aboutsummaryrefslogtreecommitdiff
path: root/src/uint256.h
blob: 94fe66d26cd6bde2e1be910a36bc01c22f9380c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2015 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#ifndef BITCOIN_UINT256_H
#define BITCOIN_UINT256_H

#include <assert.h>
#include <cstring>
#include <stdexcept>
#include <stdint.h>
#include <string>
#include <vector>
#include "crypto/common.h"

/** Template base class for fixed-sized opaque blobs. */
template<unsigned int BITS>
class base_blob
{
protected:
    enum { WIDTH=BITS/8 };
    uint8_t data[WIDTH];
public:
    base_blob()
    {
        memset(data, 0, sizeof(data));
    }

    explicit base_blob(const std::vector<unsigned char>& vch);

    bool IsNull() const
    {
        for (int i = 0; i < WIDTH; i++)
            if (data[i] != 0)
                return false;
        return true;
    }

    void SetNull()
    {
        memset(data, 0, sizeof(data));
    }

    inline int Compare(const base_blob& other) const { return memcmp(data, other.data, sizeof(data)); }

    friend inline bool operator==(const base_blob& a, const base_blob& b) { return a.Compare(b) == 0; }
    friend inline bool operator!=(const base_blob& a, const base_blob& b) { return a.Compare(b) != 0; }
    friend inline bool operator<(const base_blob& a, const base_blob& b) { return a.Compare(b) < 0; }

    std::string GetHex() const;
    void SetHex(const char* psz);
    void SetHex(const std::string& str);
    std::string ToString() const;

    unsigned char* begin()
    {
        return &data[0];
    }

    unsigned char* end()
    {
        return &data[WIDTH];
    }

    const unsigned char* begin() const
    {
        return &data[0];
    }

    const unsigned char* end() const
    {
        return &data[WIDTH];
    }

    unsigned int size() const
    {
        return sizeof(data);
    }

    uint64_t GetUint64(int pos) const
    {
        const uint8_t* ptr = data + pos * 8;
        return ((uint64_t)ptr[0]) | \
               ((uint64_t)ptr[1]) << 8 | \
               ((uint64_t)ptr[2]) << 16 | \
               ((uint64_t)ptr[3]) << 24 | \
               ((uint64_t)ptr[4]) << 32 | \
               ((uint64_t)ptr[5]) << 40 | \
               ((uint64_t)ptr[6]) << 48 | \
               ((uint64_t)ptr[7]) << 56;
    }

    template<typename Stream>
    void Serialize(Stream& s, int nType, int nVersion) const
    {
        s.write((char*)data, sizeof(data));
    }

    template<typename Stream>
    void Unserialize(Stream& s, int nType, int nVersion)
    {
        s.read((char*)data, sizeof(data));
    }
};

/** 160-bit opaque blob.
 * @note This type is called uint160 for historical reasons only. It is an opaque
 * blob of 160 bits and has no integer operations.
 */
class uint160 : public base_blob<160> {
public:
    uint160() {}
    uint160(const base_blob<160>& b) : base_blob<160>(b) {}
    explicit uint160(const std::vector<unsigned char>& vch) : base_blob<160>(vch) {}
};

/** 256-bit opaque blob.
 * @note This type is called uint256 for historical reasons only. It is an
 * opaque blob of 256 bits and has no integer operations. Use arith_uint256 if
 * those are required.
 */
class uint256 : public base_blob<256> {
public:
    uint256() {}
    uint256(const base_blob<256>& b) : base_blob<256>(b) {}
    explicit uint256(const std::vector<unsigned char>& vch) : base_blob<256>(vch) {}

    /** A cheap hash function that just returns 64 bits from the result, it can be
     * used when the contents are considered uniformly random. It is not appropriate
     * when the value can easily be influenced from outside as e.g. a network adversary could
     * provide values to trigger worst-case behavior.
     */
    uint64_t GetCheapHash() const
    {
        return ReadLE64(data);
    }
};

/* uint256 from const char *.
 * This is a separate function because the constructor uint256(const char*) can result
 * in dangerously catching uint256(0).
 */
inline uint256 uint256S(const char *str)
{
    uint256 rv;
    rv.SetHex(str);
    return rv;
}
/* uint256 from std::string.
 * This is a separate function because the constructor uint256(const std::string &str) can result
 * in dangerously catching uint256(0) via std::string(const char*).
 */
inline uint256 uint256S(const std::string& str)
{
    uint256 rv;
    rv.SetHex(str);
    return rv;
}

#endif // BITCOIN_UINT256_H