1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
// Copyright (c) 2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "random.h"
#include "utilstrencodings.h"
#include "test/test_bitcoin.h"
#include "wallet/crypter.h"
#include <vector>
#include <boost/test/unit_test.hpp>
#include <openssl/aes.h>
#include <openssl/evp.h>
BOOST_FIXTURE_TEST_SUITE(wallet_crypto, BasicTestingSetup)
bool OldSetKeyFromPassphrase(const SecureString& strKeyData, const std::vector<unsigned char>& chSalt, const unsigned int nRounds, const unsigned int nDerivationMethod, unsigned char* chKey, unsigned char* chIV)
{
if (nRounds < 1 || chSalt.size() != WALLET_CRYPTO_SALT_SIZE)
return false;
int i = 0;
if (nDerivationMethod == 0)
i = EVP_BytesToKey(EVP_aes_256_cbc(), EVP_sha512(), &chSalt[0],
(unsigned char *)&strKeyData[0], strKeyData.size(), nRounds, chKey, chIV);
if (i != (int)WALLET_CRYPTO_KEY_SIZE)
{
memory_cleanse(chKey, sizeof(chKey));
memory_cleanse(chIV, sizeof(chIV));
return false;
}
return true;
}
bool OldEncrypt(const CKeyingMaterial& vchPlaintext, std::vector<unsigned char> &vchCiphertext, const unsigned char chKey[32], const unsigned char chIV[16])
{
// max ciphertext len for a n bytes of plaintext is
// n + AES_BLOCK_SIZE - 1 bytes
int nLen = vchPlaintext.size();
int nCLen = nLen + AES_BLOCK_SIZE, nFLen = 0;
vchCiphertext = std::vector<unsigned char> (nCLen);
EVP_CIPHER_CTX ctx;
bool fOk = true;
EVP_CIPHER_CTX_init(&ctx);
if (fOk) fOk = EVP_EncryptInit_ex(&ctx, EVP_aes_256_cbc(), NULL, chKey, chIV) != 0;
if (fOk) fOk = EVP_EncryptUpdate(&ctx, &vchCiphertext[0], &nCLen, &vchPlaintext[0], nLen) != 0;
if (fOk) fOk = EVP_EncryptFinal_ex(&ctx, (&vchCiphertext[0]) + nCLen, &nFLen) != 0;
EVP_CIPHER_CTX_cleanup(&ctx);
if (!fOk) return false;
vchCiphertext.resize(nCLen + nFLen);
return true;
}
bool OldDecrypt(const std::vector<unsigned char>& vchCiphertext, CKeyingMaterial& vchPlaintext, const unsigned char chKey[32], const unsigned char chIV[16])
{
// plaintext will always be equal to or lesser than length of ciphertext
int nLen = vchCiphertext.size();
int nPLen = nLen, nFLen = 0;
vchPlaintext = CKeyingMaterial(nPLen);
EVP_CIPHER_CTX ctx;
bool fOk = true;
EVP_CIPHER_CTX_init(&ctx);
if (fOk) fOk = EVP_DecryptInit_ex(&ctx, EVP_aes_256_cbc(), NULL, chKey, chIV) != 0;
if (fOk) fOk = EVP_DecryptUpdate(&ctx, &vchPlaintext[0], &nPLen, &vchCiphertext[0], nLen) != 0;
if (fOk) fOk = EVP_DecryptFinal_ex(&ctx, (&vchPlaintext[0]) + nPLen, &nFLen) != 0;
EVP_CIPHER_CTX_cleanup(&ctx);
if (!fOk) return false;
vchPlaintext.resize(nPLen + nFLen);
return true;
}
class TestCrypter
{
public:
static void TestPassphraseSingle(const std::vector<unsigned char>& vchSalt, const SecureString& passphrase, uint32_t rounds,
const std::vector<unsigned char>& correctKey = std::vector<unsigned char>(),
const std::vector<unsigned char>& correctIV=std::vector<unsigned char>())
{
unsigned char chKey[WALLET_CRYPTO_KEY_SIZE];
unsigned char chIV[WALLET_CRYPTO_IV_SIZE];
CCrypter crypt;
crypt.SetKeyFromPassphrase(passphrase, vchSalt, rounds, 0);
OldSetKeyFromPassphrase(passphrase, vchSalt, rounds, 0, chKey, chIV);
BOOST_CHECK_MESSAGE(memcmp(chKey, crypt.chKey, sizeof(chKey)) == 0, \
HexStr(chKey, chKey+sizeof(chKey)) + std::string(" != ") + HexStr(crypt.chKey, crypt.chKey + (sizeof crypt.chKey)));
BOOST_CHECK_MESSAGE(memcmp(chIV, crypt.chIV, sizeof(chIV)) == 0, \
HexStr(chIV, chIV+sizeof(chIV)) + std::string(" != ") + HexStr(crypt.chIV, crypt.chIV + (sizeof crypt.chIV)));
if(!correctKey.empty())
BOOST_CHECK_MESSAGE(memcmp(chKey, &correctKey[0], sizeof(chKey)) == 0, \
HexStr(chKey, chKey+sizeof(chKey)) + std::string(" != ") + HexStr(correctKey.begin(), correctKey.end()));
if(!correctIV.empty())
BOOST_CHECK_MESSAGE(memcmp(chIV, &correctIV[0], sizeof(chIV)) == 0,
HexStr(chIV, chIV+sizeof(chIV)) + std::string(" != ") + HexStr(correctIV.begin(), correctIV.end()));
}
static void TestPassphrase(const std::vector<unsigned char>& vchSalt, const SecureString& passphrase, uint32_t rounds,
const std::vector<unsigned char>& correctKey = std::vector<unsigned char>(),
const std::vector<unsigned char>& correctIV=std::vector<unsigned char>())
{
TestPassphraseSingle(vchSalt, passphrase, rounds, correctKey, correctIV);
for(SecureString::const_iterator i(passphrase.begin()); i != passphrase.end(); ++i)
TestPassphraseSingle(vchSalt, SecureString(i, passphrase.end()), rounds);
}
static void TestDecrypt(const CCrypter& crypt, const std::vector<unsigned char>& vchCiphertext, \
const std::vector<unsigned char>& vchPlaintext = std::vector<unsigned char>())
{
CKeyingMaterial vchDecrypted1;
CKeyingMaterial vchDecrypted2;
int result1, result2;
result1 = crypt.Decrypt(vchCiphertext, vchDecrypted1);
result2 = OldDecrypt(vchCiphertext, vchDecrypted2, crypt.chKey, crypt.chIV);
BOOST_CHECK(result1 == result2);
// These two should be equal. However, OpenSSL 1.0.1j introduced a change
// that would zero all padding except for the last byte for failed decrypts.
// This behavior was reverted for 1.0.1k.
if (vchDecrypted1 != vchDecrypted2 && vchDecrypted1.size() >= AES_BLOCK_SIZE && SSLeay() == 0x100010afL)
{
for(CKeyingMaterial::iterator it = vchDecrypted1.end() - AES_BLOCK_SIZE; it != vchDecrypted1.end() - 1; it++)
*it = 0;
}
BOOST_CHECK_MESSAGE(vchDecrypted1 == vchDecrypted2, HexStr(vchDecrypted1.begin(), vchDecrypted1.end()) + " != " + HexStr(vchDecrypted2.begin(), vchDecrypted2.end()));
if (vchPlaintext.size())
BOOST_CHECK(CKeyingMaterial(vchPlaintext.begin(), vchPlaintext.end()) == vchDecrypted2);
}
static void TestEncryptSingle(const CCrypter& crypt, const CKeyingMaterial& vchPlaintext,
const std::vector<unsigned char>& vchCiphertextCorrect = std::vector<unsigned char>())
{
std::vector<unsigned char> vchCiphertext1;
std::vector<unsigned char> vchCiphertext2;
int result1 = crypt.Encrypt(vchPlaintext, vchCiphertext1);
int result2 = OldEncrypt(vchPlaintext, vchCiphertext2, crypt.chKey, crypt.chIV);
BOOST_CHECK(result1 == result2);
BOOST_CHECK(vchCiphertext1 == vchCiphertext2);
if (!vchCiphertextCorrect.empty())
BOOST_CHECK(vchCiphertext2 == vchCiphertextCorrect);
const std::vector<unsigned char> vchPlaintext2(vchPlaintext.begin(), vchPlaintext.end());
if(vchCiphertext1 == vchCiphertext2)
TestDecrypt(crypt, vchCiphertext1, vchPlaintext2);
}
static void TestEncrypt(const CCrypter& crypt, const std::vector<unsigned char>& vchPlaintextIn, \
const std::vector<unsigned char>& vchCiphertextCorrect = std::vector<unsigned char>())
{
TestEncryptSingle(crypt, CKeyingMaterial(vchPlaintextIn.begin(), vchPlaintextIn.end()), vchCiphertextCorrect);
for(std::vector<unsigned char>::const_iterator i(vchPlaintextIn.begin()); i != vchPlaintextIn.end(); ++i)
TestEncryptSingle(crypt, CKeyingMaterial(i, vchPlaintextIn.end()));
}
};
BOOST_AUTO_TEST_CASE(passphrase) {
// These are expensive.
TestCrypter::TestPassphrase(ParseHex("0000deadbeef0000"), "test", 25000, \
ParseHex("fc7aba077ad5f4c3a0988d8daa4810d0d4a0e3bcb53af662998898f33df0556a"), \
ParseHex("cf2f2691526dd1aa220896fb8bf7c369"));
std::string hash(GetRandHash().ToString());
std::vector<unsigned char> vchSalt(8);
GetRandBytes(&vchSalt[0], vchSalt.size());
uint32_t rounds = insecure_rand();
if (rounds > 30000)
rounds = 30000;
TestCrypter::TestPassphrase(vchSalt, SecureString(hash.begin(), hash.end()), rounds);
}
BOOST_AUTO_TEST_CASE(encrypt) {
std::vector<unsigned char> vchSalt = ParseHex("0000deadbeef0000");
BOOST_CHECK(vchSalt.size() == WALLET_CRYPTO_SALT_SIZE);
CCrypter crypt;
crypt.SetKeyFromPassphrase("passphrase", vchSalt, 25000, 0);
TestCrypter::TestEncrypt(crypt, ParseHex("22bcade09ac03ff6386914359cfe885cfeb5f77ff0d670f102f619687453b29d"));
for (int i = 0; i != 100; i++)
{
uint256 hash(GetRandHash());
TestCrypter::TestEncrypt(crypt, std::vector<unsigned char>(hash.begin(), hash.end()));
}
}
BOOST_AUTO_TEST_CASE(decrypt) {
std::vector<unsigned char> vchSalt = ParseHex("0000deadbeef0000");
BOOST_CHECK(vchSalt.size() == WALLET_CRYPTO_SALT_SIZE);
CCrypter crypt;
crypt.SetKeyFromPassphrase("passphrase", vchSalt, 25000, 0);
// Some corner cases the came up while testing
TestCrypter::TestDecrypt(crypt,ParseHex("795643ce39d736088367822cdc50535ec6f103715e3e48f4f3b1a60a08ef59ca"));
TestCrypter::TestDecrypt(crypt,ParseHex("de096f4a8f9bd97db012aa9d90d74de8cdea779c3ee8bc7633d8b5d6da703486"));
TestCrypter::TestDecrypt(crypt,ParseHex("32d0a8974e3afd9c6c3ebf4d66aa4e6419f8c173de25947f98cf8b7ace49449c"));
TestCrypter::TestDecrypt(crypt,ParseHex("e7c055cca2faa78cb9ac22c9357a90b4778ded9b2cc220a14cea49f931e596ea"));
TestCrypter::TestDecrypt(crypt,ParseHex("b88efddd668a6801d19516d6830da4ae9811988ccbaf40df8fbb72f3f4d335fd"));
TestCrypter::TestDecrypt(crypt,ParseHex("8cae76aa6a43694e961ebcb28c8ca8f8540b84153d72865e8561ddd93fa7bfa9"));
for (int i = 0; i != 100; i++)
{
uint256 hash(GetRandHash());
TestCrypter::TestDecrypt(crypt, std::vector<unsigned char>(hash.begin(), hash.end()));
}
}
BOOST_AUTO_TEST_SUITE_END()
|