diff options
author | Kevin Wolf <kwolf@redhat.com> | 2015-05-21 15:19:33 +0200 |
---|---|---|
committer | John Snow <jsnow@redhat.com> | 2015-06-02 13:34:44 -0400 |
commit | 85d291a08c91c07927bbbd29f72a27d3ad7478f3 (patch) | |
tree | 1acf8d66c2adc4f5444799724c24222f87b05d55 | |
parent | 83a260135f13db8b5d7df72090864a5ebcef2845 (diff) |
fdc: Introduce fdctrl->phase
The floppy controller spec describes three different controller phases,
which are currently not explicitly modelled in our emulation. Instead,
each phase is represented by a combination of flags in registers.
This patch makes explicit in which phase the controller currently is.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Acked-by: John Snow <jsnow@redhat.com>
Message-id: 1432214378-31891-4-git-send-email-kwolf@redhat.com
Signed-off-by: John Snow <jsnow@redhat.com>
-rw-r--r-- | hw/block/fdc.c | 89 |
1 files changed, 89 insertions, 0 deletions
diff --git a/hw/block/fdc.c b/hw/block/fdc.c index 8c41434ad2..f5bcf0b145 100644 --- a/hw/block/fdc.c +++ b/hw/block/fdc.c @@ -495,6 +495,33 @@ enum { FD_DIR_DSKCHG = 0x80, }; +/* + * See chapter 5.0 "Controller phases" of the spec: + * + * Command phase: + * The host writes a command and its parameters into the FIFO. The command + * phase is completed when all parameters for the command have been supplied, + * and execution phase is entered. + * + * Execution phase: + * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO + * contains the payload now, otherwise it's unused. When all bytes of the + * required data have been transferred, the state is switched to either result + * phase (if the command produces status bytes) or directly back into the + * command phase for the next command. + * + * Result phase: + * The host reads out the FIFO, which contains one or more result bytes now. + */ +enum { + /* Only for migration: reconstruct phase from registers like qemu 2.3 */ + FD_PHASE_RECONSTRUCT = 0, + + FD_PHASE_COMMAND = 1, + FD_PHASE_EXECUTION = 2, + FD_PHASE_RESULT = 3, +}; + #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI) #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT) @@ -504,6 +531,7 @@ struct FDCtrl { /* Controller state */ QEMUTimer *result_timer; int dma_chann; + uint8_t phase; /* Controller's identification */ uint8_t version; /* HW */ @@ -744,6 +772,28 @@ static const VMStateDescription vmstate_fdrive = { } }; +/* + * Reconstructs the phase from register values according to the logic that was + * implemented in qemu 2.3. This is the default value that is used if the phase + * subsection is not present on migration. + * + * Don't change this function to reflect newer qemu versions, it is part of + * the migration ABI. + */ +static int reconstruct_phase(FDCtrl *fdctrl) +{ + if (fdctrl->msr & FD_MSR_NONDMA) { + return FD_PHASE_EXECUTION; + } else if ((fdctrl->msr & FD_MSR_RQM) == 0) { + /* qemu 2.3 disabled RQM only during DMA transfers */ + return FD_PHASE_EXECUTION; + } else if (fdctrl->msr & FD_MSR_DIO) { + return FD_PHASE_RESULT; + } else { + return FD_PHASE_COMMAND; + } +} + static void fdc_pre_save(void *opaque) { FDCtrl *s = opaque; @@ -751,12 +801,24 @@ static void fdc_pre_save(void *opaque) s->dor_vmstate = s->dor | GET_CUR_DRV(s); } +static int fdc_pre_load(void *opaque) +{ + FDCtrl *s = opaque; + s->phase = FD_PHASE_RECONSTRUCT; + return 0; +} + static int fdc_post_load(void *opaque, int version_id) { FDCtrl *s = opaque; SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK); s->dor = s->dor_vmstate & ~FD_DOR_SELMASK; + + if (s->phase == FD_PHASE_RECONSTRUCT) { + s->phase = reconstruct_phase(s); + } + return 0; } @@ -794,11 +856,29 @@ static const VMStateDescription vmstate_fdc_result_timer = { } }; +static bool fdc_phase_needed(void *opaque) +{ + FDCtrl *fdctrl = opaque; + + return reconstruct_phase(fdctrl) != fdctrl->phase; +} + +static const VMStateDescription vmstate_fdc_phase = { + .name = "fdc/phase", + .version_id = 1, + .minimum_version_id = 1, + .fields = (VMStateField[]) { + VMSTATE_UINT8(phase, FDCtrl), + VMSTATE_END_OF_LIST() + } +}; + static const VMStateDescription vmstate_fdc = { .name = "fdc", .version_id = 2, .minimum_version_id = 2, .pre_save = fdc_pre_save, + .pre_load = fdc_pre_load, .post_load = fdc_post_load, .fields = (VMStateField[]) { /* Controller State */ @@ -839,6 +919,9 @@ static const VMStateDescription vmstate_fdc = { .vmsd = &vmstate_fdc_result_timer, .needed = fdc_result_timer_needed, } , { + .vmsd = &vmstate_fdc_phase, + .needed = fdc_phase_needed, + } , { /* empty */ } } @@ -1137,6 +1220,7 @@ static uint32_t fdctrl_read_dir(FDCtrl *fdctrl) /* Clear the FIFO and update the state for receiving the next command */ static void fdctrl_to_command_phase(FDCtrl *fdctrl) { + fdctrl->phase = FD_PHASE_COMMAND; fdctrl->data_dir = FD_DIR_WRITE; fdctrl->data_pos = 0; fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO); @@ -1146,6 +1230,7 @@ static void fdctrl_to_command_phase(FDCtrl *fdctrl) * @fifo_len is the number of result bytes to be read out. */ static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len) { + fdctrl->phase = FD_PHASE_RESULT; fdctrl->data_dir = FD_DIR_READ; fdctrl->data_len = fifo_len; fdctrl->data_pos = 0; @@ -1912,6 +1997,9 @@ static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction) fdctrl_raise_irq(fdctrl); } +/* + * Handlers for the execution phase of each command + */ static const struct { uint8_t value; uint8_t mask; @@ -2015,6 +2103,7 @@ static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value) /* We now have all parameters * and will be able to treat the command */ + fdctrl->phase = FD_PHASE_EXECUTION; if (fdctrl->data_state & FD_STATE_FORMAT) { fdctrl_format_sector(fdctrl); return; |