1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
|
// Copyright (c) 2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <txorphanage.h>
#include <consensus/validation.h>
#include <logging.h>
#include <policy/policy.h>
#include <cassert>
/** Minimum time between orphan transactions expire time checks in seconds */
static constexpr int64_t ORPHAN_TX_EXPIRE_INTERVAL = 5 * 60;
RecursiveMutex g_cs_orphans;
std::map<uint256, COrphanTx> mapOrphanTransactions GUARDED_BY(g_cs_orphans);
std::map<uint256, std::map<uint256, COrphanTx>::iterator> g_orphans_by_wtxid GUARDED_BY(g_cs_orphans);
std::map<COutPoint, std::set<std::map<uint256, COrphanTx>::iterator, IteratorComparator>> mapOrphanTransactionsByPrev GUARDED_BY(g_cs_orphans);
std::vector<std::map<uint256, COrphanTx>::iterator> g_orphan_list GUARDED_BY(g_cs_orphans);
int EraseOrphanTx(const uint256& txid)
{
std::map<uint256, COrphanTx>::iterator it = mapOrphanTransactions.find(txid);
if (it == mapOrphanTransactions.end())
return 0;
for (const CTxIn& txin : it->second.tx->vin)
{
auto itPrev = mapOrphanTransactionsByPrev.find(txin.prevout);
if (itPrev == mapOrphanTransactionsByPrev.end())
continue;
itPrev->second.erase(it);
if (itPrev->second.empty())
mapOrphanTransactionsByPrev.erase(itPrev);
}
size_t old_pos = it->second.list_pos;
assert(g_orphan_list[old_pos] == it);
if (old_pos + 1 != g_orphan_list.size()) {
// Unless we're deleting the last entry in g_orphan_list, move the last
// entry to the position we're deleting.
auto it_last = g_orphan_list.back();
g_orphan_list[old_pos] = it_last;
it_last->second.list_pos = old_pos;
}
g_orphan_list.pop_back();
g_orphans_by_wtxid.erase(it->second.tx->GetWitnessHash());
mapOrphanTransactions.erase(it);
return 1;
}
void EraseOrphansFor(NodeId peer)
{
LOCK(g_cs_orphans);
int nErased = 0;
std::map<uint256, COrphanTx>::iterator iter = mapOrphanTransactions.begin();
while (iter != mapOrphanTransactions.end())
{
std::map<uint256, COrphanTx>::iterator maybeErase = iter++; // increment to avoid iterator becoming invalid
if (maybeErase->second.fromPeer == peer)
{
nErased += EraseOrphanTx(maybeErase->second.tx->GetHash());
}
}
if (nErased > 0) LogPrint(BCLog::MEMPOOL, "Erased %d orphan tx from peer=%d\n", nErased, peer);
}
unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans)
{
LOCK(g_cs_orphans);
unsigned int nEvicted = 0;
static int64_t nNextSweep;
int64_t nNow = GetTime();
if (nNextSweep <= nNow) {
// Sweep out expired orphan pool entries:
int nErased = 0;
int64_t nMinExpTime = nNow + ORPHAN_TX_EXPIRE_TIME - ORPHAN_TX_EXPIRE_INTERVAL;
std::map<uint256, COrphanTx>::iterator iter = mapOrphanTransactions.begin();
while (iter != mapOrphanTransactions.end())
{
std::map<uint256, COrphanTx>::iterator maybeErase = iter++;
if (maybeErase->second.nTimeExpire <= nNow) {
nErased += EraseOrphanTx(maybeErase->second.tx->GetHash());
} else {
nMinExpTime = std::min(maybeErase->second.nTimeExpire, nMinExpTime);
}
}
// Sweep again 5 minutes after the next entry that expires in order to batch the linear scan.
nNextSweep = nMinExpTime + ORPHAN_TX_EXPIRE_INTERVAL;
if (nErased > 0) LogPrint(BCLog::MEMPOOL, "Erased %d orphan tx due to expiration\n", nErased);
}
FastRandomContext rng;
while (mapOrphanTransactions.size() > nMaxOrphans)
{
// Evict a random orphan:
size_t randompos = rng.randrange(g_orphan_list.size());
EraseOrphanTx(g_orphan_list[randompos]->first);
++nEvicted;
}
return nEvicted;
}
|