aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorRichard Henderson <richard.henderson@linaro.org>2020-11-14 14:40:27 -0800
committerRichard Henderson <richard.henderson@linaro.org>2021-06-03 13:59:34 -0700
commite368951998ca6ffb0a1812af9beef916125dd769 (patch)
tree222c592c1371024dc89843143ef4d8752db14718
parent4ab4aef01830ad733a2552307630a1699d8caf72 (diff)
softfloat: Move int_to_float to softfloat-parts.c.inc
Rename to parts$N_sint_to_float. Reimplement int{32,64}_to_float128 with FloatParts128. Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
-rw-r--r--fpu/softfloat-parts.c.inc32
-rw-r--r--fpu/softfloat.c136
2 files changed, 70 insertions, 98 deletions
diff --git a/fpu/softfloat-parts.c.inc b/fpu/softfloat-parts.c.inc
index 483bdc0e21..b7486f02db 100644
--- a/fpu/softfloat-parts.c.inc
+++ b/fpu/softfloat-parts.c.inc
@@ -883,3 +883,35 @@ static uint64_t partsN(float_to_uint)(FloatPartsN *p, FloatRoundMode rmode,
float_raise(flags, s);
return r;
}
+
+/*
+ * Integer to float conversions
+ *
+ * Returns the result of converting the two's complement integer `a'
+ * to the floating-point format. The conversion is performed according
+ * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+ */
+static void partsN(sint_to_float)(FloatPartsN *p, int64_t a,
+ int scale, float_status *s)
+{
+ uint64_t f = a;
+ int shift;
+
+ memset(p, 0, sizeof(*p));
+
+ if (a == 0) {
+ p->cls = float_class_zero;
+ return;
+ }
+
+ p->cls = float_class_normal;
+ if (a < 0) {
+ f = -f;
+ p->sign = true;
+ }
+ shift = clz64(f);
+ scale = MIN(MAX(scale, -0x10000), 0x10000);
+
+ p->exp = DECOMPOSED_BINARY_POINT - shift + scale;
+ p->frac_hi = f << shift;
+}
diff --git a/fpu/softfloat.c b/fpu/softfloat.c
index 3181678ea9..6404a2997f 100644
--- a/fpu/softfloat.c
+++ b/fpu/softfloat.c
@@ -849,6 +849,14 @@ static uint64_t parts128_float_to_uint(FloatParts128 *p, FloatRoundMode rmode,
#define parts_float_to_uint(P, R, Z, M, S) \
PARTS_GENERIC_64_128(float_to_uint, P)(P, R, Z, M, S)
+static void parts64_sint_to_float(FloatParts64 *p, int64_t a,
+ int scale, float_status *s);
+static void parts128_sint_to_float(FloatParts128 *p, int64_t a,
+ int scale, float_status *s);
+
+#define parts_sint_to_float(P, I, Z, S) \
+ PARTS_GENERIC_64_128(sint_to_float, P)(P, I, Z, S)
+
/*
* Helper functions for softfloat-parts.c.inc, per-size operations.
*/
@@ -2940,42 +2948,15 @@ uint64_t bfloat16_to_uint64_round_to_zero(bfloat16 a, float_status *s)
}
/*
- * Integer to float conversions
- *
- * Returns the result of converting the two's complement integer `a'
- * to the floating-point format. The conversion is performed according
- * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+ * Signed integer to floating-point conversions
*/
-static FloatParts64 int_to_float(int64_t a, int scale, float_status *status)
-{
- FloatParts64 r = { .sign = false };
-
- if (a == 0) {
- r.cls = float_class_zero;
- } else {
- uint64_t f = a;
- int shift;
-
- r.cls = float_class_normal;
- if (a < 0) {
- f = -f;
- r.sign = true;
- }
- shift = clz64(f);
- scale = MIN(MAX(scale, -0x10000), 0x10000);
-
- r.exp = DECOMPOSED_BINARY_POINT - shift + scale;
- r.frac = f << shift;
- }
-
- return r;
-}
-
float16 int64_to_float16_scalbn(int64_t a, int scale, float_status *status)
{
- FloatParts64 pa = int_to_float(a, scale, status);
- return float16_round_pack_canonical(&pa, status);
+ FloatParts64 p;
+
+ parts_sint_to_float(&p, a, scale, status);
+ return float16_round_pack_canonical(&p, status);
}
float16 int32_to_float16_scalbn(int32_t a, int scale, float_status *status)
@@ -3010,8 +2991,10 @@ float16 int8_to_float16(int8_t a, float_status *status)
float32 int64_to_float32_scalbn(int64_t a, int scale, float_status *status)
{
- FloatParts64 pa = int_to_float(a, scale, status);
- return float32_round_pack_canonical(&pa, status);
+ FloatParts64 p;
+
+ parts64_sint_to_float(&p, a, scale, status);
+ return float32_round_pack_canonical(&p, status);
}
float32 int32_to_float32_scalbn(int32_t a, int scale, float_status *status)
@@ -3041,8 +3024,10 @@ float32 int16_to_float32(int16_t a, float_status *status)
float64 int64_to_float64_scalbn(int64_t a, int scale, float_status *status)
{
- FloatParts64 pa = int_to_float(a, scale, status);
- return float64_round_pack_canonical(&pa, status);
+ FloatParts64 p;
+
+ parts_sint_to_float(&p, a, scale, status);
+ return float64_round_pack_canonical(&p, status);
}
float64 int32_to_float64_scalbn(int32_t a, int scale, float_status *status)
@@ -3070,15 +3055,12 @@ float64 int16_to_float64(int16_t a, float_status *status)
return int64_to_float64_scalbn(a, 0, status);
}
-/*
- * Returns the result of converting the two's complement integer `a'
- * to the bfloat16 format.
- */
-
bfloat16 int64_to_bfloat16_scalbn(int64_t a, int scale, float_status *status)
{
- FloatParts64 pa = int_to_float(a, scale, status);
- return bfloat16_round_pack_canonical(&pa, status);
+ FloatParts64 p;
+
+ parts_sint_to_float(&p, a, scale, status);
+ return bfloat16_round_pack_canonical(&p, status);
}
bfloat16 int32_to_bfloat16_scalbn(int32_t a, int scale, float_status *status)
@@ -3106,6 +3088,19 @@ bfloat16 int16_to_bfloat16(int16_t a, float_status *status)
return int64_to_bfloat16_scalbn(a, 0, status);
}
+float128 int64_to_float128(int64_t a, float_status *status)
+{
+ FloatParts128 p;
+
+ parts_sint_to_float(&p, a, 0, status);
+ return float128_round_pack_canonical(&p, status);
+}
+
+float128 int32_to_float128(int32_t a, float_status *status)
+{
+ return int64_to_float128(a, status);
+}
+
/*
* Unsigned Integer to float conversions
*
@@ -4957,28 +4952,6 @@ floatx80 int32_to_floatx80(int32_t a, float_status *status)
}
/*----------------------------------------------------------------------------
-| Returns the result of converting the 32-bit two's complement integer `a' to
-| the quadruple-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 int32_to_float128(int32_t a, float_status *status)
-{
- bool zSign;
- uint32_t absA;
- int8_t shiftCount;
- uint64_t zSig0;
-
- if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = clz32(absA) + 17;
- zSig0 = absA;
- return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
-
-}
-
-/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit two's complement integer `a'
| to the extended double-precision floating-point format. The conversion
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
@@ -5000,39 +4973,6 @@ floatx80 int64_to_floatx80(int64_t a, float_status *status)
}
/*----------------------------------------------------------------------------
-| Returns the result of converting the 64-bit two's complement integer `a' to
-| the quadruple-precision floating-point format. The conversion is performed
-| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
-*----------------------------------------------------------------------------*/
-
-float128 int64_to_float128(int64_t a, float_status *status)
-{
- bool zSign;
- uint64_t absA;
- int8_t shiftCount;
- int32_t zExp;
- uint64_t zSig0, zSig1;
-
- if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
- zSign = ( a < 0 );
- absA = zSign ? - a : a;
- shiftCount = clz64(absA) + 49;
- zExp = 0x406E - shiftCount;
- if ( 64 <= shiftCount ) {
- zSig1 = 0;
- zSig0 = absA;
- shiftCount -= 64;
- }
- else {
- zSig1 = absA;
- zSig0 = 0;
- }
- shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
- return packFloat128( zSign, zExp, zSig0, zSig1 );
-
-}
-
-/*----------------------------------------------------------------------------
| Returns the result of converting the 64-bit unsigned integer `a'
| to the quadruple-precision floating-point format. The conversion is performed
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.