aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorBlue Swirl <blauwirbel@gmail.com>2012-04-09 16:50:52 +0000
committerBlue Swirl <blauwirbel@gmail.com>2012-05-01 10:45:04 +0000
commit0cac1b66c88c4cd3ec1d358091486787837215a3 (patch)
tree742ebbb3429ca1845a6d528e1acb35d1b2d7c744
parente554861766d9ae84dd5720baa4869f4ed711506f (diff)
cputlb: move TLB handling to a separate file
Move TLB handling and softmmu code load helpers to cputlb.c, compile only for softmmu targets. Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
-rw-r--r--Makefile.target2
-rw-r--r--cputlb.c362
-rw-r--r--cputlb.h63
-rw-r--r--exec-all.h12
-rw-r--r--exec.c380
5 files changed, 443 insertions, 376 deletions
diff --git a/Makefile.target b/Makefile.target
index 9f8cb0c495..15829041c7 100644
--- a/Makefile.target
+++ b/Makefile.target
@@ -191,7 +191,7 @@ obj-$(CONFIG_REALLY_VIRTFS) += 9pfs/virtio-9p-device.o
obj-$(CONFIG_KVM) += kvm.o kvm-all.o
obj-$(CONFIG_NO_KVM) += kvm-stub.o
obj-$(CONFIG_VGA) += vga.o
-obj-y += memory.o savevm.o
+obj-y += memory.o savevm.o cputlb.o
LIBS+=-lz
obj-i386-$(CONFIG_KVM) += hyperv.o
diff --git a/cputlb.c b/cputlb.c
new file mode 100644
index 0000000000..b7d8f07539
--- /dev/null
+++ b/cputlb.c
@@ -0,0 +1,362 @@
+/*
+ * Common CPU TLB handling
+ *
+ * Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "config.h"
+#include "cpu.h"
+#include "exec-all.h"
+#include "memory.h"
+
+#include "cputlb.h"
+
+#define WANT_EXEC_OBSOLETE
+#include "exec-obsolete.h"
+
+//#define DEBUG_TLB
+//#define DEBUG_TLB_CHECK
+
+/* statistics */
+int tlb_flush_count;
+
+static const CPUTLBEntry s_cputlb_empty_entry = {
+ .addr_read = -1,
+ .addr_write = -1,
+ .addr_code = -1,
+ .addend = -1,
+};
+
+/* NOTE:
+ * If flush_global is true (the usual case), flush all tlb entries.
+ * If flush_global is false, flush (at least) all tlb entries not
+ * marked global.
+ *
+ * Since QEMU doesn't currently implement a global/not-global flag
+ * for tlb entries, at the moment tlb_flush() will also flush all
+ * tlb entries in the flush_global == false case. This is OK because
+ * CPU architectures generally permit an implementation to drop
+ * entries from the TLB at any time, so flushing more entries than
+ * required is only an efficiency issue, not a correctness issue.
+ */
+void tlb_flush(CPUArchState *env, int flush_global)
+{
+ int i;
+
+#if defined(DEBUG_TLB)
+ printf("tlb_flush:\n");
+#endif
+ /* must reset current TB so that interrupts cannot modify the
+ links while we are modifying them */
+ env->current_tb = NULL;
+
+ for (i = 0; i < CPU_TLB_SIZE; i++) {
+ int mmu_idx;
+
+ for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+ env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
+ }
+ }
+
+ memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
+
+ env->tlb_flush_addr = -1;
+ env->tlb_flush_mask = 0;
+ tlb_flush_count++;
+}
+
+static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
+{
+ if (addr == (tlb_entry->addr_read &
+ (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
+ addr == (tlb_entry->addr_write &
+ (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
+ addr == (tlb_entry->addr_code &
+ (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
+ *tlb_entry = s_cputlb_empty_entry;
+ }
+}
+
+void tlb_flush_page(CPUArchState *env, target_ulong addr)
+{
+ int i;
+ int mmu_idx;
+
+#if defined(DEBUG_TLB)
+ printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
+#endif
+ /* Check if we need to flush due to large pages. */
+ if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
+#if defined(DEBUG_TLB)
+ printf("tlb_flush_page: forced full flush ("
+ TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
+ env->tlb_flush_addr, env->tlb_flush_mask);
+#endif
+ tlb_flush(env, 1);
+ return;
+ }
+ /* must reset current TB so that interrupts cannot modify the
+ links while we are modifying them */
+ env->current_tb = NULL;
+
+ addr &= TARGET_PAGE_MASK;
+ i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+ tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
+ }
+
+ tb_flush_jmp_cache(env, addr);
+}
+
+/* update the TLBs so that writes to code in the virtual page 'addr'
+ can be detected */
+void tlb_protect_code(ram_addr_t ram_addr)
+{
+ cpu_physical_memory_reset_dirty(ram_addr,
+ ram_addr + TARGET_PAGE_SIZE,
+ CODE_DIRTY_FLAG);
+}
+
+/* update the TLB so that writes in physical page 'phys_addr' are no longer
+ tested for self modifying code */
+void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
+ target_ulong vaddr)
+{
+ cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
+}
+
+static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
+{
+ return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
+}
+
+void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
+ uintptr_t length)
+{
+ uintptr_t addr;
+
+ if (tlb_is_dirty_ram(tlb_entry)) {
+ addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
+ if ((addr - start) < length) {
+ tlb_entry->addr_write |= TLB_NOTDIRTY;
+ }
+ }
+}
+
+static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
+{
+ ram_addr_t ram_addr;
+ void *p;
+
+ if (tlb_is_dirty_ram(tlb_entry)) {
+ p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK)
+ + tlb_entry->addend);
+ ram_addr = qemu_ram_addr_from_host_nofail(p);
+ if (!cpu_physical_memory_is_dirty(ram_addr)) {
+ tlb_entry->addr_write |= TLB_NOTDIRTY;
+ }
+ }
+}
+
+void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
+{
+ CPUArchState *env;
+
+ for (env = first_cpu; env != NULL; env = env->next_cpu) {
+ int mmu_idx;
+
+ for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+ unsigned int i;
+
+ for (i = 0; i < CPU_TLB_SIZE; i++) {
+ tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
+ start1, length);
+ }
+ }
+ }
+}
+
+static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
+{
+ if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
+ tlb_entry->addr_write = vaddr;
+ }
+}
+
+/* update the TLB corresponding to virtual page vaddr
+ so that it is no longer dirty */
+void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
+{
+ int i;
+ int mmu_idx;
+
+ vaddr &= TARGET_PAGE_MASK;
+ i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
+ tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
+ }
+}
+
+/* Our TLB does not support large pages, so remember the area covered by
+ large pages and trigger a full TLB flush if these are invalidated. */
+static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
+ target_ulong size)
+{
+ target_ulong mask = ~(size - 1);
+
+ if (env->tlb_flush_addr == (target_ulong)-1) {
+ env->tlb_flush_addr = vaddr & mask;
+ env->tlb_flush_mask = mask;
+ return;
+ }
+ /* Extend the existing region to include the new page.
+ This is a compromise between unnecessary flushes and the cost
+ of maintaining a full variable size TLB. */
+ mask &= env->tlb_flush_mask;
+ while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
+ mask <<= 1;
+ }
+ env->tlb_flush_addr &= mask;
+ env->tlb_flush_mask = mask;
+}
+
+/* Add a new TLB entry. At most one entry for a given virtual address
+ is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
+ supplied size is only used by tlb_flush_page. */
+void tlb_set_page(CPUArchState *env, target_ulong vaddr,
+ target_phys_addr_t paddr, int prot,
+ int mmu_idx, target_ulong size)
+{
+ MemoryRegionSection *section;
+ unsigned int index;
+ target_ulong address;
+ target_ulong code_address;
+ uintptr_t addend;
+ CPUTLBEntry *te;
+ target_phys_addr_t iotlb;
+
+ assert(size >= TARGET_PAGE_SIZE);
+ if (size != TARGET_PAGE_SIZE) {
+ tlb_add_large_page(env, vaddr, size);
+ }
+ section = phys_page_find(paddr >> TARGET_PAGE_BITS);
+#if defined(DEBUG_TLB)
+ printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
+ " prot=%x idx=%d pd=0x%08lx\n",
+ vaddr, paddr, prot, mmu_idx, pd);
+#endif
+
+ address = vaddr;
+ if (!is_ram_rom_romd(section)) {
+ /* IO memory case (romd handled later) */
+ address |= TLB_MMIO;
+ }
+ if (is_ram_rom_romd(section)) {
+ addend = (uintptr_t)memory_region_get_ram_ptr(section->mr)
+ + section_addr(section, paddr);
+ } else {
+ addend = 0;
+ }
+ iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, prot,
+ &address);
+
+ code_address = address;
+
+ index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ env->iotlb[mmu_idx][index] = iotlb - vaddr;
+ te = &env->tlb_table[mmu_idx][index];
+ te->addend = addend - vaddr;
+ if (prot & PAGE_READ) {
+ te->addr_read = address;
+ } else {
+ te->addr_read = -1;
+ }
+
+ if (prot & PAGE_EXEC) {
+ te->addr_code = code_address;
+ } else {
+ te->addr_code = -1;
+ }
+ if (prot & PAGE_WRITE) {
+ if ((memory_region_is_ram(section->mr) && section->readonly)
+ || is_romd(section)) {
+ /* Write access calls the I/O callback. */
+ te->addr_write = address | TLB_MMIO;
+ } else if (memory_region_is_ram(section->mr)
+ && !cpu_physical_memory_is_dirty(
+ section->mr->ram_addr
+ + section_addr(section, paddr))) {
+ te->addr_write = address | TLB_NOTDIRTY;
+ } else {
+ te->addr_write = address;
+ }
+ } else {
+ te->addr_write = -1;
+ }
+}
+
+/* NOTE: this function can trigger an exception */
+/* NOTE2: the returned address is not exactly the physical address: it
+ is the offset relative to phys_ram_base */
+tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
+{
+ int mmu_idx, page_index, pd;
+ void *p;
+ MemoryRegion *mr;
+
+ page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ mmu_idx = cpu_mmu_index(env1);
+ if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
+ (addr & TARGET_PAGE_MASK))) {
+#ifdef CONFIG_TCG_PASS_AREG0
+ cpu_ldub_code(env1, addr);
+#else
+ ldub_code(addr);
+#endif
+ }
+ pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
+ mr = iotlb_to_region(pd);
+ if (memory_region_is_unassigned(mr)) {
+#if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
+ cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
+#else
+ cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x"
+ TARGET_FMT_lx "\n", addr);
+#endif
+ }
+ p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
+ return qemu_ram_addr_from_host_nofail(p);
+}
+
+#define MMUSUFFIX _cmmu
+#undef GETPC
+#define GETPC() ((uintptr_t)0)
+#define env cpu_single_env
+#define SOFTMMU_CODE_ACCESS
+
+#define SHIFT 0
+#include "softmmu_template.h"
+
+#define SHIFT 1
+#include "softmmu_template.h"
+
+#define SHIFT 2
+#include "softmmu_template.h"
+
+#define SHIFT 3
+#include "softmmu_template.h"
+
+#undef env
diff --git a/cputlb.h b/cputlb.h
new file mode 100644
index 0000000000..0b0b764df9
--- /dev/null
+++ b/cputlb.h
@@ -0,0 +1,63 @@
+/*
+ * Common CPU TLB handling
+ *
+ * Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+#ifndef CPUTLB_H
+#define CPUTLB_H
+
+#if !defined(CONFIG_USER_ONLY)
+/* cputlb.c */
+void tlb_protect_code(ram_addr_t ram_addr);
+void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
+ target_ulong vaddr);
+void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
+ uintptr_t length);
+MemoryRegionSection *phys_page_find(target_phys_addr_t index);
+void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length);
+void tlb_set_dirty(CPUArchState *env, target_ulong vaddr);
+extern int tlb_flush_count;
+
+/* exec.c */
+target_phys_addr_t section_addr(MemoryRegionSection *section,
+ target_phys_addr_t addr);
+void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr);
+target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
+ MemoryRegionSection *section,
+ target_ulong vaddr,
+ target_phys_addr_t paddr,
+ int prot,
+ target_ulong *address);
+bool memory_region_is_unassigned(MemoryRegion *mr);
+
+static inline bool is_ram_rom(MemoryRegionSection *s)
+{
+ return memory_region_is_ram(s->mr);
+}
+
+static inline bool is_romd(MemoryRegionSection *s)
+{
+ MemoryRegion *mr = s->mr;
+
+ return mr->rom_device && mr->readable;
+}
+static inline bool is_ram_rom_romd(MemoryRegionSection *s)
+{
+ return is_ram_rom(s) || is_romd(s);
+}
+
+#endif
+#endif
diff --git a/exec-all.h b/exec-all.h
index 937d3cef01..c1b7e1f263 100644
--- a/exec-all.h
+++ b/exec-all.h
@@ -96,13 +96,22 @@ void QEMU_NORETURN cpu_loop_exit(CPUArchState *env1);
int page_unprotect(target_ulong address, uintptr_t pc, void *puc);
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
int is_cpu_write_access);
+#if !defined(CONFIG_USER_ONLY)
+/* cputlb.c */
void tlb_flush_page(CPUArchState *env, target_ulong addr);
void tlb_flush(CPUArchState *env, int flush_global);
-#if !defined(CONFIG_USER_ONLY)
void tlb_set_page(CPUArchState *env, target_ulong vaddr,
target_phys_addr_t paddr, int prot,
int mmu_idx, target_ulong size);
void tb_invalidate_phys_addr(target_phys_addr_t addr);
+#else
+static inline void tlb_flush_page(CPUArchState *env, target_ulong addr)
+{
+}
+
+static inline void tlb_flush(CPUArchState *env, int flush_global)
+{
+}
#endif
#define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
@@ -340,6 +349,7 @@ static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong
return addr;
}
#else
+/* cputlb.c */
tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
#endif
diff --git a/exec.c b/exec.c
index d93a14df9c..e4bf6d7abb 100644
--- a/exec.c
+++ b/exec.c
@@ -57,17 +57,17 @@
#include "trace.h"
#endif
+#include "cputlb.h"
+
#define WANT_EXEC_OBSOLETE
#include "exec-obsolete.h"
//#define DEBUG_TB_INVALIDATE
//#define DEBUG_FLUSH
-//#define DEBUG_TLB
//#define DEBUG_UNASSIGNED
/* make various TB consistency checks */
//#define DEBUG_TB_CHECK
-//#define DEBUG_TLB_CHECK
//#define DEBUG_IOPORT
//#define DEBUG_SUBPAGE
@@ -227,9 +227,6 @@ int loglevel;
static int log_append = 0;
/* statistics */
-#if !defined(CONFIG_USER_ONLY)
-static int tlb_flush_count;
-#endif
static int tb_flush_count;
static int tb_phys_invalidate_count;
@@ -479,7 +476,7 @@ static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
}
-static MemoryRegionSection *phys_page_find(target_phys_addr_t index)
+MemoryRegionSection *phys_page_find(target_phys_addr_t index)
{
PhysPageEntry lp = phys_map;
PhysPageEntry *p;
@@ -499,7 +496,6 @@ not_found:
return &phys_sections[s_index];
}
-static
bool memory_region_is_unassigned(MemoryRegion *mr)
{
return mr != &io_mem_ram && mr != &io_mem_rom
@@ -507,17 +503,14 @@ bool memory_region_is_unassigned(MemoryRegion *mr)
&& mr != &io_mem_watch;
}
-static target_phys_addr_t section_addr(MemoryRegionSection *section,
- target_phys_addr_t addr)
+target_phys_addr_t section_addr(MemoryRegionSection *section,
+ target_phys_addr_t addr)
{
addr -= section->offset_within_address_space;
addr += section->offset_within_region;
return addr;
}
-static void tlb_protect_code(ram_addr_t ram_addr);
-static void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
- target_ulong vaddr);
#define mmap_lock() do { } while(0)
#define mmap_unlock() do { } while(0)
#endif
@@ -1926,8 +1919,7 @@ CPUArchState *cpu_copy(CPUArchState *env)
}
#if !defined(CONFIG_USER_ONLY)
-
-static inline void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
+void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
{
unsigned int i;
@@ -1942,147 +1934,6 @@ static inline void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
}
-static const CPUTLBEntry s_cputlb_empty_entry = {
- .addr_read = -1,
- .addr_write = -1,
- .addr_code = -1,
- .addend = -1,
-};
-
-/* NOTE:
- * If flush_global is true (the usual case), flush all tlb entries.
- * If flush_global is false, flush (at least) all tlb entries not
- * marked global.
- *
- * Since QEMU doesn't currently implement a global/not-global flag
- * for tlb entries, at the moment tlb_flush() will also flush all
- * tlb entries in the flush_global == false case. This is OK because
- * CPU architectures generally permit an implementation to drop
- * entries from the TLB at any time, so flushing more entries than
- * required is only an efficiency issue, not a correctness issue.
- */
-void tlb_flush(CPUArchState *env, int flush_global)
-{
- int i;
-
-#if defined(DEBUG_TLB)
- printf("tlb_flush:\n");
-#endif
- /* must reset current TB so that interrupts cannot modify the
- links while we are modifying them */
- env->current_tb = NULL;
-
- for (i = 0; i < CPU_TLB_SIZE; i++) {
- int mmu_idx;
-
- for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
- env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
- }
- }
-
- memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
-
- env->tlb_flush_addr = -1;
- env->tlb_flush_mask = 0;
- tlb_flush_count++;
-}
-
-static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
-{
- if (addr == (tlb_entry->addr_read &
- (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
- addr == (tlb_entry->addr_write &
- (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
- addr == (tlb_entry->addr_code &
- (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
- *tlb_entry = s_cputlb_empty_entry;
- }
-}
-
-void tlb_flush_page(CPUArchState *env, target_ulong addr)
-{
- int i;
- int mmu_idx;
-
-#if defined(DEBUG_TLB)
- printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
-#endif
- /* Check if we need to flush due to large pages. */
- if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
-#if defined(DEBUG_TLB)
- printf("tlb_flush_page: forced full flush ("
- TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
- env->tlb_flush_addr, env->tlb_flush_mask);
-#endif
- tlb_flush(env, 1);
- return;
- }
- /* must reset current TB so that interrupts cannot modify the
- links while we are modifying them */
- env->current_tb = NULL;
-
- addr &= TARGET_PAGE_MASK;
- i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
- tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
- }
-
- tb_flush_jmp_cache(env, addr);
-}
-
-/* update the TLBs so that writes to code in the virtual page 'addr'
- can be detected */
-static void tlb_protect_code(ram_addr_t ram_addr)
-{
- cpu_physical_memory_reset_dirty(ram_addr,
- ram_addr + TARGET_PAGE_SIZE,
- CODE_DIRTY_FLAG);
-}
-
-/* update the TLB so that writes in physical page 'phys_addr' are no longer
- tested for self modifying code */
-static void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
- target_ulong vaddr)
-{
- cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
-}
-
-static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
-{
- return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
-}
-
-static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
- uintptr_t start, uintptr_t length)
-{
- uintptr_t addr;
-
- if (tlb_is_dirty_ram(tlb_entry)) {
- addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
- if ((addr - start) < length) {
- tlb_entry->addr_write |= TLB_NOTDIRTY;
- }
- }
-}
-
-static void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
-{
- CPUArchState *env;
-
- for (env = first_cpu; env != NULL; env = env->next_cpu) {
- int mmu_idx;
-
- for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
- unsigned int i;
-
- for (i = 0; i < CPU_TLB_SIZE; i++) {
- tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
- start1, length);
- }
- }
- }
-}
-
/* Note: start and end must be within the same ram block. */
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
int dirty_flags)
@@ -2116,83 +1967,6 @@ int cpu_physical_memory_set_dirty_tracking(int enable)
return ret;
}
-static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
-{
- ram_addr_t ram_addr;
- void *p;
-
- if (tlb_is_dirty_ram(tlb_entry)) {
- p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK)
- + tlb_entry->addend);
- ram_addr = qemu_ram_addr_from_host_nofail(p);
- if (!cpu_physical_memory_is_dirty(ram_addr)) {
- tlb_entry->addr_write |= TLB_NOTDIRTY;
- }
- }
-}
-
-static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
-{
- if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
- tlb_entry->addr_write = vaddr;
- }
-}
-
-/* update the TLB corresponding to virtual page vaddr
- so that it is no longer dirty */
-static inline void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
-{
- int i;
- int mmu_idx;
-
- vaddr &= TARGET_PAGE_MASK;
- i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
- tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
- }
-}
-
-/* Our TLB does not support large pages, so remember the area covered by
- large pages and trigger a full TLB flush if these are invalidated. */
-static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
- target_ulong size)
-{
- target_ulong mask = ~(size - 1);
-
- if (env->tlb_flush_addr == (target_ulong)-1) {
- env->tlb_flush_addr = vaddr & mask;
- env->tlb_flush_mask = mask;
- return;
- }
- /* Extend the existing region to include the new page.
- This is a compromise between unnecessary flushes and the cost
- of maintaining a full variable size TLB. */
- mask &= env->tlb_flush_mask;
- while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
- mask <<= 1;
- }
- env->tlb_flush_addr &= mask;
- env->tlb_flush_mask = mask;
-}
-
-static bool is_ram_rom(MemoryRegionSection *s)
-{
- return memory_region_is_ram(s->mr);
-}
-
-static bool is_romd(MemoryRegionSection *s)
-{
- MemoryRegion *mr = s->mr;
-
- return mr->rom_device && mr->readable;
-}
-
-static bool is_ram_rom_romd(MemoryRegionSection *s)
-{
- return is_ram_rom(s) || is_romd(s);
-}
-
-static
target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
MemoryRegionSection *section,
target_ulong vaddr,
@@ -2239,91 +2013,7 @@ target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
return iotlb;
}
-/* Add a new TLB entry. At most one entry for a given virtual address
- is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
- supplied size is only used by tlb_flush_page. */
-void tlb_set_page(CPUArchState *env, target_ulong vaddr,
- target_phys_addr_t paddr, int prot,
- int mmu_idx, target_ulong size)
-{
- MemoryRegionSection *section;
- unsigned int index;
- target_ulong address;
- target_ulong code_address;
- uintptr_t addend;
- CPUTLBEntry *te;
- target_phys_addr_t iotlb;
-
- assert(size >= TARGET_PAGE_SIZE);
- if (size != TARGET_PAGE_SIZE) {
- tlb_add_large_page(env, vaddr, size);
- }
- section = phys_page_find(paddr >> TARGET_PAGE_BITS);
-#if defined(DEBUG_TLB)
- printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
- " prot=%x idx=%d pd=0x%08lx\n",
- vaddr, paddr, prot, mmu_idx, pd);
-#endif
-
- address = vaddr;
- if (!is_ram_rom_romd(section)) {
- /* IO memory case (romd handled later) */
- address |= TLB_MMIO;
- }
- if (is_ram_rom_romd(section)) {
- addend = (uintptr_t)memory_region_get_ram_ptr(section->mr)
- + section_addr(section, paddr);
- } else {
- addend = 0;
- }
- iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, prot,
- &address);
-
- code_address = address;
-
- index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- env->iotlb[mmu_idx][index] = iotlb - vaddr;
- te = &env->tlb_table[mmu_idx][index];
- te->addend = addend - vaddr;
- if (prot & PAGE_READ) {
- te->addr_read = address;
- } else {
- te->addr_read = -1;
- }
-
- if (prot & PAGE_EXEC) {
- te->addr_code = code_address;
- } else {
- te->addr_code = -1;
- }
- if (prot & PAGE_WRITE) {
- if ((memory_region_is_ram(section->mr) && section->readonly)
- || is_romd(section)) {
- /* Write access calls the I/O callback. */
- te->addr_write = address | TLB_MMIO;
- } else if (memory_region_is_ram(section->mr)
- && !cpu_physical_memory_is_dirty(
- section->mr->ram_addr
- + section_addr(section, paddr))) {
- te->addr_write = address | TLB_NOTDIRTY;
- } else {
- te->addr_write = address;
- }
- } else {
- te->addr_write = -1;
- }
-}
-
#else
-
-void tlb_flush(CPUArchState *env, int flush_global)
-{
-}
-
-void tlb_flush_page(CPUArchState *env, target_ulong addr)
-{
-}
-
/*
* Walks guest process memory "regions" one by one
* and calls callback function 'fn' for each region.
@@ -2580,11 +2270,6 @@ int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
mmap_unlock();
return 0;
}
-
-static inline void tlb_set_dirty(CPUArchState *env,
- uintptr_t addr, target_ulong vaddr)
-{
-}
#endif /* defined(CONFIG_USER_ONLY) */
#if !defined(CONFIG_USER_ONLY)
@@ -4621,39 +4306,6 @@ void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
tcg_dump_info(f, cpu_fprintf);
}
-/* NOTE: this function can trigger an exception */
-/* NOTE2: the returned address is not exactly the physical address: it
- is the offset relative to phys_ram_base */
-tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
-{
- int mmu_idx, page_index, pd;
- void *p;
- MemoryRegion *mr;
-
- page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- mmu_idx = cpu_mmu_index(env1);
- if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
- (addr & TARGET_PAGE_MASK))) {
-#ifdef CONFIG_TCG_PASS_AREG0
- cpu_ldub_code(env1, addr);
-#else
- ldub_code(addr);
-#endif
- }
- pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
- mr = iotlb_to_region(pd);
- if (memory_region_is_unassigned(mr)) {
-#if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
- cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
-#else
- cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x"
- TARGET_FMT_lx "\n", addr);
-#endif
- }
- p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
- return qemu_ram_addr_from_host_nofail(p);
-}
-
/*
* A helper function for the _utterly broken_ virtio device model to find out if
* it's running on a big endian machine. Don't do this at home kids!
@@ -4668,24 +4320,4 @@ bool virtio_is_big_endian(void)
#endif
}
-#define MMUSUFFIX _cmmu
-#undef GETPC
-#define GETPC() ((uintptr_t)0)
-#define env cpu_single_env
-#define SOFTMMU_CODE_ACCESS
-
-#define SHIFT 0
-#include "softmmu_template.h"
-
-#define SHIFT 1
-#include "softmmu_template.h"
-
-#define SHIFT 2
-#include "softmmu_template.h"
-
-#define SHIFT 3
-#include "softmmu_template.h"
-
-#undef env
-
#endif