1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
|
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "txmempool.h"
#include "clientversion.h"
#include "consensus/consensus.h"
#include "consensus/validation.h"
#include "main.h"
#include "policy/fees.h"
#include "streams.h"
#include "util.h"
#include "utilmoneystr.h"
#include "version.h"
using namespace std;
CTxMemPoolEntry::CTxMemPoolEntry(const CTransaction& _tx, const CAmount& _nFee,
int64_t _nTime, double _dPriority,
unsigned int _nHeight, bool poolHasNoInputsOf):
tx(_tx), nFee(_nFee), nTime(_nTime), dPriority(_dPriority), nHeight(_nHeight),
hadNoDependencies(poolHasNoInputsOf)
{
nTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION);
nModSize = tx.CalculateModifiedSize(nTxSize);
nUsageSize = RecursiveDynamicUsage(tx);
nCountWithDescendants = 1;
nSizeWithDescendants = nTxSize;
nFeesWithDescendants = nFee;
}
CTxMemPoolEntry::CTxMemPoolEntry(const CTxMemPoolEntry& other)
{
*this = other;
}
double
CTxMemPoolEntry::GetPriority(unsigned int currentHeight) const
{
CAmount nValueIn = tx.GetValueOut()+nFee;
double deltaPriority = ((double)(currentHeight-nHeight)*nValueIn)/nModSize;
double dResult = dPriority + deltaPriority;
return dResult;
}
// Update the given tx for any in-mempool descendants.
// Assumes that setMemPoolChildren is correct for the given tx and all
// descendants.
bool CTxMemPool::UpdateForDescendants(txiter updateIt, int maxDescendantsToVisit, cacheMap &cachedDescendants, const std::set<uint256> &setExclude)
{
// Track the number of entries (outside setExclude) that we'd need to visit
// (will bail out if it exceeds maxDescendantsToVisit)
int nChildrenToVisit = 0;
setEntries stageEntries, setAllDescendants;
stageEntries = GetMemPoolChildren(updateIt);
while (!stageEntries.empty()) {
const txiter cit = *stageEntries.begin();
if (cit->IsDirty()) {
// Don't consider any more children if any descendant is dirty
return false;
}
setAllDescendants.insert(cit);
stageEntries.erase(cit);
const setEntries &setChildren = GetMemPoolChildren(cit);
BOOST_FOREACH(const txiter childEntry, setChildren) {
cacheMap::iterator cacheIt = cachedDescendants.find(childEntry);
if (cacheIt != cachedDescendants.end()) {
// We've already calculated this one, just add the entries for this set
// but don't traverse again.
BOOST_FOREACH(const txiter cacheEntry, cacheIt->second) {
// update visit count only for new child transactions
// (outside of setExclude and stageEntries)
if (setAllDescendants.insert(cacheEntry).second &&
!setExclude.count(cacheEntry->GetTx().GetHash()) &&
!stageEntries.count(cacheEntry)) {
nChildrenToVisit++;
}
}
} else if (!setAllDescendants.count(childEntry)) {
// Schedule for later processing and update our visit count
if (stageEntries.insert(childEntry).second && !setExclude.count(childEntry->GetTx().GetHash())) {
nChildrenToVisit++;
}
}
if (nChildrenToVisit > maxDescendantsToVisit) {
return false;
}
}
}
// setAllDescendants now contains all in-mempool descendants of updateIt.
// Update and add to cached descendant map
int64_t modifySize = 0;
CAmount modifyFee = 0;
int64_t modifyCount = 0;
BOOST_FOREACH(txiter cit, setAllDescendants) {
if (!setExclude.count(cit->GetTx().GetHash())) {
modifySize += cit->GetTxSize();
modifyFee += cit->GetFee();
modifyCount++;
cachedDescendants[updateIt].insert(cit);
}
}
mapTx.modify(updateIt, update_descendant_state(modifySize, modifyFee, modifyCount));
return true;
}
// vHashesToUpdate is the set of transaction hashes from a disconnected block
// which has been re-added to the mempool.
// for each entry, look for descendants that are outside hashesToUpdate, and
// add fee/size information for such descendants to the parent.
void CTxMemPool::UpdateTransactionsFromBlock(const std::vector<uint256> &vHashesToUpdate)
{
LOCK(cs);
// For each entry in vHashesToUpdate, store the set of in-mempool, but not
// in-vHashesToUpdate transactions, so that we don't have to recalculate
// descendants when we come across a previously seen entry.
cacheMap mapMemPoolDescendantsToUpdate;
// Use a set for lookups into vHashesToUpdate (these entries are already
// accounted for in the state of their ancestors)
std::set<uint256> setAlreadyIncluded(vHashesToUpdate.begin(), vHashesToUpdate.end());
// Iterate in reverse, so that whenever we are looking at at a transaction
// we are sure that all in-mempool descendants have already been processed.
// This maximizes the benefit of the descendant cache and guarantees that
// setMemPoolChildren will be updated, an assumption made in
// UpdateForDescendants.
BOOST_REVERSE_FOREACH(const uint256 &hash, vHashesToUpdate) {
// we cache the in-mempool children to avoid duplicate updates
setEntries setChildren;
// calculate children from mapNextTx
txiter it = mapTx.find(hash);
if (it == mapTx.end()) {
continue;
}
std::map<COutPoint, CInPoint>::iterator iter = mapNextTx.lower_bound(COutPoint(hash, 0));
// First calculate the children, and update setMemPoolChildren to
// include them, and update their setMemPoolParents to include this tx.
for (; iter != mapNextTx.end() && iter->first.hash == hash; ++iter) {
const uint256 &childHash = iter->second.ptx->GetHash();
txiter childIter = mapTx.find(childHash);
assert(childIter != mapTx.end());
// We can skip updating entries we've encountered before or that
// are in the block (which are already accounted for).
if (setChildren.insert(childIter).second && !setAlreadyIncluded.count(childHash)) {
UpdateChild(it, childIter, true);
UpdateParent(childIter, it, true);
}
}
if (!UpdateForDescendants(it, 100, mapMemPoolDescendantsToUpdate, setAlreadyIncluded)) {
// Mark as dirty if we can't do the calculation.
mapTx.modify(it, set_dirty());
}
}
}
bool CTxMemPool::CalculateMemPoolAncestors(const CTxMemPoolEntry &entry, setEntries &setAncestors, uint64_t limitAncestorCount, uint64_t limitAncestorSize, uint64_t limitDescendantCount, uint64_t limitDescendantSize, std::string &errString, bool fSearchForParents /* = true */)
{
setEntries parentHashes;
const CTransaction &tx = entry.GetTx();
if (fSearchForParents) {
// Get parents of this transaction that are in the mempool
// GetMemPoolParents() is only valid for entries in the mempool, so we
// iterate mapTx to find parents.
for (unsigned int i = 0; i < tx.vin.size(); i++) {
txiter piter = mapTx.find(tx.vin[i].prevout.hash);
if (piter != mapTx.end()) {
parentHashes.insert(piter);
if (parentHashes.size() + 1 > limitAncestorCount) {
errString = strprintf("too many unconfirmed parents [limit: %u]", limitAncestorCount);
return false;
}
}
}
} else {
// If we're not searching for parents, we require this to be an
// entry in the mempool already.
txiter it = mapTx.iterator_to(entry);
parentHashes = GetMemPoolParents(it);
}
size_t totalSizeWithAncestors = entry.GetTxSize();
while (!parentHashes.empty()) {
txiter stageit = *parentHashes.begin();
setAncestors.insert(stageit);
parentHashes.erase(stageit);
totalSizeWithAncestors += stageit->GetTxSize();
if (stageit->GetSizeWithDescendants() + entry.GetTxSize() > limitDescendantSize) {
errString = strprintf("exceeds descendant size limit for tx %s [limit: %u]", stageit->GetTx().GetHash().ToString(), limitDescendantSize);
return false;
} else if (stageit->GetCountWithDescendants() + 1 > limitDescendantCount) {
errString = strprintf("too many descendants for tx %s [limit: %u]", stageit->GetTx().GetHash().ToString(), limitDescendantCount);
return false;
} else if (totalSizeWithAncestors > limitAncestorSize) {
errString = strprintf("exceeds ancestor size limit [limit: %u]", limitAncestorSize);
return false;
}
const setEntries & setMemPoolParents = GetMemPoolParents(stageit);
BOOST_FOREACH(const txiter &phash, setMemPoolParents) {
// If this is a new ancestor, add it.
if (setAncestors.count(phash) == 0) {
parentHashes.insert(phash);
}
if (parentHashes.size() + setAncestors.size() + 1 > limitAncestorCount) {
errString = strprintf("too many unconfirmed ancestors [limit: %u]", limitAncestorCount);
return false;
}
}
}
return true;
}
void CTxMemPool::UpdateAncestorsOf(bool add, txiter it, setEntries &setAncestors)
{
setEntries parentIters = GetMemPoolParents(it);
// add or remove this tx as a child of each parent
BOOST_FOREACH(txiter piter, parentIters) {
UpdateChild(piter, it, add);
}
const int64_t updateCount = (add ? 1 : -1);
const int64_t updateSize = updateCount * it->GetTxSize();
const CAmount updateFee = updateCount * it->GetFee();
BOOST_FOREACH(txiter ancestorIt, setAncestors) {
mapTx.modify(ancestorIt, update_descendant_state(updateSize, updateFee, updateCount));
}
}
void CTxMemPool::UpdateChildrenForRemoval(txiter it)
{
const setEntries &setMemPoolChildren = GetMemPoolChildren(it);
BOOST_FOREACH(txiter updateIt, setMemPoolChildren) {
UpdateParent(updateIt, it, false);
}
}
void CTxMemPool::UpdateForRemoveFromMempool(const setEntries &entriesToRemove)
{
// For each entry, walk back all ancestors and decrement size associated with this
// transaction
const uint64_t nNoLimit = std::numeric_limits<uint64_t>::max();
BOOST_FOREACH(txiter removeIt, entriesToRemove) {
setEntries setAncestors;
const CTxMemPoolEntry &entry = *removeIt;
std::string dummy;
// Since this is a tx that is already in the mempool, we can call CMPA
// with fSearchForParents = false. If the mempool is in a consistent
// state, then using true or false should both be correct, though false
// should be a bit faster.
// However, if we happen to be in the middle of processing a reorg, then
// the mempool can be in an inconsistent state. In this case, the set
// of ancestors reachable via mapLinks will be the same as the set of
// ancestors whose packages include this transaction, because when we
// add a new transaction to the mempool in addUnchecked(), we assume it
// has no children, and in the case of a reorg where that assumption is
// false, the in-mempool children aren't linked to the in-block tx's
// until UpdateTransactionsFromBlock() is called.
// So if we're being called during a reorg, ie before
// UpdateTransactionsFromBlock() has been called, then mapLinks[] will
// differ from the set of mempool parents we'd calculate by searching,
// and it's important that we use the mapLinks[] notion of ancestor
// transactions as the set of things to update for removal.
CalculateMemPoolAncestors(entry, setAncestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy, false);
// Note that UpdateAncestorsOf severs the child links that point to
// removeIt in the entries for the parents of removeIt. This is
// fine since we don't need to use the mempool children of any entries
// to walk back over our ancestors (but we do need the mempool
// parents!)
UpdateAncestorsOf(false, removeIt, setAncestors);
}
// After updating all the ancestor sizes, we can now sever the link between each
// transaction being removed and any mempool children (ie, update setMemPoolParents
// for each direct child of a transaction being removed).
BOOST_FOREACH(txiter removeIt, entriesToRemove) {
UpdateChildrenForRemoval(removeIt);
}
}
void CTxMemPoolEntry::SetDirty()
{
nCountWithDescendants = 0;
nSizeWithDescendants = nTxSize;
nFeesWithDescendants = nFee;
}
void CTxMemPoolEntry::UpdateState(int64_t modifySize, CAmount modifyFee, int64_t modifyCount)
{
if (!IsDirty()) {
nSizeWithDescendants += modifySize;
assert(int64_t(nSizeWithDescendants) > 0);
nFeesWithDescendants += modifyFee;
assert(nFeesWithDescendants >= 0);
nCountWithDescendants += modifyCount;
assert(int64_t(nCountWithDescendants) > 0);
}
}
CTxMemPool::CTxMemPool(const CFeeRate& _minRelayFee) :
nTransactionsUpdated(0)
{
// Sanity checks off by default for performance, because otherwise
// accepting transactions becomes O(N^2) where N is the number
// of transactions in the pool
fSanityCheck = false;
minerPolicyEstimator = new CBlockPolicyEstimator(_minRelayFee);
}
CTxMemPool::~CTxMemPool()
{
delete minerPolicyEstimator;
}
void CTxMemPool::pruneSpent(const uint256 &hashTx, CCoins &coins)
{
LOCK(cs);
std::map<COutPoint, CInPoint>::iterator it = mapNextTx.lower_bound(COutPoint(hashTx, 0));
// iterate over all COutPoints in mapNextTx whose hash equals the provided hashTx
while (it != mapNextTx.end() && it->first.hash == hashTx) {
coins.Spend(it->first.n); // and remove those outputs from coins
it++;
}
}
unsigned int CTxMemPool::GetTransactionsUpdated() const
{
LOCK(cs);
return nTransactionsUpdated;
}
void CTxMemPool::AddTransactionsUpdated(unsigned int n)
{
LOCK(cs);
nTransactionsUpdated += n;
}
bool CTxMemPool::addUnchecked(const uint256& hash, const CTxMemPoolEntry &entry, setEntries &setAncestors, bool fCurrentEstimate)
{
// Add to memory pool without checking anything.
// Used by main.cpp AcceptToMemoryPool(), which DOES do
// all the appropriate checks.
LOCK(cs);
indexed_transaction_set::iterator newit = mapTx.insert(entry).first;
mapLinks.insert(make_pair(newit, TxLinks()));
// Update cachedInnerUsage to include contained transaction's usage.
// (When we update the entry for in-mempool parents, memory usage will be
// further updated.)
cachedInnerUsage += entry.DynamicMemoryUsage();
const CTransaction& tx = newit->GetTx();
std::set<uint256> setParentTransactions;
for (unsigned int i = 0; i < tx.vin.size(); i++) {
mapNextTx[tx.vin[i].prevout] = CInPoint(&tx, i);
setParentTransactions.insert(tx.vin[i].prevout.hash);
}
// Don't bother worrying about child transactions of this one.
// Normal case of a new transaction arriving is that there can't be any
// children, because such children would be orphans.
// An exception to that is if a transaction enters that used to be in a block.
// In that case, our disconnect block logic will call UpdateTransactionsFromBlock
// to clean up the mess we're leaving here.
// Update ancestors with information about this tx
BOOST_FOREACH (const uint256 &phash, setParentTransactions) {
txiter pit = mapTx.find(phash);
if (pit != mapTx.end()) {
UpdateParent(newit, pit, true);
}
}
UpdateAncestorsOf(true, newit, setAncestors);
nTransactionsUpdated++;
totalTxSize += entry.GetTxSize();
minerPolicyEstimator->processTransaction(entry, fCurrentEstimate);
return true;
}
void CTxMemPool::removeUnchecked(txiter it)
{
const uint256 hash = it->GetTx().GetHash();
BOOST_FOREACH(const CTxIn& txin, it->GetTx().vin)
mapNextTx.erase(txin.prevout);
totalTxSize -= it->GetTxSize();
cachedInnerUsage -= it->DynamicMemoryUsage();
cachedInnerUsage -= memusage::DynamicUsage(mapLinks[it].parents) + memusage::DynamicUsage(mapLinks[it].children);
mapLinks.erase(it);
mapTx.erase(it);
nTransactionsUpdated++;
minerPolicyEstimator->removeTx(hash);
}
// Calculates descendants of entry that are not already in setDescendants, and adds to
// setDescendants. Assumes entryit is already a tx in the mempool and setMemPoolChildren
// is correct for tx and all descendants.
// Also assumes that if an entry is in setDescendants already, then all
// in-mempool descendants of it are already in setDescendants as well, so that we
// can save time by not iterating over those entries.
void CTxMemPool::CalculateDescendants(txiter entryit, setEntries &setDescendants)
{
setEntries stage;
if (setDescendants.count(entryit) == 0) {
stage.insert(entryit);
}
// Traverse down the children of entry, only adding children that are not
// accounted for in setDescendants already (because those children have either
// already been walked, or will be walked in this iteration).
while (!stage.empty()) {
txiter it = *stage.begin();
setDescendants.insert(it);
stage.erase(it);
const setEntries &setChildren = GetMemPoolChildren(it);
BOOST_FOREACH(const txiter &childiter, setChildren) {
if (!setDescendants.count(childiter)) {
stage.insert(childiter);
}
}
}
}
void CTxMemPool::remove(const CTransaction &origTx, std::list<CTransaction>& removed, bool fRecursive)
{
// Remove transaction from memory pool
{
LOCK(cs);
setEntries txToRemove;
txiter origit = mapTx.find(origTx.GetHash());
if (origit != mapTx.end()) {
txToRemove.insert(origit);
} else if (fRecursive) {
// If recursively removing but origTx isn't in the mempool
// be sure to remove any children that are in the pool. This can
// happen during chain re-orgs if origTx isn't re-accepted into
// the mempool for any reason.
for (unsigned int i = 0; i < origTx.vout.size(); i++) {
std::map<COutPoint, CInPoint>::iterator it = mapNextTx.find(COutPoint(origTx.GetHash(), i));
if (it == mapNextTx.end())
continue;
txiter nextit = mapTx.find(it->second.ptx->GetHash());
assert(nextit != mapTx.end());
txToRemove.insert(nextit);
}
}
setEntries setAllRemoves;
if (fRecursive) {
BOOST_FOREACH(txiter it, txToRemove) {
CalculateDescendants(it, setAllRemoves);
}
} else {
setAllRemoves.swap(txToRemove);
}
BOOST_FOREACH(txiter it, setAllRemoves) {
removed.push_back(it->GetTx());
}
RemoveStaged(setAllRemoves);
}
}
void CTxMemPool::removeCoinbaseSpends(const CCoinsViewCache *pcoins, unsigned int nMemPoolHeight)
{
// Remove transactions spending a coinbase which are now immature
LOCK(cs);
list<CTransaction> transactionsToRemove;
for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) {
const CTransaction& tx = it->GetTx();
BOOST_FOREACH(const CTxIn& txin, tx.vin) {
indexed_transaction_set::const_iterator it2 = mapTx.find(txin.prevout.hash);
if (it2 != mapTx.end())
continue;
const CCoins *coins = pcoins->AccessCoins(txin.prevout.hash);
if (fSanityCheck) assert(coins);
if (!coins || (coins->IsCoinBase() && ((signed long)nMemPoolHeight) - coins->nHeight < COINBASE_MATURITY)) {
transactionsToRemove.push_back(tx);
break;
}
}
}
BOOST_FOREACH(const CTransaction& tx, transactionsToRemove) {
list<CTransaction> removed;
remove(tx, removed, true);
}
}
void CTxMemPool::removeConflicts(const CTransaction &tx, std::list<CTransaction>& removed)
{
// Remove transactions which depend on inputs of tx, recursively
list<CTransaction> result;
LOCK(cs);
BOOST_FOREACH(const CTxIn &txin, tx.vin) {
std::map<COutPoint, CInPoint>::iterator it = mapNextTx.find(txin.prevout);
if (it != mapNextTx.end()) {
const CTransaction &txConflict = *it->second.ptx;
if (txConflict != tx)
{
remove(txConflict, removed, true);
}
}
}
}
/**
* Called when a block is connected. Removes from mempool and updates the miner fee estimator.
*/
void CTxMemPool::removeForBlock(const std::vector<CTransaction>& vtx, unsigned int nBlockHeight,
std::list<CTransaction>& conflicts, bool fCurrentEstimate)
{
LOCK(cs);
std::vector<CTxMemPoolEntry> entries;
BOOST_FOREACH(const CTransaction& tx, vtx)
{
uint256 hash = tx.GetHash();
indexed_transaction_set::iterator i = mapTx.find(hash);
if (i != mapTx.end())
entries.push_back(*i);
}
BOOST_FOREACH(const CTransaction& tx, vtx)
{
std::list<CTransaction> dummy;
remove(tx, dummy, false);
removeConflicts(tx, conflicts);
ClearPrioritisation(tx.GetHash());
}
// After the txs in the new block have been removed from the mempool, update policy estimates
minerPolicyEstimator->processBlock(nBlockHeight, entries, fCurrentEstimate);
}
void CTxMemPool::clear()
{
LOCK(cs);
mapLinks.clear();
mapTx.clear();
mapNextTx.clear();
totalTxSize = 0;
cachedInnerUsage = 0;
++nTransactionsUpdated;
}
void CTxMemPool::check(const CCoinsViewCache *pcoins) const
{
if (!fSanityCheck)
return;
LogPrint("mempool", "Checking mempool with %u transactions and %u inputs\n", (unsigned int)mapTx.size(), (unsigned int)mapNextTx.size());
uint64_t checkTotal = 0;
uint64_t innerUsage = 0;
CCoinsViewCache mempoolDuplicate(const_cast<CCoinsViewCache*>(pcoins));
LOCK(cs);
list<const CTxMemPoolEntry*> waitingOnDependants;
for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) {
unsigned int i = 0;
checkTotal += it->GetTxSize();
innerUsage += it->DynamicMemoryUsage();
const CTransaction& tx = it->GetTx();
txlinksMap::const_iterator linksiter = mapLinks.find(it);
assert(linksiter != mapLinks.end());
const TxLinks &links = linksiter->second;
innerUsage += memusage::DynamicUsage(links.parents) + memusage::DynamicUsage(links.children);
bool fDependsWait = false;
setEntries setParentCheck;
BOOST_FOREACH(const CTxIn &txin, tx.vin) {
// Check that every mempool transaction's inputs refer to available coins, or other mempool tx's.
indexed_transaction_set::const_iterator it2 = mapTx.find(txin.prevout.hash);
if (it2 != mapTx.end()) {
const CTransaction& tx2 = it2->GetTx();
assert(tx2.vout.size() > txin.prevout.n && !tx2.vout[txin.prevout.n].IsNull());
fDependsWait = true;
setParentCheck.insert(it2);
} else {
const CCoins* coins = pcoins->AccessCoins(txin.prevout.hash);
assert(coins && coins->IsAvailable(txin.prevout.n));
}
// Check whether its inputs are marked in mapNextTx.
std::map<COutPoint, CInPoint>::const_iterator it3 = mapNextTx.find(txin.prevout);
assert(it3 != mapNextTx.end());
assert(it3->second.ptx == &tx);
assert(it3->second.n == i);
i++;
}
assert(setParentCheck == GetMemPoolParents(it));
// Check children against mapNextTx
CTxMemPool::setEntries setChildrenCheck;
std::map<COutPoint, CInPoint>::const_iterator iter = mapNextTx.lower_bound(COutPoint(it->GetTx().GetHash(), 0));
int64_t childSizes = 0;
CAmount childFees = 0;
for (; iter != mapNextTx.end() && iter->first.hash == it->GetTx().GetHash(); ++iter) {
txiter childit = mapTx.find(iter->second.ptx->GetHash());
assert(childit != mapTx.end()); // mapNextTx points to in-mempool transactions
if (setChildrenCheck.insert(childit).second) {
childSizes += childit->GetTxSize();
childFees += childit->GetFee();
}
}
assert(setChildrenCheck == GetMemPoolChildren(it));
// Also check to make sure size/fees is greater than sum with immediate children.
// just a sanity check, not definitive that this calc is correct...
// also check that the size is less than the size of the entire mempool.
if (!it->IsDirty()) {
assert(it->GetSizeWithDescendants() >= childSizes + it->GetTxSize());
assert(it->GetFeesWithDescendants() >= childFees + it->GetFee());
} else {
assert(it->GetSizeWithDescendants() == it->GetTxSize());
assert(it->GetFeesWithDescendants() == it->GetFee());
}
assert(it->GetFeesWithDescendants() >= 0);
if (fDependsWait)
waitingOnDependants.push_back(&(*it));
else {
CValidationState state;
assert(CheckInputs(tx, state, mempoolDuplicate, false, 0, false, NULL));
UpdateCoins(tx, state, mempoolDuplicate, 1000000);
}
}
unsigned int stepsSinceLastRemove = 0;
while (!waitingOnDependants.empty()) {
const CTxMemPoolEntry* entry = waitingOnDependants.front();
waitingOnDependants.pop_front();
CValidationState state;
if (!mempoolDuplicate.HaveInputs(entry->GetTx())) {
waitingOnDependants.push_back(entry);
stepsSinceLastRemove++;
assert(stepsSinceLastRemove < waitingOnDependants.size());
} else {
assert(CheckInputs(entry->GetTx(), state, mempoolDuplicate, false, 0, false, NULL));
UpdateCoins(entry->GetTx(), state, mempoolDuplicate, 1000000);
stepsSinceLastRemove = 0;
}
}
for (std::map<COutPoint, CInPoint>::const_iterator it = mapNextTx.begin(); it != mapNextTx.end(); it++) {
uint256 hash = it->second.ptx->GetHash();
indexed_transaction_set::const_iterator it2 = mapTx.find(hash);
const CTransaction& tx = it2->GetTx();
assert(it2 != mapTx.end());
assert(&tx == it->second.ptx);
assert(tx.vin.size() > it->second.n);
assert(it->first == it->second.ptx->vin[it->second.n].prevout);
}
assert(totalTxSize == checkTotal);
assert(innerUsage == cachedInnerUsage);
}
void CTxMemPool::queryHashes(vector<uint256>& vtxid)
{
vtxid.clear();
LOCK(cs);
vtxid.reserve(mapTx.size());
for (indexed_transaction_set::iterator mi = mapTx.begin(); mi != mapTx.end(); ++mi)
vtxid.push_back(mi->GetTx().GetHash());
}
bool CTxMemPool::lookup(uint256 hash, CTransaction& result) const
{
LOCK(cs);
indexed_transaction_set::const_iterator i = mapTx.find(hash);
if (i == mapTx.end()) return false;
result = i->GetTx();
return true;
}
CFeeRate CTxMemPool::estimateFee(int nBlocks) const
{
LOCK(cs);
return minerPolicyEstimator->estimateFee(nBlocks);
}
double CTxMemPool::estimatePriority(int nBlocks) const
{
LOCK(cs);
return minerPolicyEstimator->estimatePriority(nBlocks);
}
bool
CTxMemPool::WriteFeeEstimates(CAutoFile& fileout) const
{
try {
LOCK(cs);
fileout << 109900; // version required to read: 0.10.99 or later
fileout << CLIENT_VERSION; // version that wrote the file
minerPolicyEstimator->Write(fileout);
}
catch (const std::exception&) {
LogPrintf("CTxMemPool::WriteFeeEstimates(): unable to write policy estimator data (non-fatal)\n");
return false;
}
return true;
}
bool
CTxMemPool::ReadFeeEstimates(CAutoFile& filein)
{
try {
int nVersionRequired, nVersionThatWrote;
filein >> nVersionRequired >> nVersionThatWrote;
if (nVersionRequired > CLIENT_VERSION)
return error("CTxMemPool::ReadFeeEstimates(): up-version (%d) fee estimate file", nVersionRequired);
LOCK(cs);
minerPolicyEstimator->Read(filein);
}
catch (const std::exception&) {
LogPrintf("CTxMemPool::ReadFeeEstimates(): unable to read policy estimator data (non-fatal)\n");
return false;
}
return true;
}
void CTxMemPool::PrioritiseTransaction(const uint256 hash, const string strHash, double dPriorityDelta, const CAmount& nFeeDelta)
{
{
LOCK(cs);
std::pair<double, CAmount> &deltas = mapDeltas[hash];
deltas.first += dPriorityDelta;
deltas.second += nFeeDelta;
}
LogPrintf("PrioritiseTransaction: %s priority += %f, fee += %d\n", strHash, dPriorityDelta, FormatMoney(nFeeDelta));
}
void CTxMemPool::ApplyDeltas(const uint256 hash, double &dPriorityDelta, CAmount &nFeeDelta)
{
LOCK(cs);
std::map<uint256, std::pair<double, CAmount> >::iterator pos = mapDeltas.find(hash);
if (pos == mapDeltas.end())
return;
const std::pair<double, CAmount> &deltas = pos->second;
dPriorityDelta += deltas.first;
nFeeDelta += deltas.second;
}
void CTxMemPool::ClearPrioritisation(const uint256 hash)
{
LOCK(cs);
mapDeltas.erase(hash);
}
bool CTxMemPool::HasNoInputsOf(const CTransaction &tx) const
{
for (unsigned int i = 0; i < tx.vin.size(); i++)
if (exists(tx.vin[i].prevout.hash))
return false;
return true;
}
CCoinsViewMemPool::CCoinsViewMemPool(CCoinsView *baseIn, CTxMemPool &mempoolIn) : CCoinsViewBacked(baseIn), mempool(mempoolIn) { }
bool CCoinsViewMemPool::GetCoins(const uint256 &txid, CCoins &coins) const {
// If an entry in the mempool exists, always return that one, as it's guaranteed to never
// conflict with the underlying cache, and it cannot have pruned entries (as it contains full)
// transactions. First checking the underlying cache risks returning a pruned entry instead.
CTransaction tx;
if (mempool.lookup(txid, tx)) {
coins = CCoins(tx, MEMPOOL_HEIGHT);
return true;
}
return (base->GetCoins(txid, coins) && !coins.IsPruned());
}
bool CCoinsViewMemPool::HaveCoins(const uint256 &txid) const {
return mempool.exists(txid) || base->HaveCoins(txid);
}
size_t CTxMemPool::DynamicMemoryUsage() const {
LOCK(cs);
// Estimate the overhead of mapTx to be 9 pointers + an allocation, as no exact formula for boost::multi_index_contained is implemented.
return memusage::MallocUsage(sizeof(CTxMemPoolEntry) + 9 * sizeof(void*)) * mapTx.size() + memusage::DynamicUsage(mapNextTx) + memusage::DynamicUsage(mapDeltas) + memusage::DynamicUsage(mapLinks) + cachedInnerUsage;
}
void CTxMemPool::RemoveStaged(setEntries &stage) {
AssertLockHeld(cs);
UpdateForRemoveFromMempool(stage);
BOOST_FOREACH(const txiter& it, stage) {
removeUnchecked(it);
}
}
bool CTxMemPool::addUnchecked(const uint256&hash, const CTxMemPoolEntry &entry, bool fCurrentEstimate)
{
LOCK(cs);
setEntries setAncestors;
uint64_t nNoLimit = std::numeric_limits<uint64_t>::max();
std::string dummy;
CalculateMemPoolAncestors(entry, setAncestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy);
return addUnchecked(hash, entry, setAncestors, fCurrentEstimate);
}
void CTxMemPool::UpdateChild(txiter entry, txiter child, bool add)
{
setEntries s;
if (add && mapLinks[entry].children.insert(child).second) {
cachedInnerUsage += memusage::IncrementalDynamicUsage(s);
} else if (!add && mapLinks[entry].children.erase(child)) {
cachedInnerUsage -= memusage::IncrementalDynamicUsage(s);
}
}
void CTxMemPool::UpdateParent(txiter entry, txiter parent, bool add)
{
setEntries s;
if (add && mapLinks[entry].parents.insert(parent).second) {
cachedInnerUsage += memusage::IncrementalDynamicUsage(s);
} else if (!add && mapLinks[entry].parents.erase(parent)) {
cachedInnerUsage -= memusage::IncrementalDynamicUsage(s);
}
}
const CTxMemPool::setEntries & CTxMemPool::GetMemPoolParents(txiter entry) const
{
assert (entry != mapTx.end());
txlinksMap::const_iterator it = mapLinks.find(entry);
assert(it != mapLinks.end());
return it->second.parents;
}
const CTxMemPool::setEntries & CTxMemPool::GetMemPoolChildren(txiter entry) const
{
assert (entry != mapTx.end());
txlinksMap::const_iterator it = mapLinks.find(entry);
assert(it != mapLinks.end());
return it->second.children;
}
|