aboutsummaryrefslogtreecommitdiff
path: root/src/txmempool.cpp
blob: be251d1d6427d4b01e9f3c6f8a9c9c3c579693b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2013 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include "core.h"
#include "txmempool.h"

using namespace std;

CTxMemPoolEntry::CTxMemPoolEntry()
{
    nHeight = MEMPOOL_HEIGHT;
}

CTxMemPoolEntry::CTxMemPoolEntry(const CTransaction& _tx, int64_t _nFee,
                                 int64_t _nTime, double _dPriority,
                                 unsigned int _nHeight):
    tx(_tx), nFee(_nFee), nTime(_nTime), dPriority(_dPriority), nHeight(_nHeight)
{
    nTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION);
}

CTxMemPoolEntry::CTxMemPoolEntry(const CTxMemPoolEntry& other)
{
    *this = other;
}

double
CTxMemPoolEntry::GetPriority(unsigned int currentHeight) const
{
    int64_t nValueIn = tx.GetValueOut()+nFee;
    double deltaPriority = ((double)(currentHeight-nHeight)*nValueIn)/nTxSize;
    double dResult = dPriority + deltaPriority;
    return dResult;
}

CTxMemPool::CTxMemPool()
{
    // Sanity checks off by default for performance, because otherwise
    // accepting transactions becomes O(N^2) where N is the number
    // of transactions in the pool
    fSanityCheck = false;
}

void CTxMemPool::pruneSpent(const uint256 &hashTx, CCoins &coins)
{
    LOCK(cs);

    std::map<COutPoint, CInPoint>::iterator it = mapNextTx.lower_bound(COutPoint(hashTx, 0));

    // iterate over all COutPoints in mapNextTx whose hash equals the provided hashTx
    while (it != mapNextTx.end() && it->first.hash == hashTx) {
        coins.Spend(it->first.n); // and remove those outputs from coins
        it++;
    }
}

unsigned int CTxMemPool::GetTransactionsUpdated() const
{
    LOCK(cs);
    return nTransactionsUpdated;
}

void CTxMemPool::AddTransactionsUpdated(unsigned int n)
{
    LOCK(cs);
    nTransactionsUpdated += n;
}


bool CTxMemPool::addUnchecked(const uint256& hash, const CTxMemPoolEntry &entry)
{
    // Add to memory pool without checking anything.
    // Used by main.cpp AcceptToMemoryPool(), which DOES do
    // all the appropriate checks.
    LOCK(cs);
    {
        mapTx[hash] = entry;
        const CTransaction& tx = mapTx[hash].GetTx();
        for (unsigned int i = 0; i < tx.vin.size(); i++)
            mapNextTx[tx.vin[i].prevout] = CInPoint(&tx, i);
        nTransactionsUpdated++;
    }
    return true;
}


bool CTxMemPool::remove(const CTransaction &tx, bool fRecursive)
{
    // Remove transaction from memory pool
    {
        LOCK(cs);
        uint256 hash = tx.GetHash();
        if (fRecursive) {
            for (unsigned int i = 0; i < tx.vout.size(); i++) {
                std::map<COutPoint, CInPoint>::iterator it = mapNextTx.find(COutPoint(hash, i));
                if (it != mapNextTx.end())
                    remove(*it->second.ptx, true);
            }
        }
        if (mapTx.count(hash))
        {
            BOOST_FOREACH(const CTxIn& txin, tx.vin)
                mapNextTx.erase(txin.prevout);
            mapTx.erase(hash);
            nTransactionsUpdated++;
        }
    }
    return true;
}

bool CTxMemPool::removeConflicts(const CTransaction &tx)
{
    // Remove transactions which depend on inputs of tx, recursively
    LOCK(cs);
    BOOST_FOREACH(const CTxIn &txin, tx.vin) {
        std::map<COutPoint, CInPoint>::iterator it = mapNextTx.find(txin.prevout);
        if (it != mapNextTx.end()) {
            const CTransaction &txConflict = *it->second.ptx;
            if (txConflict != tx)
                remove(txConflict, true);
        }
    }
    return true;
}

void CTxMemPool::clear()
{
    LOCK(cs);
    mapTx.clear();
    mapNextTx.clear();
    ++nTransactionsUpdated;
}

void CTxMemPool::check(CCoinsViewCache *pcoins) const
{
    if (!fSanityCheck)
        return;

    LogPrint("mempool", "Checking mempool with %u transactions and %u inputs\n", (unsigned int)mapTx.size(), (unsigned int)mapNextTx.size());

    LOCK(cs);
    for (std::map<uint256, CTxMemPoolEntry>::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) {
        unsigned int i = 0;
        const CTransaction& tx = it->second.GetTx();
        BOOST_FOREACH(const CTxIn &txin, tx.vin) {
            // Check that every mempool transaction's inputs refer to available coins, or other mempool tx's.
            std::map<uint256, CTxMemPoolEntry>::const_iterator it2 = mapTx.find(txin.prevout.hash);
            if (it2 != mapTx.end()) {
                const CTransaction& tx2 = it2->second.GetTx();
                assert(tx2.vout.size() > txin.prevout.n && !tx2.vout[txin.prevout.n].IsNull());
            } else {
                CCoins &coins = pcoins->GetCoins(txin.prevout.hash);
                assert(coins.IsAvailable(txin.prevout.n));
            }
            // Check whether its inputs are marked in mapNextTx.
            std::map<COutPoint, CInPoint>::const_iterator it3 = mapNextTx.find(txin.prevout);
            assert(it3 != mapNextTx.end());
            assert(it3->second.ptx == &tx);
            assert(it3->second.n == i);
            i++;
        }
    }
    for (std::map<COutPoint, CInPoint>::const_iterator it = mapNextTx.begin(); it != mapNextTx.end(); it++) {
        uint256 hash = it->second.ptx->GetHash();
        map<uint256, CTxMemPoolEntry>::const_iterator it2 = mapTx.find(hash);
        const CTransaction& tx = it2->second.GetTx();
        assert(it2 != mapTx.end());
        assert(&tx == it->second.ptx);
        assert(tx.vin.size() > it->second.n);
        assert(it->first == it->second.ptx->vin[it->second.n].prevout);
    }
}

void CTxMemPool::queryHashes(vector<uint256>& vtxid)
{
    vtxid.clear();

    LOCK(cs);
    vtxid.reserve(mapTx.size());
    for (map<uint256, CTxMemPoolEntry>::iterator mi = mapTx.begin(); mi != mapTx.end(); ++mi)
        vtxid.push_back((*mi).first);
}

bool CTxMemPool::lookup(uint256 hash, CTransaction& result) const
{
    LOCK(cs);
    map<uint256, CTxMemPoolEntry>::const_iterator i = mapTx.find(hash);
    if (i == mapTx.end()) return false;
    result = i->second.GetTx();
    return true;
}

CCoinsViewMemPool::CCoinsViewMemPool(CCoinsView &baseIn, CTxMemPool &mempoolIn) : CCoinsViewBacked(baseIn), mempool(mempoolIn) { }

bool CCoinsViewMemPool::GetCoins(const uint256 &txid, CCoins &coins) {
    if (base->GetCoins(txid, coins))
        return true;
    CTransaction tx;
    if (mempool.lookup(txid, tx)) {
        coins = CCoins(tx, MEMPOOL_HEIGHT);
        return true;
    }
    return false;
}

bool CCoinsViewMemPool::HaveCoins(const uint256 &txid) {
    return mempool.exists(txid) || base->HaveCoins(txid);
}