aboutsummaryrefslogtreecommitdiff
path: root/src/wallet/spend.cpp
blob: e403b69b493e40545c9958d03bb8aa6dff0f0835 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
// Copyright (c) 2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include <consensus/validation.h>
#include <interfaces/chain.h>
#include <policy/policy.h>
#include <util/check.h>
#include <util/fees.h>
#include <util/moneystr.h>
#include <util/rbf.h>
#include <util/translation.h>
#include <wallet/coincontrol.h>
#include <wallet/fees.h>
#include <wallet/receive.h>
#include <wallet/spend.h>
#include <wallet/transaction.h>
#include <wallet/wallet.h>

using interfaces::FoundBlock;

static constexpr size_t OUTPUT_GROUP_MAX_ENTRIES{100};

std::string COutput::ToString() const
{
    return strprintf("COutput(%s, %d, %d) [%s]", tx->GetHash().ToString(), i, nDepth, FormatMoney(tx->tx->vout[i].nValue));
}

int CalculateMaximumSignedInputSize(const CTxOut& txout, const CWallet* wallet, bool use_max_sig)
{
    CMutableTransaction txn;
    txn.vin.push_back(CTxIn(COutPoint()));
    if (!wallet->DummySignInput(txn.vin[0], txout, use_max_sig)) {
        return -1;
    }
    return GetVirtualTransactionInputSize(txn.vin[0]);
}

// txouts needs to be in the order of tx.vin
TxSize CalculateMaximumSignedTxSize(const CTransaction &tx, const CWallet *wallet, const std::vector<CTxOut>& txouts, bool use_max_sig)
{
    CMutableTransaction txNew(tx);
    if (!wallet->DummySignTx(txNew, txouts, use_max_sig)) {
        return TxSize{-1, -1};
    }
    CTransaction ctx(txNew);
    int64_t vsize = GetVirtualTransactionSize(ctx);
    int64_t weight = GetTransactionWeight(ctx);
    return TxSize{vsize, weight};
}

TxSize CalculateMaximumSignedTxSize(const CTransaction &tx, const CWallet *wallet, bool use_max_sig)
{
    std::vector<CTxOut> txouts;
    for (const CTxIn& input : tx.vin) {
        const auto mi = wallet->mapWallet.find(input.prevout.hash);
        // Can not estimate size without knowing the input details
        if (mi == wallet->mapWallet.end()) {
            return TxSize{-1, -1};
        }
        assert(input.prevout.n < mi->second.tx->vout.size());
        txouts.emplace_back(mi->second.tx->vout[input.prevout.n]);
    }
    return CalculateMaximumSignedTxSize(tx, wallet, txouts, use_max_sig);
}

void CWallet::AvailableCoins(std::vector<COutput>& vCoins, const CCoinControl* coinControl, const CAmount& nMinimumAmount, const CAmount& nMaximumAmount, const CAmount& nMinimumSumAmount, const uint64_t nMaximumCount) const
{
    AssertLockHeld(cs_wallet);

    vCoins.clear();
    CAmount nTotal = 0;
    // Either the WALLET_FLAG_AVOID_REUSE flag is not set (in which case we always allow), or we default to avoiding, and only in the case where
    // a coin control object is provided, and has the avoid address reuse flag set to false, do we allow already used addresses
    bool allow_used_addresses = !IsWalletFlagSet(WALLET_FLAG_AVOID_REUSE) || (coinControl && !coinControl->m_avoid_address_reuse);
    const int min_depth = {coinControl ? coinControl->m_min_depth : DEFAULT_MIN_DEPTH};
    const int max_depth = {coinControl ? coinControl->m_max_depth : DEFAULT_MAX_DEPTH};
    const bool only_safe = {coinControl ? !coinControl->m_include_unsafe_inputs : true};

    std::set<uint256> trusted_parents;
    for (const auto& entry : mapWallet)
    {
        const uint256& wtxid = entry.first;
        const CWalletTx& wtx = entry.second;

        if (!chain().checkFinalTx(*wtx.tx)) {
            continue;
        }

        if (wtx.IsImmatureCoinBase())
            continue;

        int nDepth = wtx.GetDepthInMainChain();
        if (nDepth < 0)
            continue;

        // We should not consider coins which aren't at least in our mempool
        // It's possible for these to be conflicted via ancestors which we may never be able to detect
        if (nDepth == 0 && !wtx.InMempool())
            continue;

        bool safeTx = IsTrusted(wtx, trusted_parents);

        // We should not consider coins from transactions that are replacing
        // other transactions.
        //
        // Example: There is a transaction A which is replaced by bumpfee
        // transaction B. In this case, we want to prevent creation of
        // a transaction B' which spends an output of B.
        //
        // Reason: If transaction A were initially confirmed, transactions B
        // and B' would no longer be valid, so the user would have to create
        // a new transaction C to replace B'. However, in the case of a
        // one-block reorg, transactions B' and C might BOTH be accepted,
        // when the user only wanted one of them. Specifically, there could
        // be a 1-block reorg away from the chain where transactions A and C
        // were accepted to another chain where B, B', and C were all
        // accepted.
        if (nDepth == 0 && wtx.mapValue.count("replaces_txid")) {
            safeTx = false;
        }

        // Similarly, we should not consider coins from transactions that
        // have been replaced. In the example above, we would want to prevent
        // creation of a transaction A' spending an output of A, because if
        // transaction B were initially confirmed, conflicting with A and
        // A', we wouldn't want to the user to create a transaction D
        // intending to replace A', but potentially resulting in a scenario
        // where A, A', and D could all be accepted (instead of just B and
        // D, or just A and A' like the user would want).
        if (nDepth == 0 && wtx.mapValue.count("replaced_by_txid")) {
            safeTx = false;
        }

        if (only_safe && !safeTx) {
            continue;
        }

        if (nDepth < min_depth || nDepth > max_depth) {
            continue;
        }

        for (unsigned int i = 0; i < wtx.tx->vout.size(); i++) {
            // Only consider selected coins if add_inputs is false
            if (coinControl && !coinControl->m_add_inputs && !coinControl->IsSelected(COutPoint(entry.first, i))) {
                continue;
            }

            if (wtx.tx->vout[i].nValue < nMinimumAmount || wtx.tx->vout[i].nValue > nMaximumAmount)
                continue;

            if (coinControl && coinControl->HasSelected() && !coinControl->fAllowOtherInputs && !coinControl->IsSelected(COutPoint(entry.first, i)))
                continue;

            if (IsLockedCoin(entry.first, i))
                continue;

            if (IsSpent(wtxid, i))
                continue;

            isminetype mine = IsMine(wtx.tx->vout[i]);

            if (mine == ISMINE_NO) {
                continue;
            }

            if (!allow_used_addresses && IsSpentKey(wtxid, i)) {
                continue;
            }

            std::unique_ptr<SigningProvider> provider = GetSolvingProvider(wtx.tx->vout[i].scriptPubKey);

            bool solvable = provider ? IsSolvable(*provider, wtx.tx->vout[i].scriptPubKey) : false;
            bool spendable = ((mine & ISMINE_SPENDABLE) != ISMINE_NO) || (((mine & ISMINE_WATCH_ONLY) != ISMINE_NO) && (coinControl && coinControl->fAllowWatchOnly && solvable));

            vCoins.push_back(COutput(&wtx, i, nDepth, spendable, solvable, safeTx, (coinControl && coinControl->fAllowWatchOnly)));

            // Checks the sum amount of all UTXO's.
            if (nMinimumSumAmount != MAX_MONEY) {
                nTotal += wtx.tx->vout[i].nValue;

                if (nTotal >= nMinimumSumAmount) {
                    return;
                }
            }

            // Checks the maximum number of UTXO's.
            if (nMaximumCount > 0 && vCoins.size() >= nMaximumCount) {
                return;
            }
        }
    }
}

CAmount CWallet::GetAvailableBalance(const CCoinControl* coinControl) const
{
    LOCK(cs_wallet);

    CAmount balance = 0;
    std::vector<COutput> vCoins;
    AvailableCoins(vCoins, coinControl);
    for (const COutput& out : vCoins) {
        if (out.fSpendable) {
            balance += out.tx->tx->vout[out.i].nValue;
        }
    }
    return balance;
}

const CTxOut& CWallet::FindNonChangeParentOutput(const CTransaction& tx, int output) const
{
    AssertLockHeld(cs_wallet);
    const CTransaction* ptx = &tx;
    int n = output;
    while (IsChange(ptx->vout[n]) && ptx->vin.size() > 0) {
        const COutPoint& prevout = ptx->vin[0].prevout;
        auto it = mapWallet.find(prevout.hash);
        if (it == mapWallet.end() || it->second.tx->vout.size() <= prevout.n ||
            !IsMine(it->second.tx->vout[prevout.n])) {
            break;
        }
        ptx = it->second.tx.get();
        n = prevout.n;
    }
    return ptx->vout[n];
}

std::map<CTxDestination, std::vector<COutput>> CWallet::ListCoins() const
{
    AssertLockHeld(cs_wallet);

    std::map<CTxDestination, std::vector<COutput>> result;
    std::vector<COutput> availableCoins;

    AvailableCoins(availableCoins);

    for (const COutput& coin : availableCoins) {
        CTxDestination address;
        if ((coin.fSpendable || (IsWalletFlagSet(WALLET_FLAG_DISABLE_PRIVATE_KEYS) && coin.fSolvable)) &&
            ExtractDestination(FindNonChangeParentOutput(*coin.tx->tx, coin.i).scriptPubKey, address)) {
            result[address].emplace_back(std::move(coin));
        }
    }

    std::vector<COutPoint> lockedCoins;
    ListLockedCoins(lockedCoins);
    // Include watch-only for LegacyScriptPubKeyMan wallets without private keys
    const bool include_watch_only = GetLegacyScriptPubKeyMan() && IsWalletFlagSet(WALLET_FLAG_DISABLE_PRIVATE_KEYS);
    const isminetype is_mine_filter = include_watch_only ? ISMINE_WATCH_ONLY : ISMINE_SPENDABLE;
    for (const COutPoint& output : lockedCoins) {
        auto it = mapWallet.find(output.hash);
        if (it != mapWallet.end()) {
            int depth = it->second.GetDepthInMainChain();
            if (depth >= 0 && output.n < it->second.tx->vout.size() &&
                IsMine(it->second.tx->vout[output.n]) == is_mine_filter
            ) {
                CTxDestination address;
                if (ExtractDestination(FindNonChangeParentOutput(*it->second.tx, output.n).scriptPubKey, address)) {
                    result[address].emplace_back(
                        &it->second, output.n, depth, true /* spendable */, true /* solvable */, false /* safe */);
                }
            }
        }
    }

    return result;
}

std::vector<OutputGroup> CWallet::GroupOutputs(const std::vector<COutput>& outputs, const CoinSelectionParams& coin_sel_params, const CoinEligibilityFilter& filter, bool positive_only) const
{
    std::vector<OutputGroup> groups_out;

    if (!coin_sel_params.m_avoid_partial_spends) {
        // Allowing partial spends  means no grouping. Each COutput gets its own OutputGroup.
        for (const COutput& output : outputs) {
            // Skip outputs we cannot spend
            if (!output.fSpendable) continue;

            size_t ancestors, descendants;
            chain().getTransactionAncestry(output.tx->GetHash(), ancestors, descendants);
            CInputCoin input_coin = output.GetInputCoin();

            // Make an OutputGroup containing just this output
            OutputGroup group{coin_sel_params};
            group.Insert(input_coin, output.nDepth, output.tx->IsFromMe(ISMINE_ALL), ancestors, descendants, positive_only);

            // Check the OutputGroup's eligibility. Only add the eligible ones.
            if (positive_only && group.GetSelectionAmount() <= 0) continue;
            if (group.m_outputs.size() > 0 && group.EligibleForSpending(filter)) groups_out.push_back(group);
        }
        return groups_out;
    }

    // We want to combine COutputs that have the same scriptPubKey into single OutputGroups
    // except when there are more than OUTPUT_GROUP_MAX_ENTRIES COutputs grouped in an OutputGroup.
    // To do this, we maintain a map where the key is the scriptPubKey and the value is a vector of OutputGroups.
    // For each COutput, we check if the scriptPubKey is in the map, and if it is, the COutput's CInputCoin is added
    // to the last OutputGroup in the vector for the scriptPubKey. When the last OutputGroup has
    // OUTPUT_GROUP_MAX_ENTRIES CInputCoins, a new OutputGroup is added to the end of the vector.
    std::map<CScript, std::vector<OutputGroup>> spk_to_groups_map;
    for (const auto& output : outputs) {
        // Skip outputs we cannot spend
        if (!output.fSpendable) continue;

        size_t ancestors, descendants;
        chain().getTransactionAncestry(output.tx->GetHash(), ancestors, descendants);
        CInputCoin input_coin = output.GetInputCoin();
        CScript spk = input_coin.txout.scriptPubKey;

        std::vector<OutputGroup>& groups = spk_to_groups_map[spk];

        if (groups.size() == 0) {
            // No OutputGroups for this scriptPubKey yet, add one
            groups.emplace_back(coin_sel_params);
        }

        // Get the last OutputGroup in the vector so that we can add the CInputCoin to it
        // A pointer is used here so that group can be reassigned later if it is full.
        OutputGroup* group = &groups.back();

        // Check if this OutputGroup is full. We limit to OUTPUT_GROUP_MAX_ENTRIES when using -avoidpartialspends
        // to avoid surprising users with very high fees.
        if (group->m_outputs.size() >= OUTPUT_GROUP_MAX_ENTRIES) {
            // The last output group is full, add a new group to the vector and use that group for the insertion
            groups.emplace_back(coin_sel_params);
            group = &groups.back();
        }

        // Add the input_coin to group
        group->Insert(input_coin, output.nDepth, output.tx->IsFromMe(ISMINE_ALL), ancestors, descendants, positive_only);
    }

    // Now we go through the entire map and pull out the OutputGroups
    for (const auto& spk_and_groups_pair: spk_to_groups_map) {
        const std::vector<OutputGroup>& groups_per_spk= spk_and_groups_pair.second;

        // Go through the vector backwards. This allows for the first item we deal with being the partial group.
        for (auto group_it = groups_per_spk.rbegin(); group_it != groups_per_spk.rend(); group_it++) {
            const OutputGroup& group = *group_it;

            // Don't include partial groups if there are full groups too and we don't want partial groups
            if (group_it == groups_per_spk.rbegin() && groups_per_spk.size() > 1 && !filter.m_include_partial_groups) {
                continue;
            }

            // Check the OutputGroup's eligibility. Only add the eligible ones.
            if (positive_only && group.GetSelectionAmount() <= 0) continue;
            if (group.m_outputs.size() > 0 && group.EligibleForSpending(filter)) groups_out.push_back(group);
        }
    }

    return groups_out;
}

bool CWallet::AttemptSelection(const CAmount& nTargetValue, const CoinEligibilityFilter& eligibility_filter, std::vector<COutput> coins,
                                 std::set<CInputCoin>& setCoinsRet, CAmount& nValueRet, const CoinSelectionParams& coin_selection_params) const
{
    setCoinsRet.clear();
    nValueRet = 0;

    // Note that unlike KnapsackSolver, we do not include the fee for creating a change output as BnB will not create a change output.
    std::vector<OutputGroup> positive_groups = GroupOutputs(coins, coin_selection_params, eligibility_filter, true /* positive_only */);
    if (SelectCoinsBnB(positive_groups, nTargetValue, coin_selection_params.m_cost_of_change, setCoinsRet, nValueRet)) {
        return true;
    }
    // The knapsack solver has some legacy behavior where it will spend dust outputs. We retain this behavior, so don't filter for positive only here.
    std::vector<OutputGroup> all_groups = GroupOutputs(coins, coin_selection_params, eligibility_filter, false /* positive_only */);
    // While nTargetValue includes the transaction fees for non-input things, it does not include the fee for creating a change output.
    // So we need to include that for KnapsackSolver as well, as we are expecting to create a change output.
    return KnapsackSolver(nTargetValue + coin_selection_params.m_change_fee, all_groups, setCoinsRet, nValueRet);
}

bool CWallet::SelectCoins(const std::vector<COutput>& vAvailableCoins, const CAmount& nTargetValue, std::set<CInputCoin>& setCoinsRet, CAmount& nValueRet, const CCoinControl& coin_control, CoinSelectionParams& coin_selection_params) const
{
    std::vector<COutput> vCoins(vAvailableCoins);
    CAmount value_to_select = nTargetValue;

    // coin control -> return all selected outputs (we want all selected to go into the transaction for sure)
    if (coin_control.HasSelected() && !coin_control.fAllowOtherInputs)
    {
        for (const COutput& out : vCoins)
        {
            if (!out.fSpendable)
                 continue;
            nValueRet += out.tx->tx->vout[out.i].nValue;
            setCoinsRet.insert(out.GetInputCoin());
        }
        return (nValueRet >= nTargetValue);
    }

    // calculate value from preset inputs and store them
    std::set<CInputCoin> setPresetCoins;
    CAmount nValueFromPresetInputs = 0;

    std::vector<COutPoint> vPresetInputs;
    coin_control.ListSelected(vPresetInputs);
    for (const COutPoint& outpoint : vPresetInputs)
    {
        std::map<uint256, CWalletTx>::const_iterator it = mapWallet.find(outpoint.hash);
        if (it != mapWallet.end())
        {
            const CWalletTx& wtx = it->second;
            // Clearly invalid input, fail
            if (wtx.tx->vout.size() <= outpoint.n) {
                return false;
            }
            // Just to calculate the marginal byte size
            CInputCoin coin(wtx.tx, outpoint.n, wtx.GetSpendSize(outpoint.n, false));
            nValueFromPresetInputs += coin.txout.nValue;
            if (coin.m_input_bytes <= 0) {
                return false; // Not solvable, can't estimate size for fee
            }
            coin.effective_value = coin.txout.nValue - coin_selection_params.m_effective_feerate.GetFee(coin.m_input_bytes);
            if (coin_selection_params.m_subtract_fee_outputs) {
                value_to_select -= coin.txout.nValue;
            } else {
                value_to_select -= coin.effective_value;
            }
            setPresetCoins.insert(coin);
        } else {
            return false; // TODO: Allow non-wallet inputs
        }
    }

    // remove preset inputs from vCoins so that Coin Selection doesn't pick them.
    for (std::vector<COutput>::iterator it = vCoins.begin(); it != vCoins.end() && coin_control.HasSelected();)
    {
        if (setPresetCoins.count(it->GetInputCoin()))
            it = vCoins.erase(it);
        else
            ++it;
    }

    unsigned int limit_ancestor_count = 0;
    unsigned int limit_descendant_count = 0;
    chain().getPackageLimits(limit_ancestor_count, limit_descendant_count);
    const size_t max_ancestors = (size_t)std::max<int64_t>(1, limit_ancestor_count);
    const size_t max_descendants = (size_t)std::max<int64_t>(1, limit_descendant_count);
    const bool fRejectLongChains = gArgs.GetBoolArg("-walletrejectlongchains", DEFAULT_WALLET_REJECT_LONG_CHAINS);

    // form groups from remaining coins; note that preset coins will not
    // automatically have their associated (same address) coins included
    if (coin_control.m_avoid_partial_spends && vCoins.size() > OUTPUT_GROUP_MAX_ENTRIES) {
        // Cases where we have 101+ outputs all pointing to the same destination may result in
        // privacy leaks as they will potentially be deterministically sorted. We solve that by
        // explicitly shuffling the outputs before processing
        Shuffle(vCoins.begin(), vCoins.end(), FastRandomContext());
    }

    // Coin Selection attempts to select inputs from a pool of eligible UTXOs to fund the
    // transaction at a target feerate. If an attempt fails, more attempts may be made using a more
    // permissive CoinEligibilityFilter.
    const bool res = [&] {
        // Pre-selected inputs already cover the target amount.
        if (value_to_select <= 0) return true;

        // If possible, fund the transaction with confirmed UTXOs only. Prefer at least six
        // confirmations on outputs received from other wallets and only spend confirmed change.
        if (AttemptSelection(value_to_select, CoinEligibilityFilter(1, 6, 0), vCoins, setCoinsRet, nValueRet, coin_selection_params)) return true;
        if (AttemptSelection(value_to_select, CoinEligibilityFilter(1, 1, 0), vCoins, setCoinsRet, nValueRet, coin_selection_params)) return true;

        // Fall back to using zero confirmation change (but with as few ancestors in the mempool as
        // possible) if we cannot fund the transaction otherwise.
        if (m_spend_zero_conf_change) {
            if (AttemptSelection(value_to_select, CoinEligibilityFilter(0, 1, 2), vCoins, setCoinsRet, nValueRet, coin_selection_params)) return true;
            if (AttemptSelection(value_to_select, CoinEligibilityFilter(0, 1, std::min((size_t)4, max_ancestors/3), std::min((size_t)4, max_descendants/3)),
                                   vCoins, setCoinsRet, nValueRet, coin_selection_params)) {
                return true;
            }
            if (AttemptSelection(value_to_select, CoinEligibilityFilter(0, 1, max_ancestors/2, max_descendants/2),
                                   vCoins, setCoinsRet, nValueRet, coin_selection_params)) {
                return true;
            }
            // If partial groups are allowed, relax the requirement of spending OutputGroups (groups
            // of UTXOs sent to the same address, which are obviously controlled by a single wallet)
            // in their entirety.
            if (AttemptSelection(value_to_select, CoinEligibilityFilter(0, 1, max_ancestors-1, max_descendants-1, true /* include_partial_groups */),
                                   vCoins, setCoinsRet, nValueRet, coin_selection_params)) {
                return true;
            }
            // Try with unsafe inputs if they are allowed. This may spend unconfirmed outputs
            // received from other wallets.
            if (coin_control.m_include_unsafe_inputs
                && AttemptSelection(value_to_select,
                    CoinEligibilityFilter(0 /* conf_mine */, 0 /* conf_theirs */, max_ancestors-1, max_descendants-1, true /* include_partial_groups */),
                    vCoins, setCoinsRet, nValueRet, coin_selection_params)) {
                return true;
            }
            // Try with unlimited ancestors/descendants. The transaction will still need to meet
            // mempool ancestor/descendant policy to be accepted to mempool and broadcasted, but
            // OutputGroups use heuristics that may overestimate ancestor/descendant counts.
            if (!fRejectLongChains && AttemptSelection(value_to_select,
                                      CoinEligibilityFilter(0, 1, std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::max(), true /* include_partial_groups */),
                                      vCoins, setCoinsRet, nValueRet, coin_selection_params)) {
                return true;
            }
        }
        // Coin Selection failed.
        return false;
    }();

    // AttemptSelection clears setCoinsRet, so add the preset inputs from coin_control to the coinset
    util::insert(setCoinsRet, setPresetCoins);

    // add preset inputs to the total value selected
    nValueRet += nValueFromPresetInputs;

    return res;
}

static bool IsCurrentForAntiFeeSniping(interfaces::Chain& chain, const uint256& block_hash)
{
    if (chain.isInitialBlockDownload()) {
        return false;
    }
    constexpr int64_t MAX_ANTI_FEE_SNIPING_TIP_AGE = 8 * 60 * 60; // in seconds
    int64_t block_time;
    CHECK_NONFATAL(chain.findBlock(block_hash, FoundBlock().time(block_time)));
    if (block_time < (GetTime() - MAX_ANTI_FEE_SNIPING_TIP_AGE)) {
        return false;
    }
    return true;
}

/**
 * Return a height-based locktime for new transactions (uses the height of the
 * current chain tip unless we are not synced with the current chain
 */
static uint32_t GetLocktimeForNewTransaction(interfaces::Chain& chain, const uint256& block_hash, int block_height)
{
    uint32_t locktime;
    // Discourage fee sniping.
    //
    // For a large miner the value of the transactions in the best block and
    // the mempool can exceed the cost of deliberately attempting to mine two
    // blocks to orphan the current best block. By setting nLockTime such that
    // only the next block can include the transaction, we discourage this
    // practice as the height restricted and limited blocksize gives miners
    // considering fee sniping fewer options for pulling off this attack.
    //
    // A simple way to think about this is from the wallet's point of view we
    // always want the blockchain to move forward. By setting nLockTime this
    // way we're basically making the statement that we only want this
    // transaction to appear in the next block; we don't want to potentially
    // encourage reorgs by allowing transactions to appear at lower heights
    // than the next block in forks of the best chain.
    //
    // Of course, the subsidy is high enough, and transaction volume low
    // enough, that fee sniping isn't a problem yet, but by implementing a fix
    // now we ensure code won't be written that makes assumptions about
    // nLockTime that preclude a fix later.
    if (IsCurrentForAntiFeeSniping(chain, block_hash)) {
        locktime = block_height;

        // Secondly occasionally randomly pick a nLockTime even further back, so
        // that transactions that are delayed after signing for whatever reason,
        // e.g. high-latency mix networks and some CoinJoin implementations, have
        // better privacy.
        if (GetRandInt(10) == 0)
            locktime = std::max(0, (int)locktime - GetRandInt(100));
    } else {
        // If our chain is lagging behind, we can't discourage fee sniping nor help
        // the privacy of high-latency transactions. To avoid leaking a potentially
        // unique "nLockTime fingerprint", set nLockTime to a constant.
        locktime = 0;
    }
    assert(locktime < LOCKTIME_THRESHOLD);
    return locktime;
}

bool CWallet::CreateTransactionInternal(
        const std::vector<CRecipient>& vecSend,
        CTransactionRef& tx,
        CAmount& nFeeRet,
        int& nChangePosInOut,
        bilingual_str& error,
        const CCoinControl& coin_control,
        FeeCalculation& fee_calc_out,
        bool sign)
{
    AssertLockHeld(cs_wallet);

    CMutableTransaction txNew; // The resulting transaction that we make
    txNew.nLockTime = GetLocktimeForNewTransaction(chain(), GetLastBlockHash(), GetLastBlockHeight());

    CoinSelectionParams coin_selection_params; // Parameters for coin selection, init with dummy
    coin_selection_params.m_avoid_partial_spends = coin_control.m_avoid_partial_spends;

    CAmount recipients_sum = 0;
    const OutputType change_type = TransactionChangeType(coin_control.m_change_type ? *coin_control.m_change_type : m_default_change_type, vecSend);
    ReserveDestination reservedest(this, change_type);
    unsigned int outputs_to_subtract_fee_from = 0; // The number of outputs which we are subtracting the fee from
    for (const auto& recipient : vecSend) {
        recipients_sum += recipient.nAmount;

        if (recipient.fSubtractFeeFromAmount) {
            outputs_to_subtract_fee_from++;
            coin_selection_params.m_subtract_fee_outputs = true;
        }
    }

    // Create change script that will be used if we need change
    // TODO: pass in scriptChange instead of reservedest so
    // change transaction isn't always pay-to-bitcoin-address
    CScript scriptChange;

    // coin control: send change to custom address
    if (!std::get_if<CNoDestination>(&coin_control.destChange)) {
        scriptChange = GetScriptForDestination(coin_control.destChange);
    } else { // no coin control: send change to newly generated address
        // Note: We use a new key here to keep it from being obvious which side is the change.
        //  The drawback is that by not reusing a previous key, the change may be lost if a
        //  backup is restored, if the backup doesn't have the new private key for the change.
        //  If we reused the old key, it would be possible to add code to look for and
        //  rediscover unknown transactions that were written with keys of ours to recover
        //  post-backup change.

        // Reserve a new key pair from key pool. If it fails, provide a dummy
        // destination in case we don't need change.
        CTxDestination dest;
        std::string dest_err;
        if (!reservedest.GetReservedDestination(dest, true, dest_err)) {
            error = strprintf(_("Transaction needs a change address, but we can't generate it. %s"), dest_err);
        }
        scriptChange = GetScriptForDestination(dest);
        // A valid destination implies a change script (and
        // vice-versa). An empty change script will abort later, if the
        // change keypool ran out, but change is required.
        CHECK_NONFATAL(IsValidDestination(dest) != scriptChange.empty());
    }
    CTxOut change_prototype_txout(0, scriptChange);
    coin_selection_params.change_output_size = GetSerializeSize(change_prototype_txout);

    // Get size of spending the change output
    int change_spend_size = CalculateMaximumSignedInputSize(change_prototype_txout, this);
    // If the wallet doesn't know how to sign change output, assume p2sh-p2wpkh
    // as lower-bound to allow BnB to do it's thing
    if (change_spend_size == -1) {
        coin_selection_params.change_spend_size = DUMMY_NESTED_P2WPKH_INPUT_SIZE;
    } else {
        coin_selection_params.change_spend_size = (size_t)change_spend_size;
    }

    // Set discard feerate
    coin_selection_params.m_discard_feerate = GetDiscardRate(*this);

    // Get the fee rate to use effective values in coin selection
    FeeCalculation feeCalc;
    coin_selection_params.m_effective_feerate = GetMinimumFeeRate(*this, coin_control, &feeCalc);
    // Do not, ever, assume that it's fine to change the fee rate if the user has explicitly
    // provided one
    if (coin_control.m_feerate && coin_selection_params.m_effective_feerate > *coin_control.m_feerate) {
        error = strprintf(_("Fee rate (%s) is lower than the minimum fee rate setting (%s)"), coin_control.m_feerate->ToString(FeeEstimateMode::SAT_VB), coin_selection_params.m_effective_feerate.ToString(FeeEstimateMode::SAT_VB));
        return false;
    }
    if (feeCalc.reason == FeeReason::FALLBACK && !m_allow_fallback_fee) {
        // eventually allow a fallback fee
        error = _("Fee estimation failed. Fallbackfee is disabled. Wait a few blocks or enable -fallbackfee.");
        return false;
    }

    // Get long term estimate
    CCoinControl cc_temp;
    cc_temp.m_confirm_target = chain().estimateMaxBlocks();
    coin_selection_params.m_long_term_feerate = GetMinimumFeeRate(*this, cc_temp, nullptr);

    // Calculate the cost of change
    // Cost of change is the cost of creating the change output + cost of spending the change output in the future.
    // For creating the change output now, we use the effective feerate.
    // For spending the change output in the future, we use the discard feerate for now.
    // So cost of change = (change output size * effective feerate) + (size of spending change output * discard feerate)
    coin_selection_params.m_change_fee = coin_selection_params.m_effective_feerate.GetFee(coin_selection_params.change_output_size);
    coin_selection_params.m_cost_of_change = coin_selection_params.m_discard_feerate.GetFee(coin_selection_params.change_spend_size) + coin_selection_params.m_change_fee;

    // vouts to the payees
    if (!coin_selection_params.m_subtract_fee_outputs) {
        coin_selection_params.tx_noinputs_size = 11; // Static vsize overhead + outputs vsize. 4 nVersion, 4 nLocktime, 1 input count, 1 output count, 1 witness overhead (dummy, flag, stack size)
    }
    for (const auto& recipient : vecSend)
    {
        CTxOut txout(recipient.nAmount, recipient.scriptPubKey);

        // Include the fee cost for outputs.
        if (!coin_selection_params.m_subtract_fee_outputs) {
            coin_selection_params.tx_noinputs_size += ::GetSerializeSize(txout, PROTOCOL_VERSION);
        }

        if (IsDust(txout, chain().relayDustFee()))
        {
            error = _("Transaction amount too small");
            return false;
        }
        txNew.vout.push_back(txout);
    }

    // Include the fees for things that aren't inputs, excluding the change output
    const CAmount not_input_fees = coin_selection_params.m_effective_feerate.GetFee(coin_selection_params.tx_noinputs_size);
    CAmount selection_target = recipients_sum + not_input_fees;

    // Get available coins
    std::vector<COutput> vAvailableCoins;
    AvailableCoins(vAvailableCoins, &coin_control, 1, MAX_MONEY, MAX_MONEY, 0);

    // Choose coins to use
    CAmount inputs_sum = 0;
    std::set<CInputCoin> setCoins;
    if (!SelectCoins(vAvailableCoins, /* nTargetValue */ selection_target, setCoins, inputs_sum, coin_control, coin_selection_params))
    {
        error = _("Insufficient funds");
        return false;
    }

    // Always make a change output
    // We will reduce the fee from this change output later, and remove the output if it is too small.
    const CAmount change_and_fee = inputs_sum - recipients_sum;
    assert(change_and_fee >= 0);
    CTxOut newTxOut(change_and_fee, scriptChange);

    if (nChangePosInOut == -1)
    {
        // Insert change txn at random position:
        nChangePosInOut = GetRandInt(txNew.vout.size()+1);
    }
    else if ((unsigned int)nChangePosInOut > txNew.vout.size())
    {
        error = _("Change index out of range");
        return false;
    }

    assert(nChangePosInOut != -1);
    auto change_position = txNew.vout.insert(txNew.vout.begin() + nChangePosInOut, newTxOut);

    // Shuffle selected coins and fill in final vin
    std::vector<CInputCoin> selected_coins(setCoins.begin(), setCoins.end());
    Shuffle(selected_coins.begin(), selected_coins.end(), FastRandomContext());

    // Note how the sequence number is set to non-maxint so that
    // the nLockTime set above actually works.
    //
    // BIP125 defines opt-in RBF as any nSequence < maxint-1, so
    // we use the highest possible value in that range (maxint-2)
    // to avoid conflicting with other possible uses of nSequence,
    // and in the spirit of "smallest possible change from prior
    // behavior."
    const uint32_t nSequence = coin_control.m_signal_bip125_rbf.value_or(m_signal_rbf) ? MAX_BIP125_RBF_SEQUENCE : (CTxIn::SEQUENCE_FINAL - 1);
    for (const auto& coin : selected_coins) {
        txNew.vin.push_back(CTxIn(coin.outpoint, CScript(), nSequence));
    }

    // Calculate the transaction fee
    TxSize tx_sizes = CalculateMaximumSignedTxSize(CTransaction(txNew), this, coin_control.fAllowWatchOnly);
    int nBytes = tx_sizes.vsize;
    if (nBytes < 0) {
        error = _("Signing transaction failed");
        return false;
    }
    nFeeRet = coin_selection_params.m_effective_feerate.GetFee(nBytes);

    // Subtract fee from the change output if not subtracting it from recipient outputs
    CAmount fee_needed = nFeeRet;
    if (!coin_selection_params.m_subtract_fee_outputs) {
        change_position->nValue -= fee_needed;
    }

    // We want to drop the change to fees if:
    // 1. The change output would be dust
    // 2. The change is within the (almost) exact match window, i.e. it is less than or equal to the cost of the change output (cost_of_change)
    CAmount change_amount = change_position->nValue;
    if (IsDust(*change_position, coin_selection_params.m_discard_feerate) || change_amount <= coin_selection_params.m_cost_of_change)
    {
        nChangePosInOut = -1;
        change_amount = 0;
        txNew.vout.erase(change_position);

        // Because we have dropped this change, the tx size and required fee will be different, so let's recalculate those
        tx_sizes = CalculateMaximumSignedTxSize(CTransaction(txNew), this, coin_control.fAllowWatchOnly);
        nBytes = tx_sizes.vsize;
        fee_needed = coin_selection_params.m_effective_feerate.GetFee(nBytes);
    }

    // The only time that fee_needed should be less than the amount available for fees (in change_and_fee - change_amount) is when
    // we are subtracting the fee from the outputs. If this occurs at any other time, it is a bug.
    assert(coin_selection_params.m_subtract_fee_outputs || fee_needed <= change_and_fee - change_amount);

    // Update nFeeRet in case fee_needed changed due to dropping the change output
    if (fee_needed <= change_and_fee - change_amount) {
        nFeeRet = change_and_fee - change_amount;
    }

    // Reduce output values for subtractFeeFromAmount
    if (coin_selection_params.m_subtract_fee_outputs) {
        CAmount to_reduce = fee_needed + change_amount - change_and_fee;
        int i = 0;
        bool fFirst = true;
        for (const auto& recipient : vecSend)
        {
            if (i == nChangePosInOut) {
                ++i;
            }
            CTxOut& txout = txNew.vout[i];

            if (recipient.fSubtractFeeFromAmount)
            {
                txout.nValue -= to_reduce / outputs_to_subtract_fee_from; // Subtract fee equally from each selected recipient

                if (fFirst) // first receiver pays the remainder not divisible by output count
                {
                    fFirst = false;
                    txout.nValue -= to_reduce % outputs_to_subtract_fee_from;
                }

                // Error if this output is reduced to be below dust
                if (IsDust(txout, chain().relayDustFee())) {
                    if (txout.nValue < 0) {
                        error = _("The transaction amount is too small to pay the fee");
                    } else {
                        error = _("The transaction amount is too small to send after the fee has been deducted");
                    }
                    return false;
                }
            }
            ++i;
        }
        nFeeRet = fee_needed;
    }

    // Give up if change keypool ran out and change is required
    if (scriptChange.empty() && nChangePosInOut != -1) {
        return false;
    }

    if (sign && !SignTransaction(txNew)) {
        error = _("Signing transaction failed");
        return false;
    }

    // Return the constructed transaction data.
    tx = MakeTransactionRef(std::move(txNew));

    // Limit size
    if ((sign && GetTransactionWeight(*tx) > MAX_STANDARD_TX_WEIGHT) ||
        (!sign && tx_sizes.weight > MAX_STANDARD_TX_WEIGHT))
    {
        error = _("Transaction too large");
        return false;
    }

    if (nFeeRet > m_default_max_tx_fee) {
        error = TransactionErrorString(TransactionError::MAX_FEE_EXCEEDED);
        return false;
    }

    if (gArgs.GetBoolArg("-walletrejectlongchains", DEFAULT_WALLET_REJECT_LONG_CHAINS)) {
        // Lastly, ensure this tx will pass the mempool's chain limits
        if (!chain().checkChainLimits(tx)) {
            error = _("Transaction has too long of a mempool chain");
            return false;
        }
    }

    // Before we return success, we assume any change key will be used to prevent
    // accidental re-use.
    reservedest.KeepDestination();
    fee_calc_out = feeCalc;

    WalletLogPrintf("Fee Calculation: Fee:%d Bytes:%u Tgt:%d (requested %d) Reason:\"%s\" Decay %.5f: Estimation: (%g - %g) %.2f%% %.1f/(%.1f %d mem %.1f out) Fail: (%g - %g) %.2f%% %.1f/(%.1f %d mem %.1f out)\n",
              nFeeRet, nBytes, feeCalc.returnedTarget, feeCalc.desiredTarget, StringForFeeReason(feeCalc.reason), feeCalc.est.decay,
              feeCalc.est.pass.start, feeCalc.est.pass.end,
              (feeCalc.est.pass.totalConfirmed + feeCalc.est.pass.inMempool + feeCalc.est.pass.leftMempool) > 0.0 ? 100 * feeCalc.est.pass.withinTarget / (feeCalc.est.pass.totalConfirmed + feeCalc.est.pass.inMempool + feeCalc.est.pass.leftMempool) : 0.0,
              feeCalc.est.pass.withinTarget, feeCalc.est.pass.totalConfirmed, feeCalc.est.pass.inMempool, feeCalc.est.pass.leftMempool,
              feeCalc.est.fail.start, feeCalc.est.fail.end,
              (feeCalc.est.fail.totalConfirmed + feeCalc.est.fail.inMempool + feeCalc.est.fail.leftMempool) > 0.0 ? 100 * feeCalc.est.fail.withinTarget / (feeCalc.est.fail.totalConfirmed + feeCalc.est.fail.inMempool + feeCalc.est.fail.leftMempool) : 0.0,
              feeCalc.est.fail.withinTarget, feeCalc.est.fail.totalConfirmed, feeCalc.est.fail.inMempool, feeCalc.est.fail.leftMempool);
    return true;
}

bool CWallet::CreateTransaction(
        const std::vector<CRecipient>& vecSend,
        CTransactionRef& tx,
        CAmount& nFeeRet,
        int& nChangePosInOut,
        bilingual_str& error,
        const CCoinControl& coin_control,
        FeeCalculation& fee_calc_out,
        bool sign)
{
    if (vecSend.empty()) {
        error = _("Transaction must have at least one recipient");
        return false;
    }

    if (std::any_of(vecSend.cbegin(), vecSend.cend(), [](const auto& recipient){ return recipient.nAmount < 0; })) {
        error = _("Transaction amounts must not be negative");
        return false;
    }

    LOCK(cs_wallet);

    int nChangePosIn = nChangePosInOut;
    Assert(!tx); // tx is an out-param. TODO change the return type from bool to tx (or nullptr)
    bool res = CreateTransactionInternal(vecSend, tx, nFeeRet, nChangePosInOut, error, coin_control, fee_calc_out, sign);
    // try with avoidpartialspends unless it's enabled already
    if (res && nFeeRet > 0 /* 0 means non-functional fee rate estimation */ && m_max_aps_fee > -1 && !coin_control.m_avoid_partial_spends) {
        CCoinControl tmp_cc = coin_control;
        tmp_cc.m_avoid_partial_spends = true;
        CAmount nFeeRet2;
        CTransactionRef tx2;
        int nChangePosInOut2 = nChangePosIn;
        bilingual_str error2; // fired and forgotten; if an error occurs, we discard the results
        if (CreateTransactionInternal(vecSend, tx2, nFeeRet2, nChangePosInOut2, error2, tmp_cc, fee_calc_out, sign)) {
            // if fee of this alternative one is within the range of the max fee, we use this one
            const bool use_aps = nFeeRet2 <= nFeeRet + m_max_aps_fee;
            WalletLogPrintf("Fee non-grouped = %lld, grouped = %lld, using %s\n", nFeeRet, nFeeRet2, use_aps ? "grouped" : "non-grouped");
            if (use_aps) {
                tx = tx2;
                nFeeRet = nFeeRet2;
                nChangePosInOut = nChangePosInOut2;
            }
        }
    }
    return res;
}

bool CWallet::FundTransaction(CMutableTransaction& tx, CAmount& nFeeRet, int& nChangePosInOut, bilingual_str& error, bool lockUnspents, const std::set<int>& setSubtractFeeFromOutputs, CCoinControl coinControl)
{
    std::vector<CRecipient> vecSend;

    // Turn the txout set into a CRecipient vector.
    for (size_t idx = 0; idx < tx.vout.size(); idx++) {
        const CTxOut& txOut = tx.vout[idx];
        CRecipient recipient = {txOut.scriptPubKey, txOut.nValue, setSubtractFeeFromOutputs.count(idx) == 1};
        vecSend.push_back(recipient);
    }

    coinControl.fAllowOtherInputs = true;

    for (const CTxIn& txin : tx.vin) {
        coinControl.Select(txin.prevout);
    }

    // Acquire the locks to prevent races to the new locked unspents between the
    // CreateTransaction call and LockCoin calls (when lockUnspents is true).
    LOCK(cs_wallet);

    CTransactionRef tx_new;
    FeeCalculation fee_calc_out;
    if (!CreateTransaction(vecSend, tx_new, nFeeRet, nChangePosInOut, error, coinControl, fee_calc_out, false)) {
        return false;
    }

    if (nChangePosInOut != -1) {
        tx.vout.insert(tx.vout.begin() + nChangePosInOut, tx_new->vout[nChangePosInOut]);
    }

    // Copy output sizes from new transaction; they may have had the fee
    // subtracted from them.
    for (unsigned int idx = 0; idx < tx.vout.size(); idx++) {
        tx.vout[idx].nValue = tx_new->vout[idx].nValue;
    }

    // Add new txins while keeping original txin scriptSig/order.
    for (const CTxIn& txin : tx_new->vin) {
        if (!coinControl.IsSelected(txin.prevout)) {
            tx.vin.push_back(txin);

        }
        if (lockUnspents) {
            LockCoin(txin.prevout);
        }

    }

    return true;
}