blob: 8edca924cd7b82aa6a8adcc4746d18d994df5708 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
|
// Copyright (c) 2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <util/serfloat.h>
#include <cmath>
#include <limits>
double DecodeDouble(uint64_t v) noexcept {
static constexpr double NANVAL = std::numeric_limits<double>::quiet_NaN();
static constexpr double INFVAL = std::numeric_limits<double>::infinity();
double sign = 1.0;
if (v & 0x8000000000000000) {
sign = -1.0;
v ^= 0x8000000000000000;
}
// Zero
if (v == 0) return copysign(0.0, sign);
// Infinity
if (v == 0x7ff0000000000000) return copysign(INFVAL, sign);
// Other numbers
int exp = (v & 0x7FF0000000000000) >> 52;
uint64_t man = v & 0xFFFFFFFFFFFFF;
if (exp == 2047) {
// NaN
return NANVAL;
} else if (exp == 0) {
// Subnormal
return copysign(ldexp((double)man, -1074), sign);
} else {
// Normal
return copysign(ldexp((double)(man + 0x10000000000000), -1075 + exp), sign);
}
}
uint64_t EncodeDouble(double f) noexcept {
int cls = std::fpclassify(f);
uint64_t sign = 0;
if (copysign(1.0, f) == -1.0) {
f = -f;
sign = 0x8000000000000000;
}
// Zero
if (cls == FP_ZERO) return sign;
// Infinity
if (cls == FP_INFINITE) return sign | 0x7ff0000000000000;
// NaN
if (cls == FP_NAN) return 0x7ff8000000000000;
// Other numbers
int exp;
uint64_t man = std::round(std::frexp(f, &exp) * 9007199254740992.0);
if (exp < -1021) {
// Too small to represent, encode 0
if (exp < -1084) return sign;
// Subnormal numbers
return sign | (man >> (-1021 - exp));
} else {
// Too big to represent, encode infinity
if (exp > 1024) return sign | 0x7ff0000000000000;
// Normal numbers
return sign | (((uint64_t)(1022 + exp)) << 52) | (man & 0xFFFFFFFFFFFFF);
}
}
|