aboutsummaryrefslogtreecommitdiff
path: root/roomserver/state/v1/state.go
blob: 5683745bf312c7cb64a30cea89e4ed8dfc013395 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
// Copyright 2017 Vector Creations Ltd
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Package state provides functions for reading state from the database.
// The functions for writing state to the database are the input package.
package v1

import (
	"context"
	"fmt"
	"sort"
	"time"

	"github.com/matrix-org/dendrite/roomserver/state/database"
	"github.com/matrix-org/dendrite/roomserver/types"
	"github.com/matrix-org/gomatrixserverlib"
	"github.com/matrix-org/util"
	"github.com/prometheus/client_golang/prometheus"
)

type StateResolutionV1 struct {
	db database.RoomStateDatabase
}

func Prepare(db database.RoomStateDatabase) StateResolutionV1 {
	return StateResolutionV1{
		db: db,
	}
}

// LoadStateAtSnapshot loads the full state of a room at a particular snapshot.
// This is typically the state before an event or the current state of a room.
// Returns a sorted list of state entries or an error if there was a problem talking to the database.
func (v StateResolutionV1) LoadStateAtSnapshot(
	ctx context.Context, stateNID types.StateSnapshotNID,
) ([]types.StateEntry, error) {
	stateBlockNIDLists, err := v.db.StateBlockNIDs(ctx, []types.StateSnapshotNID{stateNID})
	if err != nil {
		return nil, err
	}
	// We've asked for exactly one snapshot from the db so we should have exactly one entry in the result.
	stateBlockNIDList := stateBlockNIDLists[0]

	stateEntryLists, err := v.db.StateEntries(ctx, stateBlockNIDList.StateBlockNIDs)
	if err != nil {
		return nil, err
	}
	stateEntriesMap := stateEntryListMap(stateEntryLists)

	// Combine all the state entries for this snapshot.
	// The order of state block NIDs in the list tells us the order to combine them in.
	var fullState []types.StateEntry
	for _, stateBlockNID := range stateBlockNIDList.StateBlockNIDs {
		entries, ok := stateEntriesMap.lookup(stateBlockNID)
		if !ok {
			// This should only get hit if the database is corrupt.
			// It should be impossible for an event to reference a NID that doesn't exist
			panic(fmt.Errorf("Corrupt DB: Missing state block numeric ID %d", stateBlockNID))
		}
		fullState = append(fullState, entries...)
	}

	// Stable sort so that the most recent entry for each state key stays
	// remains later in the list than the older entries for the same state key.
	sort.Stable(stateEntryByStateKeySorter(fullState))
	// Unique returns the last entry and hence the most recent entry for each state key.
	fullState = fullState[:util.Unique(stateEntryByStateKeySorter(fullState))]
	return fullState, nil
}

// LoadStateAtEvent loads the full state of a room at a particular event.
func (v StateResolutionV1) LoadStateAtEvent(
	ctx context.Context, eventID string,
) ([]types.StateEntry, error) {
	snapshotNID, err := v.db.SnapshotNIDFromEventID(ctx, eventID)
	if err != nil {
		return nil, err
	}

	stateEntries, err := v.LoadStateAtSnapshot(ctx, snapshotNID)
	if err != nil {
		return nil, err
	}

	return stateEntries, nil
}

// LoadCombinedStateAfterEvents loads a snapshot of the state after each of the events
// and combines those snapshots together into a single list.
func (v StateResolutionV1) LoadCombinedStateAfterEvents(
	ctx context.Context, prevStates []types.StateAtEvent,
) ([]types.StateEntry, error) {
	stateNIDs := make([]types.StateSnapshotNID, len(prevStates))
	for i, state := range prevStates {
		stateNIDs[i] = state.BeforeStateSnapshotNID
	}
	// Fetch the state snapshots for the state before the each prev event from the database.
	// Deduplicate the IDs before passing them to the database.
	// There could be duplicates because the events could be state events where
	// the snapshot of the room state before them was the same.
	stateBlockNIDLists, err := v.db.StateBlockNIDs(ctx, uniqueStateSnapshotNIDs(stateNIDs))
	if err != nil {
		return nil, err
	}

	var stateBlockNIDs []types.StateBlockNID
	for _, list := range stateBlockNIDLists {
		stateBlockNIDs = append(stateBlockNIDs, list.StateBlockNIDs...)
	}
	// Fetch the state entries that will be combined to create the snapshots.
	// Deduplicate the IDs before passing them to the database.
	// There could be duplicates because a block of state entries could be reused by
	// multiple snapshots.
	stateEntryLists, err := v.db.StateEntries(ctx, uniqueStateBlockNIDs(stateBlockNIDs))
	if err != nil {
		return nil, err
	}
	stateBlockNIDsMap := stateBlockNIDListMap(stateBlockNIDLists)
	stateEntriesMap := stateEntryListMap(stateEntryLists)

	// Combine the entries from all the snapshots of state after each prev event into a single list.
	var combined []types.StateEntry
	for _, prevState := range prevStates {
		// Grab the list of state data NIDs for this snapshot.
		stateBlockNIDs, ok := stateBlockNIDsMap.lookup(prevState.BeforeStateSnapshotNID)
		if !ok {
			// This should only get hit if the database is corrupt.
			// It should be impossible for an event to reference a NID that doesn't exist
			panic(fmt.Errorf("Corrupt DB: Missing state snapshot numeric ID %d", prevState.BeforeStateSnapshotNID))
		}

		// Combine all the state entries for this snapshot.
		// The order of state block NIDs in the list tells us the order to combine them in.
		var fullState []types.StateEntry
		for _, stateBlockNID := range stateBlockNIDs {
			entries, ok := stateEntriesMap.lookup(stateBlockNID)
			if !ok {
				// This should only get hit if the database is corrupt.
				// It should be impossible for an event to reference a NID that doesn't exist
				panic(fmt.Errorf("Corrupt DB: Missing state block numeric ID %d", stateBlockNID))
			}
			fullState = append(fullState, entries...)
		}
		if prevState.IsStateEvent() {
			// If the prev event was a state event then add an entry for the event itself
			// so that we get the state after the event rather than the state before.
			fullState = append(fullState, prevState.StateEntry)
		}

		// Stable sort so that the most recent entry for each state key stays
		// remains later in the list than the older entries for the same state key.
		sort.Stable(stateEntryByStateKeySorter(fullState))
		// Unique returns the last entry and hence the most recent entry for each state key.
		fullState = fullState[:util.Unique(stateEntryByStateKeySorter(fullState))]
		// Add the full state for this StateSnapshotNID.
		combined = append(combined, fullState...)
	}
	return combined, nil
}

// DifferenceBetweeenStateSnapshots works out which state entries have been added and removed between two snapshots.
func (v StateResolutionV1) DifferenceBetweeenStateSnapshots(
	ctx context.Context, oldStateNID, newStateNID types.StateSnapshotNID,
) (removed, added []types.StateEntry, err error) {
	if oldStateNID == newStateNID {
		// If the snapshot NIDs are the same then nothing has changed
		return nil, nil, nil
	}

	var oldEntries []types.StateEntry
	var newEntries []types.StateEntry
	if oldStateNID != 0 {
		oldEntries, err = v.LoadStateAtSnapshot(ctx, oldStateNID)
		if err != nil {
			return nil, nil, err
		}
	}
	if newStateNID != 0 {
		newEntries, err = v.LoadStateAtSnapshot(ctx, newStateNID)
		if err != nil {
			return nil, nil, err
		}
	}

	var oldI int
	var newI int
	for {
		switch {
		case oldI == len(oldEntries):
			// We've reached the end of the old entries.
			// The rest of the new list must have been newly added.
			added = append(added, newEntries[newI:]...)
			return
		case newI == len(newEntries):
			// We've reached the end of the new entries.
			// The rest of the old list must be have been removed.
			removed = append(removed, oldEntries[oldI:]...)
			return
		case oldEntries[oldI] == newEntries[newI]:
			// The entry is in both lists so skip over it.
			oldI++
			newI++
		case oldEntries[oldI].LessThan(newEntries[newI]):
			// The lists are sorted so the old entry being less than the new entry means that it only appears in the old list.
			removed = append(removed, oldEntries[oldI])
			oldI++
		default:
			// Reaching the default case implies that the new entry is less than the old entry.
			// Since the lists are sorted this means that it only appears in the new list.
			added = append(added, newEntries[newI])
			newI++
		}
	}
}

// LoadStateAtSnapshotForStringTuples loads the state for a list of event type and state key pairs at a snapshot.
// This is used when we only want to load a subset of the room state at a snapshot.
// If there is no entry for a given event type and state key pair then it will be discarded.
// This is typically the state before an event or the current state of a room.
// Returns a sorted list of state entries or an error if there was a problem talking to the database.
func (v StateResolutionV1) LoadStateAtSnapshotForStringTuples(
	ctx context.Context,
	stateNID types.StateSnapshotNID,
	stateKeyTuples []gomatrixserverlib.StateKeyTuple,
) ([]types.StateEntry, error) {
	numericTuples, err := v.stringTuplesToNumericTuples(ctx, stateKeyTuples)
	if err != nil {
		return nil, err
	}
	return v.loadStateAtSnapshotForNumericTuples(ctx, stateNID, numericTuples)
}

// stringTuplesToNumericTuples converts the string state key tuples into numeric IDs
// If there isn't a numeric ID for either the event type or the event state key then the tuple is discarded.
// Returns an error if there was a problem talking to the database.
func (v StateResolutionV1) stringTuplesToNumericTuples(
	ctx context.Context,
	stringTuples []gomatrixserverlib.StateKeyTuple,
) ([]types.StateKeyTuple, error) {
	eventTypes := make([]string, len(stringTuples))
	stateKeys := make([]string, len(stringTuples))
	for i := range stringTuples {
		eventTypes[i] = stringTuples[i].EventType
		stateKeys[i] = stringTuples[i].StateKey
	}
	eventTypes = util.UniqueStrings(eventTypes)
	eventTypeMap, err := v.db.EventTypeNIDs(ctx, eventTypes)
	if err != nil {
		return nil, err
	}
	stateKeys = util.UniqueStrings(stateKeys)
	stateKeyMap, err := v.db.EventStateKeyNIDs(ctx, stateKeys)
	if err != nil {
		return nil, err
	}

	var result []types.StateKeyTuple
	for _, stringTuple := range stringTuples {
		var numericTuple types.StateKeyTuple
		var ok1, ok2 bool
		numericTuple.EventTypeNID, ok1 = eventTypeMap[stringTuple.EventType]
		numericTuple.EventStateKeyNID, ok2 = stateKeyMap[stringTuple.StateKey]
		// Discard the tuple if there wasn't a numeric ID for either the event type or the state key.
		if ok1 && ok2 {
			result = append(result, numericTuple)
		}
	}

	return result, nil
}

// loadStateAtSnapshotForNumericTuples loads the state for a list of event type and state key pairs at a snapshot.
// This is used when we only want to load a subset of the room state at a snapshot.
// If there is no entry for a given event type and state key pair then it will be discarded.
// This is typically the state before an event or the current state of a room.
// Returns a sorted list of state entries or an error if there was a problem talking to the database.
func (v StateResolutionV1) loadStateAtSnapshotForNumericTuples(
	ctx context.Context,
	stateNID types.StateSnapshotNID,
	stateKeyTuples []types.StateKeyTuple,
) ([]types.StateEntry, error) {
	stateBlockNIDLists, err := v.db.StateBlockNIDs(ctx, []types.StateSnapshotNID{stateNID})
	if err != nil {
		return nil, err
	}
	// We've asked for exactly one snapshot from the db so we should have exactly one entry in the result.
	stateBlockNIDList := stateBlockNIDLists[0]

	stateEntryLists, err := v.db.StateEntriesForTuples(
		ctx, stateBlockNIDList.StateBlockNIDs, stateKeyTuples,
	)
	if err != nil {
		return nil, err
	}
	stateEntriesMap := stateEntryListMap(stateEntryLists)

	// Combine all the state entries for this snapshot.
	// The order of state block NIDs in the list tells us the order to combine them in.
	var fullState []types.StateEntry
	for _, stateBlockNID := range stateBlockNIDList.StateBlockNIDs {
		entries, ok := stateEntriesMap.lookup(stateBlockNID)
		if !ok {
			// If the block is missing from the map it means that none of its entries matched a requested tuple.
			// This can happen if the block doesn't contain an update for one of the requested tuples.
			// If none of the requested tuples are in the block then it can be safely skipped.
			continue
		}
		fullState = append(fullState, entries...)
	}

	// Stable sort so that the most recent entry for each state key stays
	// remains later in the list than the older entries for the same state key.
	sort.Stable(stateEntryByStateKeySorter(fullState))
	// Unique returns the last entry and hence the most recent entry for each state key.
	fullState = fullState[:util.Unique(stateEntryByStateKeySorter(fullState))]
	return fullState, nil
}

// LoadStateAfterEventsForStringTuples loads the state for a list of event type
// and state key pairs after list of events.
// This is used when we only want to load a subset of the room state after a list of events.
// If there is no entry for a given event type and state key pair then it will be discarded.
// This is typically the state before an event.
// Returns a sorted list of state entries or an error if there was a problem talking to the database.
func (v StateResolutionV1) LoadStateAfterEventsForStringTuples(
	ctx context.Context,
	prevStates []types.StateAtEvent,
	stateKeyTuples []gomatrixserverlib.StateKeyTuple,
) ([]types.StateEntry, error) {
	numericTuples, err := v.stringTuplesToNumericTuples(ctx, stateKeyTuples)
	if err != nil {
		return nil, err
	}
	return v.loadStateAfterEventsForNumericTuples(ctx, prevStates, numericTuples)
}

func (v StateResolutionV1) loadStateAfterEventsForNumericTuples(
	ctx context.Context,
	prevStates []types.StateAtEvent,
	stateKeyTuples []types.StateKeyTuple,
) ([]types.StateEntry, error) {
	if len(prevStates) == 1 {
		// Fast path for a single event.
		prevState := prevStates[0]
		result, err := v.loadStateAtSnapshotForNumericTuples(
			ctx, prevState.BeforeStateSnapshotNID, stateKeyTuples,
		)
		if err != nil {
			return nil, err
		}
		if prevState.IsStateEvent() {
			// The result is current the state before the requested event.
			// We want the state after the requested event.
			// If the requested event was a state event then we need to
			// update that key in the result.
			// If the requested event wasn't a state event then the state after
			// it is the same as the state before it.
			for i := range result {
				if result[i].StateKeyTuple == prevState.StateKeyTuple {
					result[i] = prevState.StateEntry
				}
			}
		}
		return result, nil
	}

	// Slow path for more that one event.
	// Load the entire state so that we can do conflict resolution if we need to.
	// TODO: The are some optimistations we could do here:
	//    1) We only need to do conflict resolution if there is a conflict in the
	//       requested tuples so we might try loading just those tuples and then
	//       checking for conflicts.
	//    2) When there is a conflict we still only need to load the state
	//       needed to do conflict resolution which would save us having to load
	//       the full state.

	// TODO: Add metrics for this as it could take a long time for big rooms
	// with large conflicts.
	fullState, _, _, err := v.calculateStateAfterManyEvents(ctx, prevStates)
	if err != nil {
		return nil, err
	}

	// Sort the full state so we can use it as a map.
	sort.Sort(stateEntrySorter(fullState))

	// Filter the full state down to the required tuples.
	var result []types.StateEntry
	for _, tuple := range stateKeyTuples {
		eventNID, ok := stateEntryMap(fullState).lookup(tuple)
		if ok {
			result = append(result, types.StateEntry{
				StateKeyTuple: tuple,
				EventNID:      eventNID,
			})
		}
	}
	sort.Sort(stateEntrySorter(result))
	return result, nil
}

var calculateStateDurations = prometheus.NewSummaryVec(
	prometheus.SummaryOpts{
		Namespace: "dendrite",
		Subsystem: "roomserver",
		Name:      "calculate_state_duration_microseconds",
		Help:      "How long it takes to calculate the state after a list of events",
	},
	// Takes two labels:
	//   algorithm:
	//      The algorithm used to calculate the state or the step it failed on if it failed.
	//      Labels starting with "_" are used to indicate when the algorithm fails halfway.
	//  outcome:
	//      Whether the state was successfully calculated.
	//
	// The possible values for algorithm are:
	//    empty_state -> The list of events was empty so the state is empty.
	//    no_change -> The state hasn't changed.
	//    single_delta -> There was a single event added to the state in a way that can be encoded as a single delta
	//    full_state_no_conflicts -> We created a new copy of the full room state, but didn't enounter any conflicts
	//                               while doing so.
	//    full_state_with_conflicts -> We created a new copy of the full room state and had to resolve conflicts to do so.
	//    _load_state_block_nids -> Failed loading the state block nids for a single previous state.
	//    _load_combined_state -> Failed to load the combined state.
	//    _resolve_conflicts -> Failed to resolve conflicts.
	[]string{"algorithm", "outcome"},
)

var calculateStatePrevEventLength = prometheus.NewSummaryVec(
	prometheus.SummaryOpts{
		Namespace: "dendrite",
		Subsystem: "roomserver",
		Name:      "calculate_state_prev_event_length",
		Help:      "The length of the list of events to calculate the state after",
	},
	[]string{"algorithm", "outcome"},
)

var calculateStateFullStateLength = prometheus.NewSummaryVec(
	prometheus.SummaryOpts{
		Namespace: "dendrite",
		Subsystem: "roomserver",
		Name:      "calculate_state_full_state_length",
		Help:      "The length of the full room state.",
	},
	[]string{"algorithm", "outcome"},
)

var calculateStateConflictLength = prometheus.NewSummaryVec(
	prometheus.SummaryOpts{
		Namespace: "dendrite",
		Subsystem: "roomserver",
		Name:      "calculate_state_conflict_state_length",
		Help:      "The length of the conflicted room state.",
	},
	[]string{"algorithm", "outcome"},
)

type calculateStateMetrics struct {
	algorithm       string
	startTime       time.Time
	prevEventLength int
	fullStateLength int
	conflictLength  int
}

func (c *calculateStateMetrics) stop(stateNID types.StateSnapshotNID, err error) (types.StateSnapshotNID, error) {
	var outcome string
	if err == nil {
		outcome = "success"
	} else {
		outcome = "failure"
	}
	endTime := time.Now()
	calculateStateDurations.WithLabelValues(c.algorithm, outcome).Observe(
		float64(endTime.Sub(c.startTime).Nanoseconds()) / 1000.,
	)
	calculateStatePrevEventLength.WithLabelValues(c.algorithm, outcome).Observe(
		float64(c.prevEventLength),
	)
	calculateStateFullStateLength.WithLabelValues(c.algorithm, outcome).Observe(
		float64(c.fullStateLength),
	)
	calculateStateConflictLength.WithLabelValues(c.algorithm, outcome).Observe(
		float64(c.conflictLength),
	)
	return stateNID, err
}

func init() {
	prometheus.MustRegister(
		calculateStateDurations, calculateStatePrevEventLength,
		calculateStateFullStateLength, calculateStateConflictLength,
	)
}

// CalculateAndStoreStateBeforeEvent calculates a snapshot of the state of a room before an event.
// Stores the snapshot of the state in the database.
// Returns a numeric ID for the snapshot of the state before the event.
func (v StateResolutionV1) CalculateAndStoreStateBeforeEvent(
	ctx context.Context,
	event gomatrixserverlib.Event,
	roomNID types.RoomNID,
) (types.StateSnapshotNID, error) {
	// Load the state at the prev events.
	prevEventRefs := event.PrevEvents()
	prevEventIDs := make([]string, len(prevEventRefs))
	for i := range prevEventRefs {
		prevEventIDs[i] = prevEventRefs[i].EventID
	}

	prevStates, err := v.db.StateAtEventIDs(ctx, prevEventIDs)
	if err != nil {
		return 0, err
	}

	// The state before this event will be the state after the events that came before it.
	return v.CalculateAndStoreStateAfterEvents(ctx, roomNID, prevStates)
}

// CalculateAndStoreStateAfterEvents finds the room state after the given events.
// Stores the resulting state in the database and returns a numeric ID for that snapshot.
func (v StateResolutionV1) CalculateAndStoreStateAfterEvents(
	ctx context.Context,
	roomNID types.RoomNID,
	prevStates []types.StateAtEvent,
) (types.StateSnapshotNID, error) {
	metrics := calculateStateMetrics{startTime: time.Now(), prevEventLength: len(prevStates)}

	if len(prevStates) == 0 {
		// 2) There weren't any prev_events for this event so the state is
		// empty.
		metrics.algorithm = "empty_state"
		return metrics.stop(v.db.AddState(ctx, roomNID, nil, nil))
	}

	if len(prevStates) == 1 {
		prevState := prevStates[0]
		if prevState.EventStateKeyNID == 0 {
			// 3) None of the previous events were state events and they all
			// have the same state, so this event has exactly the same state
			// as the previous events.
			// This should be the common case.
			metrics.algorithm = "no_change"
			return metrics.stop(prevState.BeforeStateSnapshotNID, nil)
		}
		// The previous event was a state event so we need to store a copy
		// of the previous state updated with that event.
		stateBlockNIDLists, err := v.db.StateBlockNIDs(
			ctx, []types.StateSnapshotNID{prevState.BeforeStateSnapshotNID},
		)
		if err != nil {
			metrics.algorithm = "_load_state_blocks"
			return metrics.stop(0, err)
		}
		stateBlockNIDs := stateBlockNIDLists[0].StateBlockNIDs
		if len(stateBlockNIDs) < maxStateBlockNIDs {
			// 4) The number of state data blocks is small enough that we can just
			// add the state event as a block of size one to the end of the blocks.
			metrics.algorithm = "single_delta"
			return metrics.stop(v.db.AddState(
				ctx, roomNID, stateBlockNIDs, []types.StateEntry{prevState.StateEntry},
			))
		}
		// If there are too many deltas then we need to calculate the full state
		// So fall through to calculateAndStoreStateAfterManyEvents
	}

	return v.calculateAndStoreStateAfterManyEvents(ctx, roomNID, prevStates, metrics)
}

// maxStateBlockNIDs is the maximum number of state data blocks to use to encode a snapshot of room state.
// Increasing this number means that we can encode more of the state changes as simple deltas which means that
// we need fewer entries in the state data table. However making this number bigger will increase the size of
// the rows in the state table itself and will require more index lookups when retrieving a snapshot.
// TODO: Tune this to get the right balance between size and lookup performance.
const maxStateBlockNIDs = 64

// calculateAndStoreStateAfterManyEvents finds the room state after the given events.
// This handles the slow path of calculateAndStoreStateAfterEvents for when there is more than one event.
// Stores the resulting state and returns a numeric ID for the snapshot.
func (v StateResolutionV1) calculateAndStoreStateAfterManyEvents(
	ctx context.Context,
	roomNID types.RoomNID,
	prevStates []types.StateAtEvent,
	metrics calculateStateMetrics,
) (types.StateSnapshotNID, error) {

	state, algorithm, conflictLength, err :=
		v.calculateStateAfterManyEvents(ctx, prevStates)
	metrics.algorithm = algorithm
	if err != nil {
		return metrics.stop(0, err)
	}

	// TODO: Check if we can encode the new state as a delta against the
	// previous state.
	metrics.conflictLength = conflictLength
	metrics.fullStateLength = len(state)
	return metrics.stop(v.db.AddState(ctx, roomNID, nil, state))
}

func (v StateResolutionV1) calculateStateAfterManyEvents(
	ctx context.Context, prevStates []types.StateAtEvent,
) (state []types.StateEntry, algorithm string, conflictLength int, err error) {
	var combined []types.StateEntry
	// Conflict resolution.
	// First stage: load the state after each of the prev events.
	combined, err = v.LoadCombinedStateAfterEvents(ctx, prevStates)
	if err != nil {
		algorithm = "_load_combined_state"
		return
	}

	// Collect all the entries with the same type and key together.
	// We don't care about the order here because the conflict resolution
	// algorithm doesn't depend on the order of the prev events.
	// Remove duplicate entires.
	combined = combined[:util.SortAndUnique(stateEntrySorter(combined))]

	// Find the conflicts
	conflicts := findDuplicateStateKeys(combined)

	if len(conflicts) > 0 {
		conflictLength = len(conflicts)

		// 5) There are conflicting state events, for each conflict workout
		// what the appropriate state event is.

		// Work out which entries aren't conflicted.
		var notConflicted []types.StateEntry
		for _, entry := range combined {
			if _, ok := stateEntryMap(conflicts).lookup(entry.StateKeyTuple); !ok {
				notConflicted = append(notConflicted, entry)
			}
		}

		var resolved []types.StateEntry
		resolved, err = v.resolveConflicts(ctx, notConflicted, conflicts)
		if err != nil {
			algorithm = "_resolve_conflicts"
			return
		}
		algorithm = "full_state_with_conflicts"
		state = resolved
	} else {
		algorithm = "full_state_no_conflicts"
		// 6) There weren't any conflicts
		state = combined
	}
	return
}

// resolveConflicts resolves a list of conflicted state entries. It takes two lists.
// The first is a list of all state entries that are not conflicted.
// The second is a list of all state entries that are conflicted
// A state entry is conflicted when there is more than one numeric event ID for the same state key tuple.
// Returns a list that combines the entries without conflicts with the result of state resolution for the entries with conflicts.
// The returned list is sorted by state key tuple.
// Returns an error if there was a problem talking to the database.
func (v StateResolutionV1) resolveConflicts(
	ctx context.Context,
	notConflicted, conflicted []types.StateEntry,
) ([]types.StateEntry, error) {

	// Load the conflicted events
	conflictedEvents, eventIDMap, err := v.loadStateEvents(ctx, conflicted)
	if err != nil {
		return nil, err
	}

	// Work out which auth events we need to load.
	needed := gomatrixserverlib.StateNeededForAuth(conflictedEvents)

	// Find the numeric IDs for the necessary state keys.
	var neededStateKeys []string
	neededStateKeys = append(neededStateKeys, needed.Member...)
	neededStateKeys = append(neededStateKeys, needed.ThirdPartyInvite...)
	stateKeyNIDMap, err := v.db.EventStateKeyNIDs(ctx, neededStateKeys)
	if err != nil {
		return nil, err
	}

	// Load the necessary auth events.
	tuplesNeeded := v.stateKeyTuplesNeeded(stateKeyNIDMap, needed)
	var authEntries []types.StateEntry
	for _, tuple := range tuplesNeeded {
		if eventNID, ok := stateEntryMap(notConflicted).lookup(tuple); ok {
			authEntries = append(authEntries, types.StateEntry{
				StateKeyTuple: tuple,
				EventNID:      eventNID,
			})
		}
	}
	authEvents, _, err := v.loadStateEvents(ctx, authEntries)
	if err != nil {
		return nil, err
	}

	// Resolve the conflicts.
	resolvedEvents := gomatrixserverlib.ResolveStateConflicts(conflictedEvents, authEvents)

	// Map from the full events back to numeric state entries.
	for _, resolvedEvent := range resolvedEvents {
		entry, ok := eventIDMap[resolvedEvent.EventID()]
		if !ok {
			panic(fmt.Errorf("Missing state entry for event ID %q", resolvedEvent.EventID()))
		}
		notConflicted = append(notConflicted, entry)
	}

	// Sort the result so it can be searched.
	sort.Sort(stateEntrySorter(notConflicted))
	return notConflicted, nil
}

// stateKeyTuplesNeeded works out which numeric state key tuples we need to authenticate some events.
func (v StateResolutionV1) stateKeyTuplesNeeded(stateKeyNIDMap map[string]types.EventStateKeyNID, stateNeeded gomatrixserverlib.StateNeeded) []types.StateKeyTuple {
	var keyTuples []types.StateKeyTuple
	if stateNeeded.Create {
		keyTuples = append(keyTuples, types.StateKeyTuple{
			EventTypeNID:     types.MRoomCreateNID,
			EventStateKeyNID: types.EmptyStateKeyNID,
		})
	}
	if stateNeeded.PowerLevels {
		keyTuples = append(keyTuples, types.StateKeyTuple{
			EventTypeNID:     types.MRoomPowerLevelsNID,
			EventStateKeyNID: types.EmptyStateKeyNID,
		})
	}
	if stateNeeded.JoinRules {
		keyTuples = append(keyTuples, types.StateKeyTuple{
			EventTypeNID:     types.MRoomJoinRulesNID,
			EventStateKeyNID: types.EmptyStateKeyNID,
		})
	}
	for _, member := range stateNeeded.Member {
		stateKeyNID, ok := stateKeyNIDMap[member]
		if ok {
			keyTuples = append(keyTuples, types.StateKeyTuple{
				EventTypeNID:     types.MRoomMemberNID,
				EventStateKeyNID: stateKeyNID,
			})
		}
	}
	for _, token := range stateNeeded.ThirdPartyInvite {
		stateKeyNID, ok := stateKeyNIDMap[token]
		if ok {
			keyTuples = append(keyTuples, types.StateKeyTuple{
				EventTypeNID:     types.MRoomThirdPartyInviteNID,
				EventStateKeyNID: stateKeyNID,
			})
		}
	}
	return keyTuples
}

// loadStateEvents loads the matrix events for a list of state entries.
// Returns a list of state events in no particular order and a map from string event ID back to state entry.
// The map can be used to recover which numeric state entry a given event is for.
// Returns an error if there was a problem talking to the database.
func (v StateResolutionV1) loadStateEvents(
	ctx context.Context, entries []types.StateEntry,
) ([]gomatrixserverlib.Event, map[string]types.StateEntry, error) {
	eventNIDs := make([]types.EventNID, len(entries))
	for i := range entries {
		eventNIDs[i] = entries[i].EventNID
	}
	events, err := v.db.Events(ctx, eventNIDs)
	if err != nil {
		return nil, nil, err
	}
	eventIDMap := map[string]types.StateEntry{}
	result := make([]gomatrixserverlib.Event, len(entries))
	for i := range entries {
		event, ok := eventMap(events).lookup(entries[i].EventNID)
		if !ok {
			panic(fmt.Errorf("Corrupt DB: Missing event numeric ID %d", entries[i].EventNID))
		}
		result[i] = event.Event
		eventIDMap[event.Event.EventID()] = entries[i]
	}
	return result, eventIDMap, nil
}

// findDuplicateStateKeys finds the state entries where the state key tuple appears more than once in a sorted list.
// Returns a sorted list of those state entries.
func findDuplicateStateKeys(a []types.StateEntry) []types.StateEntry {
	var result []types.StateEntry
	// j is the starting index of a block of entries with the same state key tuple.
	j := 0
	for i := 1; i < len(a); i++ {
		// Check if the state key tuple matches the start of the block
		if a[j].StateKeyTuple != a[i].StateKeyTuple {
			// If the state key tuple is different then we've reached the end of a block of duplicates.
			// Check if the size of the block is bigger than one.
			// If the size is one then there was only a single entry with that state key tuple so we don't add it to the result
			if j+1 != i {
				// Add the block to the result.
				result = append(result, a[j:i]...)
			}
			// Start a new block for the next state key tuple.
			j = i
		}
	}
	// Check if the last block with the same state key tuple had more than one event in it.
	if j+1 != len(a) {
		result = append(result, a[j:]...)
	}
	return result
}

type stateEntrySorter []types.StateEntry

func (s stateEntrySorter) Len() int           { return len(s) }
func (s stateEntrySorter) Less(i, j int) bool { return s[i].LessThan(s[j]) }
func (s stateEntrySorter) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }

type stateBlockNIDListMap []types.StateBlockNIDList

func (m stateBlockNIDListMap) lookup(stateNID types.StateSnapshotNID) (stateBlockNIDs []types.StateBlockNID, ok bool) {
	list := []types.StateBlockNIDList(m)
	i := sort.Search(len(list), func(i int) bool {
		return list[i].StateSnapshotNID >= stateNID
	})
	if i < len(list) && list[i].StateSnapshotNID == stateNID {
		ok = true
		stateBlockNIDs = list[i].StateBlockNIDs
	}
	return
}

type stateEntryListMap []types.StateEntryList

func (m stateEntryListMap) lookup(stateBlockNID types.StateBlockNID) (stateEntries []types.StateEntry, ok bool) {
	list := []types.StateEntryList(m)
	i := sort.Search(len(list), func(i int) bool {
		return list[i].StateBlockNID >= stateBlockNID
	})
	if i < len(list) && list[i].StateBlockNID == stateBlockNID {
		ok = true
		stateEntries = list[i].StateEntries
	}
	return
}

type stateEntryByStateKeySorter []types.StateEntry

func (s stateEntryByStateKeySorter) Len() int { return len(s) }
func (s stateEntryByStateKeySorter) Less(i, j int) bool {
	return s[i].StateKeyTuple.LessThan(s[j].StateKeyTuple)
}
func (s stateEntryByStateKeySorter) Swap(i, j int) { s[i], s[j] = s[j], s[i] }

type stateNIDSorter []types.StateSnapshotNID

func (s stateNIDSorter) Len() int           { return len(s) }
func (s stateNIDSorter) Less(i, j int) bool { return s[i] < s[j] }
func (s stateNIDSorter) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }

func uniqueStateSnapshotNIDs(nids []types.StateSnapshotNID) []types.StateSnapshotNID {
	return nids[:util.SortAndUnique(stateNIDSorter(nids))]
}

type stateBlockNIDSorter []types.StateBlockNID

func (s stateBlockNIDSorter) Len() int           { return len(s) }
func (s stateBlockNIDSorter) Less(i, j int) bool { return s[i] < s[j] }
func (s stateBlockNIDSorter) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }

func uniqueStateBlockNIDs(nids []types.StateBlockNID) []types.StateBlockNID {
	return nids[:util.SortAndUnique(stateBlockNIDSorter(nids))]
}

// Map from event type, state key tuple to numeric event ID.
// Implemented using binary search on a sorted array.
type stateEntryMap []types.StateEntry

// lookup an entry in the event map.
func (m stateEntryMap) lookup(stateKey types.StateKeyTuple) (eventNID types.EventNID, ok bool) {
	// Since the list is sorted we can implement this using binary search.
	// This is faster than using a hash map.
	// We don't have to worry about pathological cases because the keys are fixed
	// size and are controlled by us.
	list := []types.StateEntry(m)
	i := sort.Search(len(list), func(i int) bool {
		return !list[i].StateKeyTuple.LessThan(stateKey)
	})
	if i < len(list) && list[i].StateKeyTuple == stateKey {
		ok = true
		eventNID = list[i].EventNID
	}
	return
}

// Map from numeric event ID to event.
// Implemented using binary search on a sorted array.
type eventMap []types.Event

// lookup an entry in the event map.
func (m eventMap) lookup(eventNID types.EventNID) (event *types.Event, ok bool) {
	// Since the list is sorted we can implement this using binary search.
	// This is faster than using a hash map.
	// We don't have to worry about pathological cases because the keys are fixed
	// size are controlled by us.
	list := []types.Event(m)
	i := sort.Search(len(list), func(i int) bool {
		return list[i].EventNID >= eventNID
	})
	if i < len(list) && list[i].EventNID == eventNID {
		ok = true
		event = &list[i]
	}
	return
}