1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
|
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_UINT256_H
#define BITCOIN_UINT256_H
#include <assert.h>
#include <stdexcept>
#include <stdint.h>
#include <stdio.h>
#include <string>
#include <string.h>
#include <vector>
extern const signed char p_util_hexdigit[256]; // defined in util.cpp
inline signed char HexDigit(char c)
{
return p_util_hexdigit[(unsigned char)c];
}
class uint_error : public std::runtime_error {
public:
explicit uint_error(const std::string& str) : std::runtime_error(str) {}
};
/** Template base class for unsigned big integers. */
template<unsigned int BITS>
class base_uint
{
private:
enum { WIDTH=BITS/32 };
uint32_t pn[WIDTH];
public:
base_uint()
{
for (int i = 0; i < WIDTH; i++)
pn[i] = 0;
}
base_uint(const base_uint& b)
{
for (int i = 0; i < WIDTH; i++)
pn[i] = b.pn[i];
}
base_uint& operator=(const base_uint& b)
{
for (int i = 0; i < WIDTH; i++)
pn[i] = b.pn[i];
return *this;
}
base_uint(uint64_t b)
{
pn[0] = (unsigned int)b;
pn[1] = (unsigned int)(b >> 32);
for (int i = 2; i < WIDTH; i++)
pn[i] = 0;
}
explicit base_uint(const std::string& str)
{
SetHex(str);
}
explicit base_uint(const std::vector<unsigned char>& vch)
{
if (vch.size() != sizeof(pn))
throw uint_error("Converting vector of wrong size to base_uint");
memcpy(pn, &vch[0], sizeof(pn));
}
bool operator!() const
{
for (int i = 0; i < WIDTH; i++)
if (pn[i] != 0)
return false;
return true;
}
const base_uint operator~() const
{
base_uint ret;
for (int i = 0; i < WIDTH; i++)
ret.pn[i] = ~pn[i];
return ret;
}
const base_uint operator-() const
{
base_uint ret;
for (int i = 0; i < WIDTH; i++)
ret.pn[i] = ~pn[i];
ret++;
return ret;
}
double getdouble() const
{
double ret = 0.0;
double fact = 1.0;
for (int i = 0; i < WIDTH; i++) {
ret += fact * pn[i];
fact *= 4294967296.0;
}
return ret;
}
base_uint& operator=(uint64_t b)
{
pn[0] = (unsigned int)b;
pn[1] = (unsigned int)(b >> 32);
for (int i = 2; i < WIDTH; i++)
pn[i] = 0;
return *this;
}
base_uint& operator^=(const base_uint& b)
{
for (int i = 0; i < WIDTH; i++)
pn[i] ^= b.pn[i];
return *this;
}
base_uint& operator&=(const base_uint& b)
{
for (int i = 0; i < WIDTH; i++)
pn[i] &= b.pn[i];
return *this;
}
base_uint& operator|=(const base_uint& b)
{
for (int i = 0; i < WIDTH; i++)
pn[i] |= b.pn[i];
return *this;
}
base_uint& operator^=(uint64_t b)
{
pn[0] ^= (unsigned int)b;
pn[1] ^= (unsigned int)(b >> 32);
return *this;
}
base_uint& operator|=(uint64_t b)
{
pn[0] |= (unsigned int)b;
pn[1] |= (unsigned int)(b >> 32);
return *this;
}
base_uint& operator<<=(unsigned int shift)
{
base_uint a(*this);
for (int i = 0; i < WIDTH; i++)
pn[i] = 0;
int k = shift / 32;
shift = shift % 32;
for (int i = 0; i < WIDTH; i++)
{
if (i+k+1 < WIDTH && shift != 0)
pn[i+k+1] |= (a.pn[i] >> (32-shift));
if (i+k < WIDTH)
pn[i+k] |= (a.pn[i] << shift);
}
return *this;
}
base_uint& operator>>=(unsigned int shift)
{
base_uint a(*this);
for (int i = 0; i < WIDTH; i++)
pn[i] = 0;
int k = shift / 32;
shift = shift % 32;
for (int i = 0; i < WIDTH; i++)
{
if (i-k-1 >= 0 && shift != 0)
pn[i-k-1] |= (a.pn[i] << (32-shift));
if (i-k >= 0)
pn[i-k] |= (a.pn[i] >> shift);
}
return *this;
}
base_uint& operator+=(const base_uint& b)
{
uint64_t carry = 0;
for (int i = 0; i < WIDTH; i++)
{
uint64_t n = carry + pn[i] + b.pn[i];
pn[i] = n & 0xffffffff;
carry = n >> 32;
}
return *this;
}
base_uint& operator-=(const base_uint& b)
{
*this += -b;
return *this;
}
base_uint& operator+=(uint64_t b64)
{
base_uint b;
b = b64;
*this += b;
return *this;
}
base_uint& operator-=(uint64_t b64)
{
base_uint b;
b = b64;
*this += -b;
return *this;
}
base_uint& operator*=(uint32_t b32)
{
uint64_t carry = 0;
for (int i = 0; i < WIDTH; i++)
{
uint64_t n = carry + (uint64_t)b32 * pn[i];
pn[i] = n & 0xffffffff;
carry = n >> 32;
}
return *this;
}
base_uint& operator*=(const base_uint& b)
{
base_uint a = *this;
*this = 0;
for (int j = 0; j < WIDTH; j++) {
uint64_t carry = 0;
for (int i = 0; i + j < WIDTH; i++) {
uint64_t n = carry + pn[i + j] + (uint64_t)a.pn[j] * b.pn[i];
pn[i + j] = n & 0xffffffff;
carry = n >> 32;
}
}
return *this;
}
base_uint& operator/=(const base_uint& b)
{
base_uint div = b; // make a copy, so we can shift.
base_uint num = *this; // make a copy, so we can subtract.
*this = 0; // the quotient.
int num_bits = num.bits();
int div_bits = div.bits();
if (div_bits == 0)
throw uint_error("Division by zero");
if (div_bits > num_bits) // the result is certainly 0.
return *this;
int shift = num_bits - div_bits;
div <<= shift; // shift so that div and nun align.
while (shift >= 0) {
if (num >= div) {
num -= div;
pn[shift / 32] |= (1 << (shift & 31)); // set a bit of the result.
}
div >>= 1; // shift back.
shift--;
}
// num now contains the remainder of the division.
return *this;
}
base_uint& operator++()
{
// prefix operator
int i = 0;
while (++pn[i] == 0 && i < WIDTH-1)
i++;
return *this;
}
const base_uint operator++(int)
{
// postfix operator
const base_uint ret = *this;
++(*this);
return ret;
}
base_uint& operator--()
{
// prefix operator
int i = 0;
while (--pn[i] == (uint32_t)-1 && i < WIDTH-1)
i++;
return *this;
}
const base_uint operator--(int)
{
// postfix operator
const base_uint ret = *this;
--(*this);
return ret;
}
friend inline bool operator<(const base_uint& a, const base_uint& b)
{
for (int i = base_uint::WIDTH-1; i >= 0; i--)
{
if (a.pn[i] < b.pn[i])
return true;
else if (a.pn[i] > b.pn[i])
return false;
}
return false;
}
friend inline bool operator<=(const base_uint& a, const base_uint& b)
{
for (int i = base_uint::WIDTH-1; i >= 0; i--)
{
if (a.pn[i] < b.pn[i])
return true;
else if (a.pn[i] > b.pn[i])
return false;
}
return true;
}
friend inline bool operator>(const base_uint& a, const base_uint& b)
{
for (int i = base_uint::WIDTH-1; i >= 0; i--)
{
if (a.pn[i] > b.pn[i])
return true;
else if (a.pn[i] < b.pn[i])
return false;
}
return false;
}
friend inline bool operator>=(const base_uint& a, const base_uint& b)
{
for (int i = base_uint::WIDTH-1; i >= 0; i--)
{
if (a.pn[i] > b.pn[i])
return true;
else if (a.pn[i] < b.pn[i])
return false;
}
return true;
}
friend inline bool operator==(const base_uint& a, const base_uint& b)
{
for (int i = 0; i < base_uint::WIDTH; i++)
if (a.pn[i] != b.pn[i])
return false;
return true;
}
friend inline bool operator==(const base_uint& a, uint64_t b)
{
if (a.pn[0] != (unsigned int)b)
return false;
if (a.pn[1] != (unsigned int)(b >> 32))
return false;
for (int i = 2; i < base_uint::WIDTH; i++)
if (a.pn[i] != 0)
return false;
return true;
}
friend inline bool operator!=(const base_uint& a, const base_uint& b)
{
return (!(a == b));
}
friend inline bool operator!=(const base_uint& a, uint64_t b)
{
return (!(a == b));
}
friend inline const base_uint operator+(const base_uint& a, const base_uint& b) { return base_uint(a) += b; }
friend inline const base_uint operator-(const base_uint& a, const base_uint& b) { return base_uint(a) -= b; }
friend inline const base_uint operator*(const base_uint& a, const base_uint& b) { return base_uint(a) *= b; }
friend inline const base_uint operator/(const base_uint& a, const base_uint& b) { return base_uint(a) /= b; }
friend inline const base_uint operator|(const base_uint& a, const base_uint& b) { return base_uint(a) |= b; }
friend inline const base_uint operator&(const base_uint& a, const base_uint& b) { return base_uint(a) &= b; }
friend inline const base_uint operator^(const base_uint& a, const base_uint& b) { return base_uint(a) ^= b; }
friend inline const base_uint operator>>(const base_uint& a, int shift) { return base_uint(a) >>= shift; }
friend inline const base_uint operator<<(const base_uint& a, int shift) { return base_uint(a) <<= shift; }
friend inline const base_uint operator*(const base_uint& a, uint32_t b) { return base_uint(a) *= b; }
std::string GetHex() const
{
char psz[sizeof(pn)*2 + 1];
for (unsigned int i = 0; i < sizeof(pn); i++)
sprintf(psz + i*2, "%02x", ((unsigned char*)pn)[sizeof(pn) - i - 1]);
return std::string(psz, psz + sizeof(pn)*2);
}
void SetHex(const char* psz)
{
memset(pn,0,sizeof(pn));
// skip leading spaces
while (isspace(*psz))
psz++;
// skip 0x
if (psz[0] == '0' && tolower(psz[1]) == 'x')
psz += 2;
// hex string to uint
const char* pbegin = psz;
while (::HexDigit(*psz) != -1)
psz++;
psz--;
unsigned char* p1 = (unsigned char*)pn;
unsigned char* pend = p1 + WIDTH * 4;
while (psz >= pbegin && p1 < pend)
{
*p1 = ::HexDigit(*psz--);
if (psz >= pbegin)
{
*p1 |= ((unsigned char)::HexDigit(*psz--) << 4);
p1++;
}
}
}
void SetHex(const std::string& str)
{
SetHex(str.c_str());
}
std::string ToString() const
{
return (GetHex());
}
unsigned char* begin()
{
return (unsigned char*)&pn[0];
}
unsigned char* end()
{
return (unsigned char*)&pn[WIDTH];
}
const unsigned char* begin() const
{
return (unsigned char*)&pn[0];
}
const unsigned char* end() const
{
return (unsigned char*)&pn[WIDTH];
}
unsigned int size() const
{
return sizeof(pn);
}
// Returns the position of the highest bit set plus one, or zero if the
// value is zero.
unsigned int bits() const
{
for (int pos = WIDTH-1; pos >= 0; pos--) {
if (pn[pos]) {
for (int bits = 31; bits > 0; bits--) {
if (pn[pos] & 1<<bits)
return 32*pos + bits + 1;
}
return 32*pos + 1;
}
}
return 0;
}
uint64_t GetLow64() const
{
assert(WIDTH >= 2);
return pn[0] | (uint64_t)pn[1] << 32;
}
unsigned int GetSerializeSize(int nType, int nVersion) const
{
return sizeof(pn);
}
template<typename Stream>
void Serialize(Stream& s, int nType, int nVersion) const
{
s.write((char*)pn, sizeof(pn));
}
template<typename Stream>
void Unserialize(Stream& s, int nType, int nVersion)
{
s.read((char*)pn, sizeof(pn));
}
};
/** 160-bit unsigned big integer. */
class uint160 : public base_uint<160> {
public:
uint160() {}
uint160(const base_uint<160>& b) : base_uint<160>(b) {}
uint160(uint64_t b) : base_uint<160>(b) {}
explicit uint160(const std::string& str) : base_uint<160>(str) {}
explicit uint160(const std::vector<unsigned char>& vch) : base_uint<160>(vch) {}
};
/** 256-bit unsigned big integer. */
class uint256 : public base_uint<256> {
public:
uint256() {}
uint256(const base_uint<256>& b) : base_uint<256>(b) {}
uint256(uint64_t b) : base_uint<256>(b) {}
explicit uint256(const std::string& str) : base_uint<256>(str) {}
explicit uint256(const std::vector<unsigned char>& vch) : base_uint<256>(vch) {}
// The "compact" format is a representation of a whole
// number N using an unsigned 32bit number similar to a
// floating point format.
// The most significant 8 bits are the unsigned exponent of base 256.
// This exponent can be thought of as "number of bytes of N".
// The lower 23 bits are the mantissa.
// Bit number 24 (0x800000) represents the sign of N.
// N = (-1^sign) * mantissa * 256^(exponent-3)
//
// Satoshi's original implementation used BN_bn2mpi() and BN_mpi2bn().
// MPI uses the most significant bit of the first byte as sign.
// Thus 0x1234560000 is compact (0x05123456)
// and 0xc0de000000 is compact (0x0600c0de)
// (0x05c0de00) would be -0x40de000000
//
// Bitcoin only uses this "compact" format for encoding difficulty
// targets, which are unsigned 256bit quantities. Thus, all the
// complexities of the sign bit and using base 256 are probably an
// implementation accident.
//
// This implementation directly uses shifts instead of going
// through an intermediate MPI representation.
uint256& SetCompact(uint32_t nCompact, bool *pfNegative = NULL, bool *pfOverflow = NULL)
{
int nSize = nCompact >> 24;
uint32_t nWord = nCompact & 0x007fffff;
if (nSize <= 3)
{
nWord >>= 8*(3-nSize);
*this = nWord;
}
else
{
*this = nWord;
*this <<= 8*(nSize-3);
}
if (pfNegative)
*pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0;
if (pfOverflow)
*pfOverflow = nWord != 0 && ((nSize > 34) ||
(nWord > 0xff && nSize > 33) ||
(nWord > 0xffff && nSize > 32));
return *this;
}
uint32_t GetCompact(bool fNegative = false) const
{
int nSize = (bits() + 7) / 8;
uint32_t nCompact = 0;
if (nSize <= 3)
nCompact = GetLow64() << 8*(3-nSize);
else
{
uint256 bn = *this >> 8*(nSize-3);
nCompact = bn.GetLow64();
}
// The 0x00800000 bit denotes the sign.
// Thus, if it is already set, divide the mantissa by 256 and increase the exponent.
if (nCompact & 0x00800000)
{
nCompact >>= 8;
nSize++;
}
assert((nCompact & ~0x007fffff) == 0);
assert(nSize < 256);
nCompact |= nSize << 24;
nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0);
return nCompact;
}
};
#endif
|