diff options
author | Blue Swirl <blauwirbel@gmail.com> | 2012-04-09 16:50:52 +0000 |
---|---|---|
committer | Blue Swirl <blauwirbel@gmail.com> | 2012-05-01 10:45:04 +0000 |
commit | 0cac1b66c88c4cd3ec1d358091486787837215a3 (patch) | |
tree | 742ebbb3429ca1845a6d528e1acb35d1b2d7c744 | |
parent | e554861766d9ae84dd5720baa4869f4ed711506f (diff) |
cputlb: move TLB handling to a separate file
Move TLB handling and softmmu code load helpers to cputlb.c,
compile only for softmmu targets.
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
-rw-r--r-- | Makefile.target | 2 | ||||
-rw-r--r-- | cputlb.c | 362 | ||||
-rw-r--r-- | cputlb.h | 63 | ||||
-rw-r--r-- | exec-all.h | 12 | ||||
-rw-r--r-- | exec.c | 380 |
5 files changed, 443 insertions, 376 deletions
diff --git a/Makefile.target b/Makefile.target index 9f8cb0c495..15829041c7 100644 --- a/Makefile.target +++ b/Makefile.target @@ -191,7 +191,7 @@ obj-$(CONFIG_REALLY_VIRTFS) += 9pfs/virtio-9p-device.o obj-$(CONFIG_KVM) += kvm.o kvm-all.o obj-$(CONFIG_NO_KVM) += kvm-stub.o obj-$(CONFIG_VGA) += vga.o -obj-y += memory.o savevm.o +obj-y += memory.o savevm.o cputlb.o LIBS+=-lz obj-i386-$(CONFIG_KVM) += hyperv.o diff --git a/cputlb.c b/cputlb.c new file mode 100644 index 0000000000..b7d8f07539 --- /dev/null +++ b/cputlb.c @@ -0,0 +1,362 @@ +/* + * Common CPU TLB handling + * + * Copyright (c) 2003 Fabrice Bellard + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +#include "config.h" +#include "cpu.h" +#include "exec-all.h" +#include "memory.h" + +#include "cputlb.h" + +#define WANT_EXEC_OBSOLETE +#include "exec-obsolete.h" + +//#define DEBUG_TLB +//#define DEBUG_TLB_CHECK + +/* statistics */ +int tlb_flush_count; + +static const CPUTLBEntry s_cputlb_empty_entry = { + .addr_read = -1, + .addr_write = -1, + .addr_code = -1, + .addend = -1, +}; + +/* NOTE: + * If flush_global is true (the usual case), flush all tlb entries. + * If flush_global is false, flush (at least) all tlb entries not + * marked global. + * + * Since QEMU doesn't currently implement a global/not-global flag + * for tlb entries, at the moment tlb_flush() will also flush all + * tlb entries in the flush_global == false case. This is OK because + * CPU architectures generally permit an implementation to drop + * entries from the TLB at any time, so flushing more entries than + * required is only an efficiency issue, not a correctness issue. + */ +void tlb_flush(CPUArchState *env, int flush_global) +{ + int i; + +#if defined(DEBUG_TLB) + printf("tlb_flush:\n"); +#endif + /* must reset current TB so that interrupts cannot modify the + links while we are modifying them */ + env->current_tb = NULL; + + for (i = 0; i < CPU_TLB_SIZE; i++) { + int mmu_idx; + + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry; + } + } + + memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); + + env->tlb_flush_addr = -1; + env->tlb_flush_mask = 0; + tlb_flush_count++; +} + +static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) +{ + if (addr == (tlb_entry->addr_read & + (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || + addr == (tlb_entry->addr_write & + (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || + addr == (tlb_entry->addr_code & + (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { + *tlb_entry = s_cputlb_empty_entry; + } +} + +void tlb_flush_page(CPUArchState *env, target_ulong addr) +{ + int i; + int mmu_idx; + +#if defined(DEBUG_TLB) + printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); +#endif + /* Check if we need to flush due to large pages. */ + if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { +#if defined(DEBUG_TLB) + printf("tlb_flush_page: forced full flush (" + TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", + env->tlb_flush_addr, env->tlb_flush_mask); +#endif + tlb_flush(env, 1); + return; + } + /* must reset current TB so that interrupts cannot modify the + links while we are modifying them */ + env->current_tb = NULL; + + addr &= TARGET_PAGE_MASK; + i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); + } + + tb_flush_jmp_cache(env, addr); +} + +/* update the TLBs so that writes to code in the virtual page 'addr' + can be detected */ +void tlb_protect_code(ram_addr_t ram_addr) +{ + cpu_physical_memory_reset_dirty(ram_addr, + ram_addr + TARGET_PAGE_SIZE, + CODE_DIRTY_FLAG); +} + +/* update the TLB so that writes in physical page 'phys_addr' are no longer + tested for self modifying code */ +void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr, + target_ulong vaddr) +{ + cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG); +} + +static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe) +{ + return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0; +} + +void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start, + uintptr_t length) +{ + uintptr_t addr; + + if (tlb_is_dirty_ram(tlb_entry)) { + addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; + if ((addr - start) < length) { + tlb_entry->addr_write |= TLB_NOTDIRTY; + } + } +} + +static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) +{ + ram_addr_t ram_addr; + void *p; + + if (tlb_is_dirty_ram(tlb_entry)) { + p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK) + + tlb_entry->addend); + ram_addr = qemu_ram_addr_from_host_nofail(p); + if (!cpu_physical_memory_is_dirty(ram_addr)) { + tlb_entry->addr_write |= TLB_NOTDIRTY; + } + } +} + +void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length) +{ + CPUArchState *env; + + for (env = first_cpu; env != NULL; env = env->next_cpu) { + int mmu_idx; + + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + unsigned int i; + + for (i = 0; i < CPU_TLB_SIZE; i++) { + tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i], + start1, length); + } + } + } +} + +static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) +{ + if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { + tlb_entry->addr_write = vaddr; + } +} + +/* update the TLB corresponding to virtual page vaddr + so that it is no longer dirty */ +void tlb_set_dirty(CPUArchState *env, target_ulong vaddr) +{ + int i; + int mmu_idx; + + vaddr &= TARGET_PAGE_MASK; + i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr); + } +} + +/* Our TLB does not support large pages, so remember the area covered by + large pages and trigger a full TLB flush if these are invalidated. */ +static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr, + target_ulong size) +{ + target_ulong mask = ~(size - 1); + + if (env->tlb_flush_addr == (target_ulong)-1) { + env->tlb_flush_addr = vaddr & mask; + env->tlb_flush_mask = mask; + return; + } + /* Extend the existing region to include the new page. + This is a compromise between unnecessary flushes and the cost + of maintaining a full variable size TLB. */ + mask &= env->tlb_flush_mask; + while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) { + mask <<= 1; + } + env->tlb_flush_addr &= mask; + env->tlb_flush_mask = mask; +} + +/* Add a new TLB entry. At most one entry for a given virtual address + is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the + supplied size is only used by tlb_flush_page. */ +void tlb_set_page(CPUArchState *env, target_ulong vaddr, + target_phys_addr_t paddr, int prot, + int mmu_idx, target_ulong size) +{ + MemoryRegionSection *section; + unsigned int index; + target_ulong address; + target_ulong code_address; + uintptr_t addend; + CPUTLBEntry *te; + target_phys_addr_t iotlb; + + assert(size >= TARGET_PAGE_SIZE); + if (size != TARGET_PAGE_SIZE) { + tlb_add_large_page(env, vaddr, size); + } + section = phys_page_find(paddr >> TARGET_PAGE_BITS); +#if defined(DEBUG_TLB) + printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx + " prot=%x idx=%d pd=0x%08lx\n", + vaddr, paddr, prot, mmu_idx, pd); +#endif + + address = vaddr; + if (!is_ram_rom_romd(section)) { + /* IO memory case (romd handled later) */ + address |= TLB_MMIO; + } + if (is_ram_rom_romd(section)) { + addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + + section_addr(section, paddr); + } else { + addend = 0; + } + iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, prot, + &address); + + code_address = address; + + index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + env->iotlb[mmu_idx][index] = iotlb - vaddr; + te = &env->tlb_table[mmu_idx][index]; + te->addend = addend - vaddr; + if (prot & PAGE_READ) { + te->addr_read = address; + } else { + te->addr_read = -1; + } + + if (prot & PAGE_EXEC) { + te->addr_code = code_address; + } else { + te->addr_code = -1; + } + if (prot & PAGE_WRITE) { + if ((memory_region_is_ram(section->mr) && section->readonly) + || is_romd(section)) { + /* Write access calls the I/O callback. */ + te->addr_write = address | TLB_MMIO; + } else if (memory_region_is_ram(section->mr) + && !cpu_physical_memory_is_dirty( + section->mr->ram_addr + + section_addr(section, paddr))) { + te->addr_write = address | TLB_NOTDIRTY; + } else { + te->addr_write = address; + } + } else { + te->addr_write = -1; + } +} + +/* NOTE: this function can trigger an exception */ +/* NOTE2: the returned address is not exactly the physical address: it + is the offset relative to phys_ram_base */ +tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) +{ + int mmu_idx, page_index, pd; + void *p; + MemoryRegion *mr; + + page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + mmu_idx = cpu_mmu_index(env1); + if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code != + (addr & TARGET_PAGE_MASK))) { +#ifdef CONFIG_TCG_PASS_AREG0 + cpu_ldub_code(env1, addr); +#else + ldub_code(addr); +#endif + } + pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK; + mr = iotlb_to_region(pd); + if (memory_region_is_unassigned(mr)) { +#if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC) + cpu_unassigned_access(env1, addr, 0, 1, 0, 4); +#else + cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" + TARGET_FMT_lx "\n", addr); +#endif + } + p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend); + return qemu_ram_addr_from_host_nofail(p); +} + +#define MMUSUFFIX _cmmu +#undef GETPC +#define GETPC() ((uintptr_t)0) +#define env cpu_single_env +#define SOFTMMU_CODE_ACCESS + +#define SHIFT 0 +#include "softmmu_template.h" + +#define SHIFT 1 +#include "softmmu_template.h" + +#define SHIFT 2 +#include "softmmu_template.h" + +#define SHIFT 3 +#include "softmmu_template.h" + +#undef env diff --git a/cputlb.h b/cputlb.h new file mode 100644 index 0000000000..0b0b764df9 --- /dev/null +++ b/cputlb.h @@ -0,0 +1,63 @@ +/* + * Common CPU TLB handling + * + * Copyright (c) 2003 Fabrice Bellard + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ +#ifndef CPUTLB_H +#define CPUTLB_H + +#if !defined(CONFIG_USER_ONLY) +/* cputlb.c */ +void tlb_protect_code(ram_addr_t ram_addr); +void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr, + target_ulong vaddr); +void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start, + uintptr_t length); +MemoryRegionSection *phys_page_find(target_phys_addr_t index); +void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length); +void tlb_set_dirty(CPUArchState *env, target_ulong vaddr); +extern int tlb_flush_count; + +/* exec.c */ +target_phys_addr_t section_addr(MemoryRegionSection *section, + target_phys_addr_t addr); +void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr); +target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env, + MemoryRegionSection *section, + target_ulong vaddr, + target_phys_addr_t paddr, + int prot, + target_ulong *address); +bool memory_region_is_unassigned(MemoryRegion *mr); + +static inline bool is_ram_rom(MemoryRegionSection *s) +{ + return memory_region_is_ram(s->mr); +} + +static inline bool is_romd(MemoryRegionSection *s) +{ + MemoryRegion *mr = s->mr; + + return mr->rom_device && mr->readable; +} +static inline bool is_ram_rom_romd(MemoryRegionSection *s) +{ + return is_ram_rom(s) || is_romd(s); +} + +#endif +#endif diff --git a/exec-all.h b/exec-all.h index 937d3cef01..c1b7e1f263 100644 --- a/exec-all.h +++ b/exec-all.h @@ -96,13 +96,22 @@ void QEMU_NORETURN cpu_loop_exit(CPUArchState *env1); int page_unprotect(target_ulong address, uintptr_t pc, void *puc); void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end, int is_cpu_write_access); +#if !defined(CONFIG_USER_ONLY) +/* cputlb.c */ void tlb_flush_page(CPUArchState *env, target_ulong addr); void tlb_flush(CPUArchState *env, int flush_global); -#if !defined(CONFIG_USER_ONLY) void tlb_set_page(CPUArchState *env, target_ulong vaddr, target_phys_addr_t paddr, int prot, int mmu_idx, target_ulong size); void tb_invalidate_phys_addr(target_phys_addr_t addr); +#else +static inline void tlb_flush_page(CPUArchState *env, target_ulong addr) +{ +} + +static inline void tlb_flush(CPUArchState *env, int flush_global) +{ +} #endif #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */ @@ -340,6 +349,7 @@ static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong return addr; } #else +/* cputlb.c */ tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr); #endif @@ -57,17 +57,17 @@ #include "trace.h" #endif +#include "cputlb.h" + #define WANT_EXEC_OBSOLETE #include "exec-obsolete.h" //#define DEBUG_TB_INVALIDATE //#define DEBUG_FLUSH -//#define DEBUG_TLB //#define DEBUG_UNASSIGNED /* make various TB consistency checks */ //#define DEBUG_TB_CHECK -//#define DEBUG_TLB_CHECK //#define DEBUG_IOPORT //#define DEBUG_SUBPAGE @@ -227,9 +227,6 @@ int loglevel; static int log_append = 0; /* statistics */ -#if !defined(CONFIG_USER_ONLY) -static int tlb_flush_count; -#endif static int tb_flush_count; static int tb_phys_invalidate_count; @@ -479,7 +476,7 @@ static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb, phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); } -static MemoryRegionSection *phys_page_find(target_phys_addr_t index) +MemoryRegionSection *phys_page_find(target_phys_addr_t index) { PhysPageEntry lp = phys_map; PhysPageEntry *p; @@ -499,7 +496,6 @@ not_found: return &phys_sections[s_index]; } -static bool memory_region_is_unassigned(MemoryRegion *mr) { return mr != &io_mem_ram && mr != &io_mem_rom @@ -507,17 +503,14 @@ bool memory_region_is_unassigned(MemoryRegion *mr) && mr != &io_mem_watch; } -static target_phys_addr_t section_addr(MemoryRegionSection *section, - target_phys_addr_t addr) +target_phys_addr_t section_addr(MemoryRegionSection *section, + target_phys_addr_t addr) { addr -= section->offset_within_address_space; addr += section->offset_within_region; return addr; } -static void tlb_protect_code(ram_addr_t ram_addr); -static void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr, - target_ulong vaddr); #define mmap_lock() do { } while(0) #define mmap_unlock() do { } while(0) #endif @@ -1926,8 +1919,7 @@ CPUArchState *cpu_copy(CPUArchState *env) } #if !defined(CONFIG_USER_ONLY) - -static inline void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr) +void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr) { unsigned int i; @@ -1942,147 +1934,6 @@ static inline void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr) TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *)); } -static const CPUTLBEntry s_cputlb_empty_entry = { - .addr_read = -1, - .addr_write = -1, - .addr_code = -1, - .addend = -1, -}; - -/* NOTE: - * If flush_global is true (the usual case), flush all tlb entries. - * If flush_global is false, flush (at least) all tlb entries not - * marked global. - * - * Since QEMU doesn't currently implement a global/not-global flag - * for tlb entries, at the moment tlb_flush() will also flush all - * tlb entries in the flush_global == false case. This is OK because - * CPU architectures generally permit an implementation to drop - * entries from the TLB at any time, so flushing more entries than - * required is only an efficiency issue, not a correctness issue. - */ -void tlb_flush(CPUArchState *env, int flush_global) -{ - int i; - -#if defined(DEBUG_TLB) - printf("tlb_flush:\n"); -#endif - /* must reset current TB so that interrupts cannot modify the - links while we are modifying them */ - env->current_tb = NULL; - - for (i = 0; i < CPU_TLB_SIZE; i++) { - int mmu_idx; - - for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { - env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry; - } - } - - memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *)); - - env->tlb_flush_addr = -1; - env->tlb_flush_mask = 0; - tlb_flush_count++; -} - -static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) -{ - if (addr == (tlb_entry->addr_read & - (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || - addr == (tlb_entry->addr_write & - (TARGET_PAGE_MASK | TLB_INVALID_MASK)) || - addr == (tlb_entry->addr_code & - (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { - *tlb_entry = s_cputlb_empty_entry; - } -} - -void tlb_flush_page(CPUArchState *env, target_ulong addr) -{ - int i; - int mmu_idx; - -#if defined(DEBUG_TLB) - printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr); -#endif - /* Check if we need to flush due to large pages. */ - if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { -#if defined(DEBUG_TLB) - printf("tlb_flush_page: forced full flush (" - TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", - env->tlb_flush_addr, env->tlb_flush_mask); -#endif - tlb_flush(env, 1); - return; - } - /* must reset current TB so that interrupts cannot modify the - links while we are modifying them */ - env->current_tb = NULL; - - addr &= TARGET_PAGE_MASK; - i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); - for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { - tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); - } - - tb_flush_jmp_cache(env, addr); -} - -/* update the TLBs so that writes to code in the virtual page 'addr' - can be detected */ -static void tlb_protect_code(ram_addr_t ram_addr) -{ - cpu_physical_memory_reset_dirty(ram_addr, - ram_addr + TARGET_PAGE_SIZE, - CODE_DIRTY_FLAG); -} - -/* update the TLB so that writes in physical page 'phys_addr' are no longer - tested for self modifying code */ -static void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr, - target_ulong vaddr) -{ - cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG); -} - -static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe) -{ - return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0; -} - -static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, - uintptr_t start, uintptr_t length) -{ - uintptr_t addr; - - if (tlb_is_dirty_ram(tlb_entry)) { - addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; - if ((addr - start) < length) { - tlb_entry->addr_write |= TLB_NOTDIRTY; - } - } -} - -static void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length) -{ - CPUArchState *env; - - for (env = first_cpu; env != NULL; env = env->next_cpu) { - int mmu_idx; - - for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { - unsigned int i; - - for (i = 0; i < CPU_TLB_SIZE; i++) { - tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i], - start1, length); - } - } - } -} - /* Note: start and end must be within the same ram block. */ void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end, int dirty_flags) @@ -2116,83 +1967,6 @@ int cpu_physical_memory_set_dirty_tracking(int enable) return ret; } -static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry) -{ - ram_addr_t ram_addr; - void *p; - - if (tlb_is_dirty_ram(tlb_entry)) { - p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK) - + tlb_entry->addend); - ram_addr = qemu_ram_addr_from_host_nofail(p); - if (!cpu_physical_memory_is_dirty(ram_addr)) { - tlb_entry->addr_write |= TLB_NOTDIRTY; - } - } -} - -static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr) -{ - if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { - tlb_entry->addr_write = vaddr; - } -} - -/* update the TLB corresponding to virtual page vaddr - so that it is no longer dirty */ -static inline void tlb_set_dirty(CPUArchState *env, target_ulong vaddr) -{ - int i; - int mmu_idx; - - vaddr &= TARGET_PAGE_MASK; - i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); - for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { - tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr); - } -} - -/* Our TLB does not support large pages, so remember the area covered by - large pages and trigger a full TLB flush if these are invalidated. */ -static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr, - target_ulong size) -{ - target_ulong mask = ~(size - 1); - - if (env->tlb_flush_addr == (target_ulong)-1) { - env->tlb_flush_addr = vaddr & mask; - env->tlb_flush_mask = mask; - return; - } - /* Extend the existing region to include the new page. - This is a compromise between unnecessary flushes and the cost - of maintaining a full variable size TLB. */ - mask &= env->tlb_flush_mask; - while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) { - mask <<= 1; - } - env->tlb_flush_addr &= mask; - env->tlb_flush_mask = mask; -} - -static bool is_ram_rom(MemoryRegionSection *s) -{ - return memory_region_is_ram(s->mr); -} - -static bool is_romd(MemoryRegionSection *s) -{ - MemoryRegion *mr = s->mr; - - return mr->rom_device && mr->readable; -} - -static bool is_ram_rom_romd(MemoryRegionSection *s) -{ - return is_ram_rom(s) || is_romd(s); -} - -static target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env, MemoryRegionSection *section, target_ulong vaddr, @@ -2239,91 +2013,7 @@ target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env, return iotlb; } -/* Add a new TLB entry. At most one entry for a given virtual address - is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the - supplied size is only used by tlb_flush_page. */ -void tlb_set_page(CPUArchState *env, target_ulong vaddr, - target_phys_addr_t paddr, int prot, - int mmu_idx, target_ulong size) -{ - MemoryRegionSection *section; - unsigned int index; - target_ulong address; - target_ulong code_address; - uintptr_t addend; - CPUTLBEntry *te; - target_phys_addr_t iotlb; - - assert(size >= TARGET_PAGE_SIZE); - if (size != TARGET_PAGE_SIZE) { - tlb_add_large_page(env, vaddr, size); - } - section = phys_page_find(paddr >> TARGET_PAGE_BITS); -#if defined(DEBUG_TLB) - printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx - " prot=%x idx=%d pd=0x%08lx\n", - vaddr, paddr, prot, mmu_idx, pd); -#endif - - address = vaddr; - if (!is_ram_rom_romd(section)) { - /* IO memory case (romd handled later) */ - address |= TLB_MMIO; - } - if (is_ram_rom_romd(section)) { - addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) - + section_addr(section, paddr); - } else { - addend = 0; - } - iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, prot, - &address); - - code_address = address; - - index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); - env->iotlb[mmu_idx][index] = iotlb - vaddr; - te = &env->tlb_table[mmu_idx][index]; - te->addend = addend - vaddr; - if (prot & PAGE_READ) { - te->addr_read = address; - } else { - te->addr_read = -1; - } - - if (prot & PAGE_EXEC) { - te->addr_code = code_address; - } else { - te->addr_code = -1; - } - if (prot & PAGE_WRITE) { - if ((memory_region_is_ram(section->mr) && section->readonly) - || is_romd(section)) { - /* Write access calls the I/O callback. */ - te->addr_write = address | TLB_MMIO; - } else if (memory_region_is_ram(section->mr) - && !cpu_physical_memory_is_dirty( - section->mr->ram_addr - + section_addr(section, paddr))) { - te->addr_write = address | TLB_NOTDIRTY; - } else { - te->addr_write = address; - } - } else { - te->addr_write = -1; - } -} - #else - -void tlb_flush(CPUArchState *env, int flush_global) -{ -} - -void tlb_flush_page(CPUArchState *env, target_ulong addr) -{ -} - /* * Walks guest process memory "regions" one by one * and calls callback function 'fn' for each region. @@ -2580,11 +2270,6 @@ int page_unprotect(target_ulong address, uintptr_t pc, void *puc) mmap_unlock(); return 0; } - -static inline void tlb_set_dirty(CPUArchState *env, - uintptr_t addr, target_ulong vaddr) -{ -} #endif /* defined(CONFIG_USER_ONLY) */ #if !defined(CONFIG_USER_ONLY) @@ -4621,39 +4306,6 @@ void dump_exec_info(FILE *f, fprintf_function cpu_fprintf) tcg_dump_info(f, cpu_fprintf); } -/* NOTE: this function can trigger an exception */ -/* NOTE2: the returned address is not exactly the physical address: it - is the offset relative to phys_ram_base */ -tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr) -{ - int mmu_idx, page_index, pd; - void *p; - MemoryRegion *mr; - - page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); - mmu_idx = cpu_mmu_index(env1); - if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code != - (addr & TARGET_PAGE_MASK))) { -#ifdef CONFIG_TCG_PASS_AREG0 - cpu_ldub_code(env1, addr); -#else - ldub_code(addr); -#endif - } - pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK; - mr = iotlb_to_region(pd); - if (memory_region_is_unassigned(mr)) { -#if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC) - cpu_unassigned_access(env1, addr, 0, 1, 0, 4); -#else - cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" - TARGET_FMT_lx "\n", addr); -#endif - } - p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend); - return qemu_ram_addr_from_host_nofail(p); -} - /* * A helper function for the _utterly broken_ virtio device model to find out if * it's running on a big endian machine. Don't do this at home kids! @@ -4668,24 +4320,4 @@ bool virtio_is_big_endian(void) #endif } -#define MMUSUFFIX _cmmu -#undef GETPC -#define GETPC() ((uintptr_t)0) -#define env cpu_single_env -#define SOFTMMU_CODE_ACCESS - -#define SHIFT 0 -#include "softmmu_template.h" - -#define SHIFT 1 -#include "softmmu_template.h" - -#define SHIFT 2 -#include "softmmu_template.h" - -#define SHIFT 3 -#include "softmmu_template.h" - -#undef env - #endif |