,12 +2267,12 @@ void helper_fscale(CPUX86State *env) } } else { int n; - signed char save = env->fp_status.floatx80_rounding_precision; + FloatX80RoundPrec save = env->fp_status.floatx80_rounding_precision; uint8_t save_flags = get_float_exception_flags(&env->fp_status); set_float_exception_flags(0, &env->fp_status); n = floatx80_to_int32_round_to_zero(ST1, &env->fp_status); set_float_exception_flags(save_flags, &env->fp_status); - env->fp_status.floatx80_rounding_precision = 80; + env->fp_status.floatx80_rounding_precision = floatx80_precision_x; ST0 = floatx80_scalbn(ST0, n, &env->fp_status); env->fp_status.floatx80_rounding_precision = save; } diff --git a/target/m68k/fpu_helper.c b/target/m68k/fpu_helper.c index 797000e748..fdc4937e29 100644 --- a/target/m68k/fpu_helper.c +++ b/target/m68k/fpu_helper.c @@ -94,13 +94,13 @@ static void m68k_restore_precision_mode(CPUM68KState *env) { switch (env->fpcr & FPCR_PREC_MASK) { case FPCR_PREC_X: /* extended */ - set_floatx80_rounding_precision(80, &env->fp_status); + set_floatx80_rounding_precision(floatx80_precision_x, &env->fp_status); break; case FPCR_PREC_S: /* single */ - set_floatx80_rounding_precision(32, &env->fp_status); + set_floatx80_rounding_precision(floatx80_precision_s, &env->fp_status); break; case FPCR_PREC_D: /* double */ - set_floatx80_rounding_precision(64, &env->fp_status); + set_floatx80_rounding_precision(floatx80_precision_d, &env->fp_status); break; case FPCR_PREC_U: /* undefined */ default: @@ -111,9 +111,9 @@ static void m68k_restore_precision_mode(CPUM68KState *env) static void cf_restore_precision_mode(CPUM68KState *env) { if (env->fpcr & FPCR_PREC_S) { /* single */ - set_floatx80_rounding_precision(32, &env->fp_status); + set_floatx80_rounding_precision(floatx80_precision_s, &env->fp_status); } else { /* double */ - set_floatx80_rounding_precision(64, &env->fp_status); + set_floatx80_rounding_precision(floatx80_precision_d, &env->fp_status); } } @@ -166,8 +166,8 @@ void HELPER(set_fpcr)(CPUM68KState *env, uint32_t val) #define PREC_BEGIN(prec) \ do { \ - int old; \ - old = get_floatx80_rounding_precision(&env->fp_status); \ + FloatX80RoundPrec old = \ + get_floatx80_rounding_precision(&env->fp_status); \ set_floatx80_rounding_precision(prec, &env->fp_status) \ #define PREC_END() \ @@ -176,14 +176,14 @@ void HELPER(set_fpcr)(CPUM68KState *env, uint32_t val) void HELPER(fsround)(CPUM68KState *env, FPReg *res, FPReg *val) { - PREC_BEGIN(32); + PREC_BEGIN(floatx80_precision_s); res->d = floatx80_round(val->d, &env->fp_status); PREC_END(); } void HELPER(fdround)(CPUM68KState *env, FPReg *res, FPReg *val) { - PREC_BEGIN(64); + PREC_BEGIN(floatx80_precision_d); res->d = floatx80_round(val->d, &env->fp_status); PREC_END(); } @@ -195,14 +195,14 @@ void HELPER(fsqrt)(CPUM68KState *env, FPReg *res, FPReg *val) void HELPER(fssqrt)(CPUM68KState *env, FPReg *res, FPReg *val) { - PREC_BEGIN(32); + PREC_BEGIN(floatx80_precision_s); res->d = floatx80_sqrt(val->d, &env->fp_status); PREC_END(); } void HELPER(fdsqrt)(CPUM68KState *env, FPReg *res, FPReg *val) { - PREC_BEGIN(64); + PREC_BEGIN(floatx80_precision_d); res->d = floatx80_sqrt(val->d, &env->fp_status); PREC_END(); } @@ -214,14 +214,14 @@ void HELPER(fabs)(CPUM68KState *env, FPReg *res, FPReg *val) void HELPER(fsabs)(CPUM68KState *env, FPReg *res, FPReg *val) { - PREC_BEGIN(32); + PREC_BEGIN(floatx80_precision_s); res->d = floatx80_round(floatx80_abs(val->d), &env->fp_status); PREC_END(); } void HELPER(fdabs)(CPUM68KState *env, FPReg *res, FPReg *val) { - PREC_BEGIN(64); + PREC_BEGIN(floatx80_precision_d); res->d = floatx80_round(floatx80_abs(val->d), &env->fp_status); PREC_END(); } @@ -233,14 +233,14 @@ void HELPER(fneg)(CPUM68KState *env, FPReg *res, FPReg *val) void HELPER(fsneg)(CPUM68KState *env, FPReg *res, FPReg *val) { - PREC_BEGIN(32); + PREC_BEGIN(floatx80_precision_s); res->d = floatx80_round(floatx80_chs(val->d), &env->fp_status); PREC_END(); } void HELPER(fdneg)(CPUM68KState *env, FPReg *res, FPReg *val) { - PREC_BEGIN(64); + PREC_BEGIN(floatx80_precision_d); res->d = floatx80_round(floatx80_chs(val->d), &env->fp_status); PREC_END(); } @@ -252,14 +252,14 @@ void HELPER(fadd)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) void HELPER(fsadd)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { - PREC_BEGIN(32); + PREC_BEGIN(floatx80_precision_s); res->d = floatx80_add(val0->d, val1->d, &env->fp_status); PREC_END(); } void HELPER(fdadd)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { - PREC_BEGIN(64); + PREC_BEGIN(floatx80_precision_d); res->d = floatx80_add(val0->d, val1->d, &env->fp_status); PREC_END(); } @@ -271,14 +271,14 @@ void HELPER(fsub)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) void HELPER(fssub)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { - PREC_BEGIN(32); + PREC_BEGIN(floatx80_precision_s); res->d = floatx80_sub(val1->d, val0->d, &env->fp_status); PREC_END(); } void HELPER(fdsub)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { - PREC_BEGIN(64); + PREC_BEGIN(floatx80_precision_d); res->d = floatx80_sub(val1->d, val0->d, &env->fp_status); PREC_END(); } @@ -290,14 +290,14 @@ void HELPER(fmul)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) void HELPER(fsmul)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { - PREC_BEGIN(32); + PREC_BEGIN(floatx80_precision_s); res->d = floatx80_mul(val0->d, val1->d, &env->fp_status); PREC_END(); } void HELPER(fdmul)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { - PREC_BEGIN(64); + PREC_BEGIN(floatx80_precision_d); res->d = floatx80_mul(val0->d, val1->d, &env->fp_status); PREC_END(); } @@ -307,7 +307,7 @@ void HELPER(fsglmul)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) FloatRoundMode rounding_mode = get_float_rounding_mode(&env->fp_status); floatx80 a, b; - PREC_BEGIN(32); + PREC_BEGIN(floatx80_precision_s); set_float_rounding_mode(float_round_to_zero, &env->fp_status); a = floatx80_round(val0->d, &env->fp_status); b = floatx80_round(val1->d, &env->fp_status); @@ -323,14 +323,14 @@ void HELPER(fdiv)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) void HELPER(fsdiv)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { - PREC_BEGIN(32); + PREC_BEGIN(floatx80_precision_s); res->d = floatx80_div(val1->d, val0->d, &env->fp_status); PREC_END(); } void HELPER(fddiv)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) { - PREC_BEGIN(64); + PREC_BEGIN(floatx80_precision_d); res->d = floatx80_div(val1->d, val0->d, &env->fp_status); PREC_END(); } @@ -340,7 +340,7 @@ void HELPER(fsgldiv)(CPUM68KState *env, FPReg *res, FPReg *val0, FPReg *val1) FloatRoundMode rounding_mode = get_float_rounding_mode(&env->fp_status); floatx80 a, b; - PREC_BEGIN(32); + PREC_BEGIN(floatx80_precision_s); set_float_rounding_mode(float_round_to_zero, &env->fp_status); a = floatx80_round(val1->d, &env->fp_status); b = floatx80_round(val0->d, &env->fp_status); diff --git a/target/m68k/softfloat.c b/target/m68k/softfloat.c index b6d0ed7acf..02dcc03d15 100644 --- a/target/m68k/softfloat.c +++ b/target/m68k/softfloat.c @@ -227,7 +227,8 @@ floatx80 floatx80_lognp1(floatx80 a, float_status *status) int32_t aExp; uint64_t aSig, fSig; - int8_t user_rnd_mode, user_rnd_prec; + FloatRoundMode user_rnd_mode; + FloatX80RoundPrec user_rnd_prec; int32_t compact, j, k; floatx80 fp0, fp1, fp2, fp3, f, logof2, klog2, saveu; @@ -270,7 +271,7 @@ floatx80 floatx80_lognp1(floatx80 a, float_status *status) user_rnd_mode = status->float_rounding_mode; user_rnd_prec = status->floatx80_rounding_precision; status->float_rounding_mode = float_round_nearest_even; - status->floatx80_rounding_precision = 80; + status->floatx80_rounding_precision = floatx80_precision_x; compact = floatx80_make_compact(aExp, aSig); @@ -426,7 +427,8 @@ floatx80 floatx80_logn(floatx80 a, float_status *status) int32_t aExp; uint64_t aSig, fSig; - int8_t user_rnd_mode, user_rnd_prec; + FloatRoundMode user_rnd_mode; + FloatX80RoundPrec user_rnd_prec; int32_t compact, j, k, adjk; floatx80 fp0, fp1, fp2, fp3, f, logof2, klog2, saveu; @@ -469,7 +471,7 @@ floatx80 floatx80_logn(floatx80 a, float_status *status) user_rnd_mode = status->float_rounding_mode; user_rnd_prec = status->floatx80_rounding_precision; status->float_rounding_mode = float_round_nearest_even; - status->floatx80_rounding_precision = 80; + status->floatx80_rounding_precision = floatx80_precision_x; compact = floatx80_make_compact(aExp, aSig); @@ -594,7 +596,8 @@ floatx80 floatx80_log10(floatx80 a, float_status *status) int32_t aExp; uint64_t aSig; - int8_t user_rnd_mode, user_rnd_prec; + FloatRoundMode user_rnd_mode; + FloatX80RoundPrec user_rnd_prec; floatx80 fp0, fp1; @@ -626,7 +629,7 @@ floatx80 floatx80_log10(floatx80 a, float_status *status) user_rnd_mode = status->float_rounding_mode; user_rnd_prec = status->floatx80_rounding_precision; status->float_rounding_mode = float_round_nearest_even; - status->floatx80_rounding_precision = 80; + status->floatx80_rounding_precision = floatx80_precision_x; fp0 = floatx80_logn(a, status); fp1 = packFloatx80(0, 0x3FFD, UINT64_C(0xDE5BD8A937287195)); /* INV_L10 */ @@ -651,7 +654,8 @@ floatx80 floatx80_log2(floatx80 a, float_status *status) int32_t aExp; uint64_t aSig; - int8_t user_rnd_mode, user_rnd_prec; + FloatRoundMode user_rnd_mode; + FloatX80RoundPrec user_rnd_prec; floatx80 fp0, fp1; @@ -686,7 +690,7 @@ floatx80 floatx80_log2(floatx80 a, float_status *status) user_rnd_mode = status->float_rounding_mode; user_rnd_prec = status->floatx80_rounding_precision; status->float_rounding_mode = float_round_nearest_even; - status->floatx80_rounding_precision = 80; + status->floatx80_rounding_precision = floatx80_precision_x; if (aSig == one_sig) { /* X is 2^k */ status->float_rounding_mode = user_rnd_mode; @@ -718,7 +722,8 @@ floatx80 floatx80_etox(floatx80 a, float_status *status) int32_t aExp; uint64_t aSig; - int8_t user_rnd_mode, user_rnd_prec; + FloatRoundMode user_rnd_mode; + FloatX80RoundPrec user_rnd_prec; int32_t compact, n, j, k, m, m1; floatx80 fp0, fp1, fp2, fp3, l2, scale, adjscale; @@ -746,7 +751,7 @@ floatx80 floatx80_etox(floatx80 a, float_status *status) user_rnd_mode = status->float_rounding_mode; user_rnd_prec = status->floatx80_rounding_precision; status->float_rounding_mode = float_round_nearest_even; - status->floatx80_rounding_precision = 80; + status->floatx80_rounding_precision = floatx80_precision_x; adjflag = 0; @@ -902,7 +907,8 @@ floatx80 floatx80_twotox(floatx80 a, float_status *status) int32_t aExp; uint64_t aSig; - int8_t user_rnd_mode, user_rnd_prec; + FloatRoundMode user_rnd_mode; + FloatX80RoundPrec user_rnd_prec; int32_t compact, n, j, l, m, m1; floatx80 fp0, fp1, fp2, fp3, adjfact, fact1, fact2; @@ -929,7 +935,7 @@ floatx80 floatx80_twotox(floatx80 a, float_status *status) user_rnd_mode = status->float_rounding_mode; user_rnd_prec = status->floatx80_rounding_precision; status->float_rounding_mode = float_round_nearest_even; - status->floatx80_rounding_precision = 80; + status->floatx80_rounding_precision = floatx80_precision_x; fp0 = a; @@ -1052,7 +1058,8 @@ floatx80 floatx80_tentox(floatx80 a, float_status *status) int32_t aExp; uint64_t aSig; - int8_t user_rnd_mode, user_rnd_prec; + FloatRoundMode user_rnd_mode; + FloatX80RoundPrec user_rnd_prec; int32_t compact, n, j, l, m, m1; floatx80 fp0, fp1, fp2, fp3, adjfact, fact1, fact2; @@ -1079,7 +1086,7 @@ floatx80 floatx80_tentox(floatx80 a, float_status *status) user_rnd_mode = status->float_rounding_mode; user_rnd_prec = status->floatx80_rounding_precision; status->float_rounding_mode = float_round_nearest_even; - status->floatx80_rounding_precision = 80; + status->floatx80_rounding_precision = floatx80_precision_x; fp0 = a; @@ -1207,7 +1214,8 @@ floatx80 floatx80_tan(floatx80 a, float_status *status) int32_t aExp, xExp; uint64_t aSig, xSig; - int8_t user_rnd_mode, user_rnd_prec; + FloatRoundMode user_rnd_mode; + FloatX80RoundPrec user_rnd_prec; int32_t compact, l, n, j; floatx80 fp0, fp1, fp2, fp3, fp4, fp5, invtwopi, twopi1, twopi2; @@ -1233,7 +1241,7 @@ floatx80 floatx80_tan(floatx80 a, float_status *status) user_rnd_mode = status->float_rounding_mode; user_rnd_prec = status->floatx80_rounding_precision; status->float_rounding_mode = float_round_nearest_even; - status->floatx80_rounding_precision = 80; + status->floatx80_rounding_precision = floatx80_precision_x; compact = floatx80_make_compact(aExp, aSig); @@ -1417,7 +1425,8 @@ floatx80 floatx80_sin(floatx80 a, float_status *status) int32_t aExp, xExp; uint64_t aSig, xSig; - int8_t user_rnd_mode, user_rnd_prec; + FloatRoundMode user_rnd_mode; + FloatX80RoundPrec user_rnd_prec; int32_t compact, l, n, j; floatx80 fp0, fp1, fp2, fp3, fp4, fp5, x, invtwopi, twopi1, twopi2; @@ -1443,7 +1452,7 @@ floatx80 floatx80_sin(floatx80 a, float_status *status) user_rnd_mode = status->float_rounding_mode; user_rnd_prec = status->floatx80_rounding_precision; status->float_rounding_mode = float_round_nearest_even; - status->floatx80_rounding_precision = 80; + status->floatx80_rounding_precision = floatx80_precision_x; compact = floatx80_make_compact(aExp, aSig); @@ -1656,7 +1665,8 @@ floatx80 floatx80_cos(floatx80 a, float_status *status) int32_t aExp, xExp; uint64_t aSig, xSig; - int8_t user_rnd_mode, user_rnd_prec; + FloatRoundMode user_rnd_mode; + FloatX80RoundPrec user_rnd_prec; int32_t compact, l, n, j; floatx80 fp0, fp1, fp2, fp3, fp4, fp5, x, invtwopi, twopi1, twopi2; @@ -1682,7 +1692,7 @@ floatx80 floatx80_cos(floatx80 a, float_status *status) user_rnd_mode = status->float_rounding_mode; user_rnd_prec = status->floatx80_rounding_precision; status->float_rounding_mode = float_round_nearest_even; - status->floatx80_rounding_precision = 80; + status->floatx80_rounding_precision = floatx80_precision_x; compact = floatx80_make_compact(aExp, aSig); @@ -1893,7 +1903,8 @@ floatx80 floatx80_atan(floatx80 a, float_status *status) int32_t aExp; uint64_t aSig; - int8_t user_rnd_mode, user_rnd_prec; + FloatRoundMode user_rnd_mode; + FloatX80RoundPrec user_rnd_prec; int32_t compact, tbl_index; floatx80 fp0, fp1, fp2, fp3, xsave; @@ -1920,7 +1931,7 @@ floatx80 floatx80_atan(floatx80 a, float_status *status) user_rnd_mode = status->float_rounding_mode; user_rnd_prec = status->floatx80_rounding_precision; status->float_rounding_mode = float_round_nearest_even; - status->floatx80_rounding_precision = 80; + status->floatx80_rounding_precision = floatx80_precision_x; if (compact < 0x3FFB8000 || compact > 0x4002FFFF) { /* |X| >= 16 or |X| < 1/16 */ @@ -2090,7 +2101,8 @@ floatx80 floatx80_asin(floatx80 a, float_status *status) int32_t aExp; uint64_t aSig; - int8_t user_rnd_mode, user_rnd_prec; + FloatRoundMode user_rnd_mode; + FloatX80RoundPrec user_rnd_prec; int32_t compact; floatx80 fp0, fp1, fp2, one; @@ -2124,7 +2136,7 @@ floatx80 floatx80_asin(floatx80 a, float_status *status) user_rnd_mode = status->float_rounding_mode; user_rnd_prec = status->floatx80_rounding_precision; status->float_rounding_mode = float_round_nearest_even; - status->floatx80_rounding_precision = 80; + status->floatx80_rounding_precision = floatx80_precision_x; one = packFloatx80(0, one_exp, one_sig); fp0 = a; @@ -2155,7 +2167,8 @@ floatx80 floatx80_acos(floatx80 a, float_status *status) int32_t aExp; uint64_t aSig; - int8_t user_rnd_mode, user_rnd_prec; + FloatRoundMode user_rnd_mode; + FloatX80RoundPrec user_rnd_prec; int32_t compact; floatx80 fp0, fp1, one; @@ -2193,7 +2206,7 @@ floatx80 floatx80_acos(floatx80 a, float_status *status) user_rnd_mode = status->float_rounding_mode; user_rnd_prec = status->floatx80_rounding_precision; status->float_rounding_mode = float_round_nearest_even; - status->floatx80_rounding_precision = 80; + status->floatx80_rounding_precision = floatx80_precision_x; one = packFloatx80(0, one_exp, one_sig); fp0 = a; @@ -2224,7 +2237,8 @@ floatx80 floatx80_atanh(floatx80 a, float_status *status) int32_t aExp; uint64_t aSig; - int8_t user_rnd_mode, user_rnd_prec; + FloatRoundMode user_rnd_mode; + FloatX80RoundPrec user_rnd_prec; int32_t compact; floatx80 fp0, fp1, fp2, one; @@ -2257,7 +2271,7 @@ floatx80 floatx80_atanh(floatx80 a, float_status *status) user_rnd_mode = status->float_rounding_mode; user_rnd_prec = status->floatx80_rounding_precision; status->float_rounding_mode = float_round_nearest_even; - status->floatx80_rounding_precision = 80; + status->floatx80_rounding_precision = floatx80_precision_x; one = packFloatx80(0, one_exp, one_sig); fp2 = packFloatx80(aSign, 0x3FFE, one_sig); /* SIGN(X) * (1/2) */ @@ -2289,7 +2303,8 @@ floatx80 floatx80_etoxm1(floatx80 a, float_status *status) int32_t aExp; uint64_t aSig; - int8_t user_rnd_mode, user_rnd_prec; + FloatRoundMode user_rnd_mode; + FloatX80RoundPrec user_rnd_prec; int32_t compact, n, j, m, m1; floatx80 fp0, fp1, fp2, fp3, l2, sc, onebysc; @@ -2316,7 +2331,7 @@ floatx80 floatx80_etoxm1(floatx80 a, float_status *status) user_rnd_mode = status->float_rounding_mode; user_rnd_prec = status->floatx80_rounding_precision; status->float_rounding_mode = float_round_nearest_even; - status->floatx80_rounding_precision = 80; + status->floatx80_rounding_precision = floatx80_precision_x; if (aExp >= 0x3FFD) { /* |X| >= 1/4 */ compact = floatx80_make_compact(aExp, aSig); @@ -2541,7 +2556,8 @@ floatx80 floatx80_tanh(floatx80 a, float_status *status) int32_t aExp, vExp; uint64_t aSig, vSig; - int8_t user_rnd_mode, user_rnd_prec; + FloatRoundMode user_rnd_mode; + FloatX80RoundPrec user_rnd_prec; int32_t compact; floatx80 fp0, fp1; @@ -2565,7 +2581,7 @@ floatx80 floatx80_tanh(floatx80 a, float_status *status) user_rnd_mode = status->float_rounding_mode; user_rnd_prec = status->floatx80_rounding_precision; status->float_rounding_mode = float_round_nearest_even; - status->floatx80_rounding_precision = 80; + status->floatx80_rounding_precision = floatx80_precision_x; compact = floatx80_make_compact(aExp, aSig); @@ -2656,7 +2672,8 @@ floatx80 floatx80_sinh(floatx80 a, float_status *status) int32_t aExp; uint64_t aSig; - int8_t user_rnd_mode, user_rnd_prec; + FloatRoundMode user_rnd_mode; + FloatX80RoundPrec user_rnd_prec; int32_t compact; floatx80 fp0, fp1, fp2; @@ -2681,7 +2698,7 @@ floatx80 floatx80_sinh(floatx80 a, float_status *status) user_rnd_mode = status->float_rounding_mode; user_rnd_prec = status->floatx80_rounding_precision; status->float_rounding_mode = float_round_nearest_even; - status->floatx80_rounding_precision = 80; + status->floatx80_rounding_precision = floatx80_precision_x; compact = floatx80_make_compact(aExp, aSig); @@ -2744,7 +2761,8 @@ floatx80 floatx80_cosh(floatx80 a, float_status *status) int32_t aExp; uint64_t aSig; - int8_t user_rnd_mode, user_rnd_prec; + FloatRoundMode user_rnd_mode; + FloatX80RoundPrec user_rnd_prec; int32_t compact; floatx80 fp0, fp1; @@ -2767,7 +2785,7 @@ floatx80 floatx80_cosh(floatx80 a, float_status *status) user_rnd_mode = status->float_rounding_mode; user_rnd_prec = status->floatx80_rounding_precision; status->float_rounding_mode = float_round_nearest_even; - status->floatx80_rounding_precision = 80; + status->floatx80_rounding_precision = floatx80_precision_x; compact = floatx80_make_compact(aExp, aSig); diff --git a/tests/fp/fp-test-log2.c b/tests/fp/fp-test-log2.c new file mode 100644 index 0000000000..4eae93eb7c --- /dev/null +++ b/tests/fp/fp-test-log2.c @@ -0,0 +1,118 @@ +/* + * fp-test-log2.c - test QEMU's softfloat log2 + * + * Copyright (C) 2020, Linaro, Ltd. + * + * License: GNU GPL, version 2 or later. + * See the COPYING file in the top-level directory. + */ +#ifndef HW_POISON_H +#error Must define HW_POISON_H to work around TARGET_* poisoning +#endif + +#include "qemu/osdep.h" +#include "qemu/cutils.h" +#include <math.h> +#include "fpu/softfloat.h" + +typedef union { + double d; + float64 i; +} ufloat64; + +static int errors; + +static void compare(ufloat64 test, ufloat64 real, ufloat64 soft, bool exact) +{ + int msb; + uint64_t ulp = UINT64_MAX; + + if (real.i == soft.i) { + return; + } + msb = 63 - __builtin_clzll(real.i ^ soft.i); + + if (msb < 52) { + if (real.i > soft.i) { + ulp = real.i - soft.i; + } else { + ulp = soft.i - real.i; + } + } + + /* glibc allows 3 ulp error in its libm-test-ulps; allow 4 here */ + if (!exact && ulp <= 4) { + return; + } + + printf("test: %016" PRIx64 " %+.13a\n" + " sf: %016" PRIx64 " %+.13a\n" + "libm: %016" PRIx64 " %+.13a\n", + test.i, test.d, soft.i, soft.d, real.i, real.d); + + if (msb == 63) { + printf("Error in sign!\n\n"); + } else if (msb >= 52) { + printf("Error in exponent: %d\n\n", + (int)(soft.i >> 52) - (int)(real.i >> 52)); + } else { + printf("Error in fraction: %" PRIu64 " ulp\n\n", ulp); + } + + if (++errors == 20) { + exit(1); + } +} + +int main(int ac, char **av) +{ + ufloat64 test, real, soft; + float_status qsf = {0}; + int i; + + set_float_rounding_mode(float_round_nearest_even, &qsf); + + test.d = 0.0; + real.d = -__builtin_inf(); + soft.i = float64_log2(test.i, &qsf); + compare(test, real, soft, true); + + test.d = 1.0; + real.d = 0.0; + soft.i = float64_log2(test.i, &qsf); + compare(test, real, soft, true); + + test.d = 2.0; + real.d = 1.0; + soft.i = float64_log2(test.i, &qsf); + compare(test, real, soft, true); + + test.d = 4.0; + real.d = 2.0; + soft.i = float64_log2(test.i, &qsf); + compare(test, real, soft, true); + + test.d = 0x1p64; + real.d = 64.0; + soft.i = float64_log2(test.i, &qsf); + compare(test, real, soft, true); + + test.d = __builtin_inf(); + real.d = __builtin_inf(); + soft.i = float64_log2(test.i, &qsf); + compare(test, real, soft, true); + + for (i = 0; i < 10000; ++i) { + test.d = drand48() + 1.0; /* [1.0, 2.0) */ + real.d = log2(test.d); + soft.i = float64_log2(test.i, &qsf); + compare(test, real, soft, false); + + test.d = drand48() * 100; /* [0.0, 100) */ + real.d = log2(test.d); + soft.i = float64_log2(test.i, &qsf); + compare(test, real, soft, false); + } + + return 0; +} diff --git a/tests/fp/fp-test.c b/tests/fp/fp-test.c index ff131afbde..352dd71c44 100644 --- a/tests/fp/fp-test.c +++ b/tests/fp/fp-test.c @@ -963,18 +963,21 @@ static void QEMU_NORETURN run_test(void) verCases_usesExact = !!(attrs & FUNC_ARG_EXACT); for (k = 0; k < 3; k++) { - int prec80 = 32; + FloatX80RoundPrec qsf_prec80 = floatx80_precision_x; + int prec80 = 80; int l; if (k == 1) { prec80 = 64; + qsf_prec80 = floatx80_precision_d; } else if (k == 2) { - prec80 = 80; + prec80 = 32; + qsf_prec80 = floatx80_precision_s; } verCases_roundingPrecision = 0; slow_extF80_roundingPrecision = prec80; - qsf.floatx80_rounding_precision = prec80; + qsf.floatx80_rounding_precision = qsf_prec80; if (attrs & FUNC_EFF_ROUNDINGPRECISION) { verCases_roundingPrecision = prec80; diff --git a/tests/fp/meson.build b/tests/fp/meson.build index 1c3eee9955..07e2cdc8d2 100644 --- a/tests/fp/meson.build +++ b/tests/fp/meson.build @@ -556,7 +556,9 @@ softfloat_conv_tests = { 'extF80_to_f64 extF80_to_f128 ' + 'f128_to_f16', 'int-to-float': 'i32_to_f16 i64_to_f16 i32_to_f32 i64_to_f32 ' + - 'i32_to_f64 i64_to_f64 i32_to_f128 i64_to_f128', + 'i32_to_f64 i64_to_f64 ' + + 'i32_to_extF80 i64_to_extF80 ' + + 'i32_to_f128 i64_to_f128', 'uint-to-float': 'ui32_to_f16 ui64_to_f16 ui32_to_f32 ui64_to_f32 ' + 'ui32_to_f64 ui64_to_f64 ui64_to_f128 ' + 'ui32_to_extF80 ui64_to_extF80', @@ -581,7 +583,7 @@ softfloat_conv_tests = { 'extF80_to_ui64 extF80_to_ui64_r_minMag ' + 'f128_to_ui64 f128_to_ui64_r_minMag', 'round-to-integer': 'f16_roundToInt f32_roundToInt ' + - 'f64_roundToInt f128_roundToInt' + 'f64_roundToInt extF80_roundToInt f128_roundToInt' } softfloat_tests = { 'eq_signaling' : 'compare', @@ -602,24 +604,20 @@ fptest_args = ['-s', '-l', '1'] fptest_rounding_args = ['-r', 'all'] # Conversion Routines: -# FIXME: i32_to_extF80 (broken), i64_to_extF80 (broken) -# extF80_roundToInt (broken) foreach k, v : softfloat_conv_tests test('fp-test-' + k, fptest, args: fptest_args + fptest_rounding_args + v.split(), suite: ['softfloat', 'softfloat-conv']) endforeach -# FIXME: extF80_{lt_quiet, rem} (broken), -# extF80_{mulAdd} (missing) foreach k, v : softfloat_tests - extF80_broken = ['lt_quiet', 'rem'].contains(k) test('fp-test-' + k, fptest, args: fptest_args + fptest_rounding_args + - ['f16_' + k, 'f32_' + k, 'f64_' + k, 'f128_' + k] + - (extF80_broken ? [] : ['extF80_' + k]), + ['f16_' + k, 'f32_' + k, 'f64_' + k, 'f128_' + k, 'extF80_' + k], suite: ['softfloat', 'softfloat-' + v]) endforeach + +# FIXME: extF80_{mulAdd} (missing) test('fp-test-mulAdd', fptest, # no fptest_rounding_args args: fptest_args + @@ -634,3 +632,14 @@ fpbench = executable( include_directories: [sfinc, include_directories(tfdir)], c_args: fpcflags, ) + +fptestlog2 = executable( + 'fp-test-log2', + ['fp-test-log2.c', '../../fpu/softfloat.c'], + link_with: [libsoftfloat], + dependencies: [qemuutil], + include_directories: [sfinc], + c_args: fpcflags, +) +test('fp-test-log2', fptestlog2, + suite: ['softfloat', 'softfloat-ops']) diff --git a/tests/fp/wrap.c.inc b/tests/fp/wrap.c.inc index cb1bb77e4c..9ff884c140 100644 --- a/tests/fp/wrap.c.inc +++ b/tests/fp/wrap.c.inc @@ -643,7 +643,7 @@ WRAP_CMP80(qemu_extF80M_eq, floatx80_eq_quiet) WRAP_CMP80(qemu_extF80M_le, floatx80_le) WRAP_CMP80(qemu_extF80M_lt, floatx80_lt) WRAP_CMP80(qemu_extF80M_le_quiet, floatx80_le_quiet) -WRAP_CMP80(qemu_extF80M_lt_quiet, floatx80_le_quiet) +WRAP_CMP80(qemu_extF80M_lt_quiet, floatx80_lt_quiet) #undef WRAP_CMP80 #define WRAP_CMP128(name, func) \ |