aboutsummaryrefslogtreecommitdiff
path: root/src/wallet/crypter.cpp
blob: 836c15b82c344913d7d5d7d4adca415efc6cb3d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include "crypter.h"

#include "crypto/aes.h"
#include "crypto/sha512.h"
#include "script/script.h"
#include "script/standard.h"
#include "util.h"

#include <string>
#include <vector>
#include <boost/foreach.hpp>

int CCrypter::BytesToKeySHA512AES(const std::vector<unsigned char>& chSalt, const SecureString& strKeyData, int count, unsigned char *key,unsigned char *iv) const
{
    // This mimics the behavior of openssl's EVP_BytesToKey with an aes256cbc
    // cipher and sha512 message digest. Because sha512's output size (64b) is
    // greater than the aes256 block size (16b) + aes256 key size (32b),
    // there's no need to process more than once (D_0).

    if(!count || !key || !iv)
        return 0;

    unsigned char buf[CSHA512::OUTPUT_SIZE];
    CSHA512 di;

    di.Write((const unsigned char*)strKeyData.c_str(), strKeyData.size());
    if(chSalt.size())
        di.Write(&chSalt[0], chSalt.size());
    di.Finalize(buf);

    for(int i = 0; i != count - 1; i++)
        di.Reset().Write(buf, sizeof(buf)).Finalize(buf);

    memcpy(key, buf, WALLET_CRYPTO_KEY_SIZE);
    memcpy(iv, buf + WALLET_CRYPTO_KEY_SIZE, WALLET_CRYPTO_IV_SIZE);
    memory_cleanse(buf, sizeof(buf));
    return WALLET_CRYPTO_KEY_SIZE;
}

bool CCrypter::SetKeyFromPassphrase(const SecureString& strKeyData, const std::vector<unsigned char>& chSalt, const unsigned int nRounds, const unsigned int nDerivationMethod)
{
    if (nRounds < 1 || chSalt.size() != WALLET_CRYPTO_SALT_SIZE)
        return false;

    int i = 0;
    if (nDerivationMethod == 0)
        i = BytesToKeySHA512AES(chSalt, strKeyData, nRounds, vchKey.data(), vchIV.data());

    if (i != (int)WALLET_CRYPTO_KEY_SIZE)
    {
        memory_cleanse(vchKey.data(), vchKey.size());
        memory_cleanse(vchIV.data(), vchIV.size());
        return false;
    }

    fKeySet = true;
    return true;
}

bool CCrypter::SetKey(const CKeyingMaterial& chNewKey, const std::vector<unsigned char>& chNewIV)
{
    if (chNewKey.size() != WALLET_CRYPTO_KEY_SIZE || chNewIV.size() != WALLET_CRYPTO_IV_SIZE)
        return false;

    memcpy(vchKey.data(), chNewKey.data(), chNewKey.size());
    memcpy(vchIV.data(), chNewIV.data(), chNewIV.size());

    fKeySet = true;
    return true;
}

bool CCrypter::Encrypt(const CKeyingMaterial& vchPlaintext, std::vector<unsigned char> &vchCiphertext) const
{
    if (!fKeySet)
        return false;

    // max ciphertext len for a n bytes of plaintext is
    // n + AES_BLOCKSIZE bytes
    vchCiphertext.resize(vchPlaintext.size() + AES_BLOCKSIZE);

    AES256CBCEncrypt enc(vchKey.data(), vchIV.data(), true);
    size_t nLen = enc.Encrypt(&vchPlaintext[0], vchPlaintext.size(), &vchCiphertext[0]);
    if(nLen < vchPlaintext.size())
        return false;
    vchCiphertext.resize(nLen);

    return true;
}

bool CCrypter::Decrypt(const std::vector<unsigned char>& vchCiphertext, CKeyingMaterial& vchPlaintext) const
{
    if (!fKeySet)
        return false;

    // plaintext will always be equal to or lesser than length of ciphertext
    int nLen = vchCiphertext.size();

    vchPlaintext.resize(nLen);

    AES256CBCDecrypt dec(vchKey.data(), vchIV.data(), true);
    nLen = dec.Decrypt(&vchCiphertext[0], vchCiphertext.size(), &vchPlaintext[0]);
    if(nLen == 0)
        return false;
    vchPlaintext.resize(nLen);
    return true;
}


static bool EncryptSecret(const CKeyingMaterial& vMasterKey, const CKeyingMaterial &vchPlaintext, const uint256& nIV, std::vector<unsigned char> &vchCiphertext)
{
    CCrypter cKeyCrypter;
    std::vector<unsigned char> chIV(WALLET_CRYPTO_IV_SIZE);
    memcpy(&chIV[0], &nIV, WALLET_CRYPTO_IV_SIZE);
    if(!cKeyCrypter.SetKey(vMasterKey, chIV))
        return false;
    return cKeyCrypter.Encrypt(*((const CKeyingMaterial*)&vchPlaintext), vchCiphertext);
}

static bool DecryptSecret(const CKeyingMaterial& vMasterKey, const std::vector<unsigned char>& vchCiphertext, const uint256& nIV, CKeyingMaterial& vchPlaintext)
{
    CCrypter cKeyCrypter;
    std::vector<unsigned char> chIV(WALLET_CRYPTO_IV_SIZE);
    memcpy(&chIV[0], &nIV, WALLET_CRYPTO_IV_SIZE);
    if(!cKeyCrypter.SetKey(vMasterKey, chIV))
        return false;
    return cKeyCrypter.Decrypt(vchCiphertext, *((CKeyingMaterial*)&vchPlaintext));
}

static bool DecryptKey(const CKeyingMaterial& vMasterKey, const std::vector<unsigned char>& vchCryptedSecret, const CPubKey& vchPubKey, CKey& key)
{
    CKeyingMaterial vchSecret;
    if(!DecryptSecret(vMasterKey, vchCryptedSecret, vchPubKey.GetHash(), vchSecret))
        return false;

    if (vchSecret.size() != 32)
        return false;

    key.Set(vchSecret.begin(), vchSecret.end(), vchPubKey.IsCompressed());
    return key.VerifyPubKey(vchPubKey);
}

bool CCryptoKeyStore::SetCrypted()
{
    LOCK(cs_KeyStore);
    if (fUseCrypto)
        return true;
    if (!mapKeys.empty())
        return false;
    fUseCrypto = true;
    return true;
}

bool CCryptoKeyStore::Lock()
{
    if (!SetCrypted())
        return false;

    {
        LOCK(cs_KeyStore);
        vMasterKey.clear();
    }

    NotifyStatusChanged(this);
    return true;
}

bool CCryptoKeyStore::Unlock(const CKeyingMaterial& vMasterKeyIn)
{
    {
        LOCK(cs_KeyStore);
        if (!SetCrypted())
            return false;

        bool keyPass = false;
        bool keyFail = false;
        CryptedKeyMap::const_iterator mi = mapCryptedKeys.begin();
        for (; mi != mapCryptedKeys.end(); ++mi)
        {
            const CPubKey &vchPubKey = (*mi).second.first;
            const std::vector<unsigned char> &vchCryptedSecret = (*mi).second.second;
            CKey key;
            if (!DecryptKey(vMasterKeyIn, vchCryptedSecret, vchPubKey, key))
            {
                keyFail = true;
                break;
            }
            keyPass = true;
            if (fDecryptionThoroughlyChecked)
                break;
        }
        if (keyPass && keyFail)
        {
            LogPrintf("The wallet is probably corrupted: Some keys decrypt but not all.\n");
            assert(false);
        }
        if (keyFail || !keyPass)
            return false;
        vMasterKey = vMasterKeyIn;
        fDecryptionThoroughlyChecked = true;
    }
    NotifyStatusChanged(this);
    return true;
}

bool CCryptoKeyStore::AddKeyPubKey(const CKey& key, const CPubKey &pubkey)
{
    {
        LOCK(cs_KeyStore);
        if (!IsCrypted())
            return CBasicKeyStore::AddKeyPubKey(key, pubkey);

        if (IsLocked())
            return false;

        std::vector<unsigned char> vchCryptedSecret;
        CKeyingMaterial vchSecret(key.begin(), key.end());
        if (!EncryptSecret(vMasterKey, vchSecret, pubkey.GetHash(), vchCryptedSecret))
            return false;

        if (!AddCryptedKey(pubkey, vchCryptedSecret))
            return false;
    }
    return true;
}


bool CCryptoKeyStore::AddCryptedKey(const CPubKey &vchPubKey, const std::vector<unsigned char> &vchCryptedSecret)
{
    {
        LOCK(cs_KeyStore);
        if (!SetCrypted())
            return false;

        mapCryptedKeys[vchPubKey.GetID()] = make_pair(vchPubKey, vchCryptedSecret);
    }
    return true;
}

bool CCryptoKeyStore::GetKey(const CKeyID &address, CKey& keyOut) const
{
    {
        LOCK(cs_KeyStore);
        if (!IsCrypted())
            return CBasicKeyStore::GetKey(address, keyOut);

        CryptedKeyMap::const_iterator mi = mapCryptedKeys.find(address);
        if (mi != mapCryptedKeys.end())
        {
            const CPubKey &vchPubKey = (*mi).second.first;
            const std::vector<unsigned char> &vchCryptedSecret = (*mi).second.second;
            return DecryptKey(vMasterKey, vchCryptedSecret, vchPubKey, keyOut);
        }
    }
    return false;
}

bool CCryptoKeyStore::GetPubKey(const CKeyID &address, CPubKey& vchPubKeyOut) const
{
    {
        LOCK(cs_KeyStore);
        if (!IsCrypted())
            return CBasicKeyStore::GetPubKey(address, vchPubKeyOut);

        CryptedKeyMap::const_iterator mi = mapCryptedKeys.find(address);
        if (mi != mapCryptedKeys.end())
        {
            vchPubKeyOut = (*mi).second.first;
            return true;
        }
        // Check for watch-only pubkeys
        return CBasicKeyStore::GetPubKey(address, vchPubKeyOut);
    }
    return false;
}

bool CCryptoKeyStore::EncryptKeys(CKeyingMaterial& vMasterKeyIn)
{
    {
        LOCK(cs_KeyStore);
        if (!mapCryptedKeys.empty() || IsCrypted())
            return false;

        fUseCrypto = true;
        for (KeyMap::value_type& mKey : mapKeys)
        {
            const CKey &key = mKey.second;
            CPubKey vchPubKey = key.GetPubKey();
            CKeyingMaterial vchSecret(key.begin(), key.end());
            std::vector<unsigned char> vchCryptedSecret;
            if (!EncryptSecret(vMasterKeyIn, vchSecret, vchPubKey.GetHash(), vchCryptedSecret))
                return false;
            if (!AddCryptedKey(vchPubKey, vchCryptedSecret))
                return false;
        }
        mapKeys.clear();
    }
    return true;
}