aboutsummaryrefslogtreecommitdiff
path: root/src/tests.c
blob: 78cdd67f279e08008bde5584cefe4c0c821d4cc1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
/**********************************************************************
 * Copyright (c) 2013, 2014 Pieter Wuille                             *
 * Distributed under the MIT software license, see the accompanying   *
 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
 **********************************************************************/

#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif

#include <stdio.h>
#include <stdlib.h>

#include "secp256k1.c"
#include "testrand_impl.h"

#ifdef ENABLE_OPENSSL_TESTS
#include "openssl/bn.h"
#include "openssl/ec.h"
#include "openssl/ecdsa.h"
#include "openssl/obj_mac.h"
#endif

static int count = 64;

void random_field_element_test(secp256k1_fe_t *fe) {
    do {
        unsigned char b32[32];
        secp256k1_rand256_test(b32);
        if (secp256k1_fe_set_b32(fe, b32)) {
            break;
        }
    } while(1);
}

void random_field_element_magnitude(secp256k1_fe_t *fe) {
    secp256k1_fe_normalize(fe);
    int n = secp256k1_rand32() % 4;
    for (int i = 0; i < n; i++) {
        secp256k1_fe_negate(fe, fe, 1 + 2*i);
        secp256k1_fe_negate(fe, fe, 2 + 2*i);
    }
}

void random_group_element_test(secp256k1_ge_t *ge) {
    secp256k1_fe_t fe;
    do {
        random_field_element_test(&fe);
        if (secp256k1_ge_set_xo(ge, &fe, secp256k1_rand32() & 1))
            break;
    } while(1);
}

void random_group_element_jacobian_test(secp256k1_gej_t *gej, const secp256k1_ge_t *ge) {
    do {
        random_field_element_test(&gej->z);
        if (!secp256k1_fe_is_zero(&gej->z)) {
            break;
        }
    } while(1);
    secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &gej->z);
    secp256k1_fe_t z3; secp256k1_fe_mul(&z3, &z2, &gej->z);
    secp256k1_fe_mul(&gej->x, &ge->x, &z2);
    secp256k1_fe_mul(&gej->y, &ge->y, &z3);
    gej->infinity = ge->infinity;
}

void random_scalar_order_test(secp256k1_scalar_t *num) {
    do {
        unsigned char b32[32];
        secp256k1_rand256_test(b32);
        int overflow = 0;
        secp256k1_scalar_set_b32(num, b32, &overflow);
        if (overflow || secp256k1_scalar_is_zero(num))
            continue;
        break;
    } while(1);
}

void random_scalar_order(secp256k1_scalar_t *num) {
    do {
        unsigned char b32[32];
        secp256k1_rand256(b32);
        int overflow = 0;
        secp256k1_scalar_set_b32(num, b32, &overflow);
        if (overflow || secp256k1_scalar_is_zero(num))
            continue;
        break;
    } while(1);
}

/***** NUM TESTS *****/

#ifndef USE_NUM_NONE
void random_num_negate(secp256k1_num_t *num) {
    if (secp256k1_rand32() & 1)
        secp256k1_num_negate(num);
}

void random_num_order_test(secp256k1_num_t *num) {
    secp256k1_scalar_t sc;
    random_scalar_order_test(&sc);
    secp256k1_scalar_get_num(num, &sc);
}

void random_num_order(secp256k1_num_t *num) {
    secp256k1_scalar_t sc;
    random_scalar_order(&sc);
    secp256k1_scalar_get_num(num, &sc);
}

void test_num_negate(void) {
    secp256k1_num_t n1;
    secp256k1_num_t n2;
    random_num_order_test(&n1); /* n1 = R */
    random_num_negate(&n1);
    secp256k1_num_copy(&n2, &n1); /* n2 = R */
    secp256k1_num_sub(&n1, &n2, &n1); /* n1 = n2-n1 = 0 */
    CHECK(secp256k1_num_is_zero(&n1));
    secp256k1_num_copy(&n1, &n2); /* n1 = R */
    secp256k1_num_negate(&n1); /* n1 = -R */
    CHECK(!secp256k1_num_is_zero(&n1));
    secp256k1_num_add(&n1, &n2, &n1); /* n1 = n2+n1 = 0 */
    CHECK(secp256k1_num_is_zero(&n1));
    secp256k1_num_copy(&n1, &n2); /* n1 = R */
    secp256k1_num_negate(&n1); /* n1 = -R */
    CHECK(secp256k1_num_is_neg(&n1) != secp256k1_num_is_neg(&n2));
    secp256k1_num_negate(&n1); /* n1 = R */
    CHECK(secp256k1_num_eq(&n1, &n2));
}

void test_num_add_sub(void) {
    int r = secp256k1_rand32();
    secp256k1_num_t n1;
    secp256k1_num_t n2;
    random_num_order_test(&n1); /* n1 = R1 */
    if (r & 1) {
        random_num_negate(&n1);
    }
    random_num_order_test(&n2); /* n2 = R2 */
    if (r & 2) {
        random_num_negate(&n2);
    }
    secp256k1_num_t n1p2, n2p1, n1m2, n2m1;
    secp256k1_num_add(&n1p2, &n1, &n2); /* n1p2 = R1 + R2 */
    secp256k1_num_add(&n2p1, &n2, &n1); /* n2p1 = R2 + R1 */
    secp256k1_num_sub(&n1m2, &n1, &n2); /* n1m2 = R1 - R2 */
    secp256k1_num_sub(&n2m1, &n2, &n1); /* n2m1 = R2 - R1 */
    CHECK(secp256k1_num_eq(&n1p2, &n2p1));
    CHECK(!secp256k1_num_eq(&n1p2, &n1m2));
    secp256k1_num_negate(&n2m1); /* n2m1 = -R2 + R1 */
    CHECK(secp256k1_num_eq(&n2m1, &n1m2));
    CHECK(!secp256k1_num_eq(&n2m1, &n1));
    secp256k1_num_add(&n2m1, &n2m1, &n2); /* n2m1 = -R2 + R1 + R2 = R1 */
    CHECK(secp256k1_num_eq(&n2m1, &n1));
    CHECK(!secp256k1_num_eq(&n2p1, &n1));
    secp256k1_num_sub(&n2p1, &n2p1, &n2); /* n2p1 = R2 + R1 - R2 = R1 */
    CHECK(secp256k1_num_eq(&n2p1, &n1));
}

void run_num_smalltests(void) {
    for (int i=0; i<100*count; i++) {
        test_num_negate();
        test_num_add_sub();
    }
}
#endif

/***** SCALAR TESTS *****/

void scalar_test(void) {
    unsigned char c[32];

    /* Set 's' to a random scalar, with value 'snum'. */
    secp256k1_scalar_t s;
    random_scalar_order_test(&s);

    /* Set 's1' to a random scalar, with value 's1num'. */
    secp256k1_scalar_t s1;
    random_scalar_order_test(&s1);

    /* Set 's2' to a random scalar, with value 'snum2', and byte array representation 'c'. */
    secp256k1_scalar_t s2;
    random_scalar_order_test(&s2);
    secp256k1_scalar_get_b32(c, &s2);

#ifndef USE_NUM_NONE
    secp256k1_num_t snum, s1num, s2num;
    secp256k1_scalar_get_num(&snum, &s);
    secp256k1_scalar_get_num(&s1num, &s1);
    secp256k1_scalar_get_num(&s2num, &s2);

    secp256k1_num_t order;
    secp256k1_scalar_order_get_num(&order);
    secp256k1_num_t half_order = order;
    secp256k1_num_shift(&half_order, 1);
#endif

    {
        /* Test that fetching groups of 4 bits from a scalar and recursing n(i)=16*n(i-1)+p(i) reconstructs it. */
        secp256k1_scalar_t n;
        secp256k1_scalar_set_int(&n, 0);
        for (int i = 0; i < 256; i += 4) {
            secp256k1_scalar_t t;
            secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits(&s, 256 - 4 - i, 4));
            for (int j = 0; j < 4; j++) {
                secp256k1_scalar_add(&n, &n, &n);
            }
            secp256k1_scalar_add(&n, &n, &t);
        }
        CHECK(secp256k1_scalar_eq(&n, &s));
    }

    {
        /* Test that fetching groups of randomly-sized bits from a scalar and recursing n(i)=b*n(i-1)+p(i) reconstructs it. */
        secp256k1_scalar_t n;
        secp256k1_scalar_set_int(&n, 0);
        int i = 0;
        while (i < 256) {
            int now = (secp256k1_rand32() % 15) + 1;
            if (now + i > 256) {
                now = 256 - i;
            }
            secp256k1_scalar_t t;
            secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits_var(&s, 256 - now - i, now));
            for (int j = 0; j < now; j++) {
                secp256k1_scalar_add(&n, &n, &n);
            }
            secp256k1_scalar_add(&n, &n, &t);
            i += now;
        }
        CHECK(secp256k1_scalar_eq(&n, &s));
    }

#ifndef USE_NUM_NONE
    {
        /* Test that adding the scalars together is equal to adding their numbers together modulo the order. */
        secp256k1_num_t rnum;
        secp256k1_num_add(&rnum, &snum, &s2num);
        secp256k1_num_mod(&rnum, &order);
        secp256k1_scalar_t r;
        secp256k1_scalar_add(&r, &s, &s2);
        secp256k1_num_t r2num;
        secp256k1_scalar_get_num(&r2num, &r);
        CHECK(secp256k1_num_eq(&rnum, &r2num));
    }

    {
        /* Test that multipying the scalars is equal to multiplying their numbers modulo the order. */
        secp256k1_num_t rnum;
        secp256k1_num_mul(&rnum, &snum, &s2num);
        secp256k1_num_mod(&rnum, &order);
        secp256k1_scalar_t r;
        secp256k1_scalar_mul(&r, &s, &s2);
        secp256k1_num_t r2num;
        secp256k1_scalar_get_num(&r2num, &r);
        CHECK(secp256k1_num_eq(&rnum, &r2num));
        /* The result can only be zero if at least one of the factors was zero. */
        CHECK(secp256k1_scalar_is_zero(&r) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_zero(&s2)));
        /* The results can only be equal to one of the factors if that factor was zero, or the other factor was one. */
        CHECK(secp256k1_num_eq(&rnum, &snum) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_one(&s2)));
        CHECK(secp256k1_num_eq(&rnum, &s2num) == (secp256k1_scalar_is_zero(&s2) || secp256k1_scalar_is_one(&s)));
    }

    {
        /* Check that comparison with zero matches comparison with zero on the number. */
        CHECK(secp256k1_num_is_zero(&snum) == secp256k1_scalar_is_zero(&s));
        /* Check that comparison with the half order is equal to testing for high scalar. */
        CHECK(secp256k1_scalar_is_high(&s) == (secp256k1_num_cmp(&snum, &half_order) > 0));
        secp256k1_scalar_t neg;
        secp256k1_scalar_negate(&neg, &s);
        secp256k1_num_t negnum;
        secp256k1_num_sub(&negnum, &order, &snum);
        secp256k1_num_mod(&negnum, &order);
        /* Check that comparison with the half order is equal to testing for high scalar after negation. */
        CHECK(secp256k1_scalar_is_high(&neg) == (secp256k1_num_cmp(&negnum, &half_order) > 0));
        /* Negating should change the high property, unless the value was already zero. */
        CHECK((secp256k1_scalar_is_high(&s) == secp256k1_scalar_is_high(&neg)) == secp256k1_scalar_is_zero(&s));
        secp256k1_num_t negnum2;
        secp256k1_scalar_get_num(&negnum2, &neg);
        /* Negating a scalar should be equal to (order - n) mod order on the number. */
        CHECK(secp256k1_num_eq(&negnum, &negnum2));
        secp256k1_scalar_add(&neg, &neg, &s);
        /* Adding a number to its negation should result in zero. */
        CHECK(secp256k1_scalar_is_zero(&neg));
        secp256k1_scalar_negate(&neg, &neg);
        /* Negating zero should still result in zero. */
        CHECK(secp256k1_scalar_is_zero(&neg));
    }

    {
        /* Test secp256k1_scalar_mul_shift_var. */
        secp256k1_scalar_t r;
        unsigned int shift = 256 + (secp256k1_rand32() % 257);
        secp256k1_scalar_mul_shift_var(&r, &s1, &s2, shift);
        secp256k1_num_t rnum;
        secp256k1_num_mul(&rnum, &s1num, &s2num);
        secp256k1_num_shift(&rnum, shift - 1);
        secp256k1_num_t one;
        unsigned char cone[1] = {0x01};
        secp256k1_num_set_bin(&one, cone, 1);
        secp256k1_num_add(&rnum, &rnum, &one);
        secp256k1_num_shift(&rnum, 1);
        secp256k1_num_t rnum2;
        secp256k1_scalar_get_num(&rnum2, &r);
        CHECK(secp256k1_num_eq(&rnum, &rnum2));
    }
#endif

    {
        /* Test that scalar inverses are equal to the inverse of their number modulo the order. */
        if (!secp256k1_scalar_is_zero(&s)) {
            secp256k1_scalar_t inv;
            secp256k1_scalar_inverse(&inv, &s);
#ifndef USE_NUM_NONE
            secp256k1_num_t invnum;
            secp256k1_num_mod_inverse(&invnum, &snum, &order);
            secp256k1_num_t invnum2;
            secp256k1_scalar_get_num(&invnum2, &inv);
            CHECK(secp256k1_num_eq(&invnum, &invnum2));
#endif
            secp256k1_scalar_mul(&inv, &inv, &s);
            /* Multiplying a scalar with its inverse must result in one. */
            CHECK(secp256k1_scalar_is_one(&inv));
            secp256k1_scalar_inverse(&inv, &inv);
            /* Inverting one must result in one. */
            CHECK(secp256k1_scalar_is_one(&inv));
        }
    }

    {
        /* Test commutativity of add. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_add(&r1, &s1, &s2);
        secp256k1_scalar_add(&r2, &s2, &s1);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test add_bit. */
        int bit = secp256k1_rand32() % 256;
        secp256k1_scalar_t b;
        secp256k1_scalar_set_int(&b, 1);
        CHECK(secp256k1_scalar_is_one(&b));
        for (int i = 0; i < bit; i++) {
            secp256k1_scalar_add(&b, &b, &b);
        }
        secp256k1_scalar_t r1 = s1, r2 = s1;
        if (!secp256k1_scalar_add(&r1, &r1, &b)) {
            /* No overflow happened. */
            secp256k1_scalar_add_bit(&r2, bit);
            CHECK(secp256k1_scalar_eq(&r1, &r2));
        }
    }

    {
        /* Test commutativity of mul. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_mul(&r1, &s1, &s2);
        secp256k1_scalar_mul(&r2, &s2, &s1);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test associativity of add. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_add(&r1, &s1, &s2);
        secp256k1_scalar_add(&r1, &r1, &s);
        secp256k1_scalar_add(&r2, &s2, &s);
        secp256k1_scalar_add(&r2, &s1, &r2);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test associativity of mul. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_mul(&r1, &s1, &s2);
        secp256k1_scalar_mul(&r1, &r1, &s);
        secp256k1_scalar_mul(&r2, &s2, &s);
        secp256k1_scalar_mul(&r2, &s1, &r2);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test distributitivity of mul over add. */
        secp256k1_scalar_t r1, r2, t;
        secp256k1_scalar_add(&r1, &s1, &s2);
        secp256k1_scalar_mul(&r1, &r1, &s);
        secp256k1_scalar_mul(&r2, &s1, &s);
        secp256k1_scalar_mul(&t, &s2, &s);
        secp256k1_scalar_add(&r2, &r2, &t);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test square. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_sqr(&r1, &s1);
        secp256k1_scalar_mul(&r2, &s1, &s1);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

}

void run_scalar_tests(void) {
    for (int i = 0; i < 128 * count; i++) {
        scalar_test();
    }

    {
        /* (-1)+1 should be zero. */
        secp256k1_scalar_t s, o;
        secp256k1_scalar_set_int(&s, 1);
        secp256k1_scalar_negate(&o, &s);
        secp256k1_scalar_add(&o, &o, &s);
        CHECK(secp256k1_scalar_is_zero(&o));
    }

#ifndef USE_NUM_NONE
    {
        /* A scalar with value of the curve order should be 0. */
        secp256k1_num_t order;
        secp256k1_scalar_order_get_num(&order);
        unsigned char bin[32];
        secp256k1_num_get_bin(bin, 32, &order);
        secp256k1_scalar_t zero;
        int overflow = 0;
        secp256k1_scalar_set_b32(&zero, bin, &overflow);
        CHECK(overflow == 1);
        CHECK(secp256k1_scalar_is_zero(&zero));
    }
#endif
}

/***** FIELD TESTS *****/

void random_fe(secp256k1_fe_t *x) {
    unsigned char bin[32];
    do {
        secp256k1_rand256(bin);
        if (secp256k1_fe_set_b32(x, bin)) {
            return;
        }
    } while(1);
}

void random_fe_non_zero(secp256k1_fe_t *nz) {
    int tries = 10;
    while (--tries >= 0) {
        random_fe(nz);
        secp256k1_fe_normalize(nz);
        if (!secp256k1_fe_is_zero(nz))
            break;
    }
    /* Infinitesimal probability of spurious failure here */
    CHECK(tries >= 0);
}

void random_fe_non_square(secp256k1_fe_t *ns) {
    random_fe_non_zero(ns);
    secp256k1_fe_t r;
    if (secp256k1_fe_sqrt(&r, ns)) {
        secp256k1_fe_negate(ns, ns, 1);
    }
}

int check_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
    secp256k1_fe_t an = *a; secp256k1_fe_normalize(&an);
    secp256k1_fe_t bn = *b; secp256k1_fe_normalize(&bn);
    return secp256k1_fe_equal(&an, &bn);
}

int check_fe_inverse(const secp256k1_fe_t *a, const secp256k1_fe_t *ai) {
    secp256k1_fe_t x; secp256k1_fe_mul(&x, a, ai);
    secp256k1_fe_t one; secp256k1_fe_set_int(&one, 1);
    return check_fe_equal(&x, &one);
}

void run_field_inv(void) {
    secp256k1_fe_t x, xi, xii;
    for (int i=0; i<10*count; i++) {
        random_fe_non_zero(&x);
        secp256k1_fe_inv(&xi, &x);
        CHECK(check_fe_inverse(&x, &xi));
        secp256k1_fe_inv(&xii, &xi);
        CHECK(check_fe_equal(&x, &xii));
    }
}

void run_field_inv_var(void) {
    secp256k1_fe_t x, xi, xii;
    for (int i=0; i<10*count; i++) {
        random_fe_non_zero(&x);
        secp256k1_fe_inv_var(&xi, &x);
        CHECK(check_fe_inverse(&x, &xi));
        secp256k1_fe_inv_var(&xii, &xi);
        CHECK(check_fe_equal(&x, &xii));
    }
}

void run_field_inv_all(void) {
    secp256k1_fe_t x[16], xi[16], xii[16];
    /* Check it's safe to call for 0 elements */
    secp256k1_fe_inv_all(0, xi, x);
    for (int i=0; i<count; i++) {
        size_t len = (secp256k1_rand32() & 15) + 1;
        for (size_t j=0; j<len; j++)
            random_fe_non_zero(&x[j]);
        secp256k1_fe_inv_all(len, xi, x);
        for (size_t j=0; j<len; j++)
            CHECK(check_fe_inverse(&x[j], &xi[j]));
        secp256k1_fe_inv_all(len, xii, xi);
        for (size_t j=0; j<len; j++)
            CHECK(check_fe_equal(&x[j], &xii[j]));
    }
}

void run_field_inv_all_var(void) {
    secp256k1_fe_t x[16], xi[16], xii[16];
    /* Check it's safe to call for 0 elements */
    secp256k1_fe_inv_all_var(0, xi, x);
    for (int i=0; i<count; i++) {
        size_t len = (secp256k1_rand32() & 15) + 1;
        for (size_t j=0; j<len; j++)
            random_fe_non_zero(&x[j]);
        secp256k1_fe_inv_all_var(len, xi, x);
        for (size_t j=0; j<len; j++)
            CHECK(check_fe_inverse(&x[j], &xi[j]));
        secp256k1_fe_inv_all_var(len, xii, xi);
        for (size_t j=0; j<len; j++)
            CHECK(check_fe_equal(&x[j], &xii[j]));
    }
}

void run_sqr(void) {
    secp256k1_fe_t x, s;

    {
        secp256k1_fe_set_int(&x, 1);
        secp256k1_fe_negate(&x, &x, 1);

        for (int i=1; i<=512; ++i) {
            secp256k1_fe_mul_int(&x, 2);
            secp256k1_fe_normalize(&x);
            secp256k1_fe_sqr(&s, &x);
        }
    }
}

void test_sqrt(const secp256k1_fe_t *a, const secp256k1_fe_t *k) {
    secp256k1_fe_t r1, r2;
    int v = secp256k1_fe_sqrt(&r1, a);
    CHECK((v == 0) == (k == NULL));

    if (k != NULL) {
        /* Check that the returned root is +/- the given known answer */
        secp256k1_fe_negate(&r2, &r1, 1);
        secp256k1_fe_add(&r1, k); secp256k1_fe_add(&r2, k);
        secp256k1_fe_normalize(&r1); secp256k1_fe_normalize(&r2);
        CHECK(secp256k1_fe_is_zero(&r1) || secp256k1_fe_is_zero(&r2));
    }
}

void run_sqrt(void) {
    secp256k1_fe_t ns, x, s, t;

    /* Check sqrt(0) is 0 */
    secp256k1_fe_set_int(&x, 0);
    secp256k1_fe_sqr(&s, &x);
    test_sqrt(&s, &x);

    /* Check sqrt of small squares (and their negatives) */
    for (int i=1; i<=100; i++) {
        secp256k1_fe_set_int(&x, i);
        secp256k1_fe_sqr(&s, &x);
        test_sqrt(&s, &x);
        secp256k1_fe_negate(&t, &s, 1);
        test_sqrt(&t, NULL);
    }

    /* Consistency checks for large random values */
    for (int i=0; i<10; i++) {
        random_fe_non_square(&ns);
        for (int j=0; j<count; j++) {
            random_fe(&x);
            secp256k1_fe_sqr(&s, &x);
            test_sqrt(&s, &x);
            secp256k1_fe_negate(&t, &s, 1);
            test_sqrt(&t, NULL);
            secp256k1_fe_mul(&t, &s, &ns);
            test_sqrt(&t, NULL);
        }
    }
}

/***** GROUP TESTS *****/

int ge_equals_ge(const secp256k1_ge_t *a, const secp256k1_ge_t *b) {
    if (a->infinity && b->infinity)
        return 1;
    return check_fe_equal(&a->x, &b->x) && check_fe_equal(&a->y, &b->y);
}

void ge_equals_gej(const secp256k1_ge_t *a, const secp256k1_gej_t *b) {
    secp256k1_ge_t bb;
    secp256k1_gej_t bj = *b;
    secp256k1_ge_set_gej_var(&bb, &bj);
    CHECK(ge_equals_ge(a, &bb));
}

void gej_equals_gej(const secp256k1_gej_t *a, const secp256k1_gej_t *b) {
    secp256k1_ge_t aa, bb;
    secp256k1_gej_t aj = *a, bj = *b;
    secp256k1_ge_set_gej_var(&aa, &aj);
    secp256k1_ge_set_gej_var(&bb, &bj);
    CHECK(ge_equals_ge(&aa, &bb));
}

void test_ge(void) {
    char ca[135];
    char cb[68];
    int rlen;
    secp256k1_ge_t a, b, i, n;
    random_group_element_test(&a);
    random_group_element_test(&b);
    rlen = sizeof(ca);
    secp256k1_ge_get_hex(ca,&rlen,&a);
    CHECK(rlen > 4 && rlen <= (int)sizeof(ca));
    rlen = sizeof(cb);
    secp256k1_ge_get_hex(cb,&rlen,&b); /* Intentionally undersized buffer. */
    n = a;
    secp256k1_fe_normalize(&a.y);
    secp256k1_fe_negate(&n.y, &a.y, 1);
    secp256k1_ge_set_infinity(&i);
    random_field_element_magnitude(&a.x);
    random_field_element_magnitude(&a.y);
    random_field_element_magnitude(&b.x);
    random_field_element_magnitude(&b.y);
    random_field_element_magnitude(&n.x);
    random_field_element_magnitude(&n.y);

    secp256k1_gej_t aj, bj, ij, nj;
    random_group_element_jacobian_test(&aj, &a);
    random_group_element_jacobian_test(&bj, &b);
    secp256k1_gej_set_infinity(&ij);
    random_group_element_jacobian_test(&nj, &n);
    random_field_element_magnitude(&aj.x);
    random_field_element_magnitude(&aj.y);
    random_field_element_magnitude(&aj.z);
    random_field_element_magnitude(&bj.x);
    random_field_element_magnitude(&bj.y);
    random_field_element_magnitude(&bj.z);
    random_field_element_magnitude(&nj.x);
    random_field_element_magnitude(&nj.y);
    random_field_element_magnitude(&nj.z);

    /* gej + gej adds */
    secp256k1_gej_t aaj; secp256k1_gej_add_var(&aaj, &aj, &aj);
    secp256k1_gej_t abj; secp256k1_gej_add_var(&abj, &aj, &bj);
    secp256k1_gej_t aij; secp256k1_gej_add_var(&aij, &aj, &ij);
    secp256k1_gej_t anj; secp256k1_gej_add_var(&anj, &aj, &nj);
    secp256k1_gej_t iaj; secp256k1_gej_add_var(&iaj, &ij, &aj);
    secp256k1_gej_t iij; secp256k1_gej_add_var(&iij, &ij, &ij);

    /* gej + ge adds */
    secp256k1_gej_t aa; secp256k1_gej_add_ge_var(&aa, &aj, &a);
    secp256k1_gej_t ab; secp256k1_gej_add_ge_var(&ab, &aj, &b);
    secp256k1_gej_t ai; secp256k1_gej_add_ge_var(&ai, &aj, &i);
    secp256k1_gej_t an; secp256k1_gej_add_ge_var(&an, &aj, &n);
    secp256k1_gej_t ia; secp256k1_gej_add_ge_var(&ia, &ij, &a);
    secp256k1_gej_t ii; secp256k1_gej_add_ge_var(&ii, &ij, &i);

    /* const gej + ge adds */
    secp256k1_gej_t aac; secp256k1_gej_add_ge(&aac, &aj, &a);
    secp256k1_gej_t abc; secp256k1_gej_add_ge(&abc, &aj, &b);
    secp256k1_gej_t anc; secp256k1_gej_add_ge(&anc, &aj, &n);
    secp256k1_gej_t iac; secp256k1_gej_add_ge(&iac, &ij, &a);

    CHECK(secp256k1_gej_is_infinity(&an));
    CHECK(secp256k1_gej_is_infinity(&anj));
    CHECK(secp256k1_gej_is_infinity(&anc));
    gej_equals_gej(&aa, &aaj);
    gej_equals_gej(&aa, &aac);
    gej_equals_gej(&ab, &abj);
    gej_equals_gej(&ab, &abc);
    gej_equals_gej(&an, &anj);
    gej_equals_gej(&an, &anc);
    gej_equals_gej(&ia, &iaj);
    gej_equals_gej(&ai, &aij);
    gej_equals_gej(&ii, &iij);
    ge_equals_gej(&a, &ai);
    ge_equals_gej(&a, &ai);
    ge_equals_gej(&a, &iaj);
    ge_equals_gej(&a, &iaj);
    ge_equals_gej(&a, &iac);
}

void run_ge(void) {
    for (int i = 0; i < 2000*count; i++) {
        test_ge();
    }
}

/***** ECMULT TESTS *****/

void run_ecmult_chain(void) {
    /* random starting point A (on the curve) */
    secp256k1_fe_t ax; VERIFY_CHECK(secp256k1_fe_set_hex(&ax, "8b30bbe9ae2a990696b22f670709dff3727fd8bc04d3362c6c7bf458e2846004", 64));
    secp256k1_fe_t ay; VERIFY_CHECK(secp256k1_fe_set_hex(&ay, "a357ae915c4a65281309edf20504740f0eb3343990216b4f81063cb65f2f7e0f", 64));
    secp256k1_gej_t a; secp256k1_gej_set_xy(&a, &ax, &ay);
    /* two random initial factors xn and gn */
    static const unsigned char xni[32] = {
        0x84, 0xcc, 0x54, 0x52, 0xf7, 0xfd, 0xe1, 0xed,
        0xb4, 0xd3, 0x8a, 0x8c, 0xe9, 0xb1, 0xb8, 0x4c,
        0xce, 0xf3, 0x1f, 0x14, 0x6e, 0x56, 0x9b, 0xe9,
        0x70, 0x5d, 0x35, 0x7a, 0x42, 0x98, 0x54, 0x07
    };
    secp256k1_scalar_t xn;
    secp256k1_scalar_set_b32(&xn, xni, NULL);
    static const unsigned char gni[32] = {
        0xa1, 0xe5, 0x8d, 0x22, 0x55, 0x3d, 0xcd, 0x42,
        0xb2, 0x39, 0x80, 0x62, 0x5d, 0x4c, 0x57, 0xa9,
        0x6e, 0x93, 0x23, 0xd4, 0x2b, 0x31, 0x52, 0xe5,
        0xca, 0x2c, 0x39, 0x90, 0xed, 0xc7, 0xc9, 0xde
    };
    secp256k1_scalar_t gn;
    secp256k1_scalar_set_b32(&gn, gni, NULL);
    /* two small multipliers to be applied to xn and gn in every iteration: */
    static const unsigned char xfi[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0x13,0x37};
    secp256k1_scalar_t xf;
    secp256k1_scalar_set_b32(&xf, xfi, NULL);
    static const unsigned char gfi[32] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0x71,0x13};
    secp256k1_scalar_t gf;
    secp256k1_scalar_set_b32(&gf, gfi, NULL);
    /* accumulators with the resulting coefficients to A and G */
    secp256k1_scalar_t ae;
    secp256k1_scalar_set_int(&ae, 1);
    secp256k1_scalar_t ge;
    secp256k1_scalar_set_int(&ge, 0);
    /* the point being computed */
    secp256k1_gej_t x = a;
    for (int i=0; i<200*count; i++) {
        /* in each iteration, compute X = xn*X + gn*G; */
        secp256k1_ecmult(&x, &x, &xn, &gn);
        /* also compute ae and ge: the actual accumulated factors for A and G */
        /* if X was (ae*A+ge*G), xn*X + gn*G results in (xn*ae*A + (xn*ge+gn)*G) */
        secp256k1_scalar_mul(&ae, &ae, &xn);
        secp256k1_scalar_mul(&ge, &ge, &xn);
        secp256k1_scalar_add(&ge, &ge, &gn);
        /* modify xn and gn */
        secp256k1_scalar_mul(&xn, &xn, &xf);
        secp256k1_scalar_mul(&gn, &gn, &gf);

        /* verify */
        if (i == 19999) {
            char res[132]; int resl = 132;
            secp256k1_gej_get_hex(res, &resl, &x);
            CHECK(strcmp(res, "(D6E96687F9B10D092A6F35439D86CEBEA4535D0D409F53586440BD74B933E830,B95CBCA2C77DA786539BE8FD53354D2D3B4F566AE658045407ED6015EE1B2A88)") == 0);
        }
    }
    /* redo the computation, but directly with the resulting ae and ge coefficients: */
    secp256k1_gej_t x2; secp256k1_ecmult(&x2, &a, &ae, &ge);
    char res[132]; int resl = 132;
    char res2[132]; int resl2 = 132;
    secp256k1_gej_get_hex(res, &resl, &x);
    secp256k1_gej_get_hex(res2, &resl2, &x2);
    CHECK(strcmp(res, res2) == 0);
    CHECK(strlen(res) == 131);
}

void test_point_times_order(const secp256k1_gej_t *point) {
    /* X * (point + G) + (order-X) * (pointer + G) = 0 */
    secp256k1_scalar_t x;
    random_scalar_order_test(&x);
    secp256k1_scalar_t nx;
    secp256k1_scalar_negate(&nx, &x);
    secp256k1_gej_t res1, res2;
    secp256k1_ecmult(&res1, point, &x, &x); /* calc res1 = x * point + x * G; */
    secp256k1_ecmult(&res2, point, &nx, &nx); /* calc res2 = (order - x) * point + (order - x) * G; */
    secp256k1_gej_add_var(&res1, &res1, &res2);
    CHECK(secp256k1_gej_is_infinity(&res1));
    CHECK(secp256k1_gej_is_valid(&res1) == 0);
    secp256k1_ge_t res3;
    secp256k1_ge_set_gej(&res3, &res1);
    CHECK(secp256k1_ge_is_infinity(&res3));
    CHECK(secp256k1_ge_is_valid(&res3) == 0);
}

void run_point_times_order(void) {
    secp256k1_fe_t x; VERIFY_CHECK(secp256k1_fe_set_hex(&x, "02", 2));
    for (int i=0; i<500; i++) {
        secp256k1_ge_t p;
        if (secp256k1_ge_set_xo(&p, &x, 1)) {
            CHECK(secp256k1_ge_is_valid(&p));
            secp256k1_gej_t j;
            secp256k1_gej_set_ge(&j, &p);
            CHECK(secp256k1_gej_is_valid(&j));
            test_point_times_order(&j);
        }
        secp256k1_fe_sqr(&x, &x);
    }
    char c[65]; int cl=65;
    secp256k1_fe_get_hex(c, &cl, &x);
    CHECK(strcmp(c, "7603CB59B0EF6C63FE6084792A0C378CDB3233A80F8A9A09A877DEAD31B38C45") == 0);
}

void test_wnaf(const secp256k1_scalar_t *number, int w) {
    secp256k1_scalar_t x, two, t;
    secp256k1_scalar_set_int(&x, 0);
    secp256k1_scalar_set_int(&two, 2);
    int wnaf[256];
    int bits = secp256k1_ecmult_wnaf(wnaf, number, w);
    CHECK(bits <= 256);
    int zeroes = -1;
    for (int i=bits-1; i>=0; i--) {
        secp256k1_scalar_mul(&x, &x, &two);
        int v = wnaf[i];
        if (v) {
            CHECK(zeroes == -1 || zeroes >= w-1); /* check that distance between non-zero elements is at least w-1 */
            zeroes=0;
            CHECK((v & 1) == 1); /* check non-zero elements are odd */
            CHECK(v <= (1 << (w-1)) - 1); /* check range below */
            CHECK(v >= -(1 << (w-1)) - 1); /* check range above */
        } else {
            CHECK(zeroes != -1); /* check that no unnecessary zero padding exists */
            zeroes++;
        }
        if (v >= 0) {
            secp256k1_scalar_set_int(&t, v);
        } else {
            secp256k1_scalar_set_int(&t, -v);
            secp256k1_scalar_negate(&t, &t);
        }
        secp256k1_scalar_add(&x, &x, &t);
    }
    CHECK(secp256k1_scalar_eq(&x, number)); /* check that wnaf represents number */
}

void run_wnaf(void) {
    secp256k1_scalar_t n;
    for (int i=0; i<count; i++) {
        random_scalar_order(&n);
        if (i % 1)
            secp256k1_scalar_negate(&n, &n);
        test_wnaf(&n, 4+(i%10));
    }
}

void random_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_scalar_t *key, const secp256k1_scalar_t *msg, int *recid) {
    secp256k1_scalar_t nonce;
    do {
        random_scalar_order_test(&nonce);
    } while(!secp256k1_ecdsa_sig_sign(sig, key, msg, &nonce, recid));
}

void test_ecdsa_sign_verify(void) {
    int recid;
    int getrec;
    secp256k1_scalar_t msg, key;
    random_scalar_order_test(&msg);
    random_scalar_order_test(&key);
    secp256k1_gej_t pubj; secp256k1_ecmult_gen(&pubj, &key);
    secp256k1_ge_t pub; secp256k1_ge_set_gej(&pub, &pubj);
    secp256k1_ecdsa_sig_t sig;
    getrec = secp256k1_rand32()&1;
    random_sign(&sig, &key, &msg, getrec?&recid:NULL);
    if (getrec) CHECK(recid >= 0 && recid < 4);
    CHECK(secp256k1_ecdsa_sig_verify(&sig, &pub, &msg));
    secp256k1_scalar_t one;
    secp256k1_scalar_set_int(&one, 1);
    secp256k1_scalar_add(&msg, &msg, &one);
    CHECK(!secp256k1_ecdsa_sig_verify(&sig, &pub, &msg));
}

void run_ecdsa_sign_verify(void) {
    for (int i=0; i<10*count; i++) {
        test_ecdsa_sign_verify();
    }
}

void test_ecdsa_end_to_end(void) {
    unsigned char privkey[32];
    unsigned char message[32];

    /* Generate a random key and message. */
    {
        secp256k1_scalar_t msg, key;
        random_scalar_order_test(&msg);
        random_scalar_order_test(&key);
        secp256k1_scalar_get_b32(privkey, &key);
        secp256k1_scalar_get_b32(message, &msg);
    }

    /* Construct and verify corresponding public key. */
    CHECK(secp256k1_ec_seckey_verify(privkey) == 1);
    unsigned char pubkey[65]; int pubkeylen = 65;
    CHECK(secp256k1_ec_pubkey_create(pubkey, &pubkeylen, privkey, secp256k1_rand32() % 2) == 1);
    CHECK(secp256k1_ec_pubkey_verify(pubkey, pubkeylen));

    /* Verify private key import and export. */
    unsigned char seckey[300]; int seckeylen = 300;
    CHECK(secp256k1_ec_privkey_export(privkey, seckey, &seckeylen, secp256k1_rand32() % 2) == 1);
    unsigned char privkey2[32];
    CHECK(secp256k1_ec_privkey_import(privkey2, seckey, seckeylen) == 1);
    CHECK(memcmp(privkey, privkey2, 32) == 0);

    /* Optionally tweak the keys using addition. */
    if (secp256k1_rand32() % 3 == 0) {
        unsigned char rnd[32];
        secp256k1_rand256_test(rnd);
        int ret1 = secp256k1_ec_privkey_tweak_add(privkey, rnd);
        int ret2 = secp256k1_ec_pubkey_tweak_add(pubkey, pubkeylen, rnd);
        CHECK(ret1 == ret2);
        if (ret1 == 0) return;
        unsigned char pubkey2[65]; int pubkeylen2 = 65;
        CHECK(secp256k1_ec_pubkey_create(pubkey2, &pubkeylen2, privkey, pubkeylen == 33) == 1);
        CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0);
    }

    /* Optionally tweak the keys using multiplication. */
    if (secp256k1_rand32() % 3 == 0) {
        unsigned char rnd[32];
        secp256k1_rand256_test(rnd);
        int ret1 = secp256k1_ec_privkey_tweak_mul(privkey, rnd);
        int ret2 = secp256k1_ec_pubkey_tweak_mul(pubkey, pubkeylen, rnd);
        CHECK(ret1 == ret2);
        if (ret1 == 0) return;
        unsigned char pubkey2[65]; int pubkeylen2 = 65;
        CHECK(secp256k1_ec_pubkey_create(pubkey2, &pubkeylen2, privkey, pubkeylen == 33) == 1);
        CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0);
    }

    /* Sign. */
    unsigned char signature[72]; int signaturelen = 72;
    while(1) {
        unsigned char rnd[32];
        secp256k1_rand256_test(rnd);
        if (secp256k1_ecdsa_sign(message, 32, signature, &signaturelen, privkey, rnd) == 1) {
            break;
        }
    }
    /* Verify. */
    CHECK(secp256k1_ecdsa_verify(message, 32, signature, signaturelen, pubkey, pubkeylen) == 1);
    /* Destroy signature and verify again. */
    signature[signaturelen - 1 - secp256k1_rand32() % 20] += 1 + (secp256k1_rand32() % 255);
    CHECK(secp256k1_ecdsa_verify(message, 32, signature, signaturelen, pubkey, pubkeylen) != 1);

    /* Compact sign. */
    unsigned char csignature[64]; int recid = 0;
    while(1) {
        unsigned char rnd[32];
        secp256k1_rand256_test(rnd);
        if (secp256k1_ecdsa_sign_compact(message, 32, csignature, privkey, rnd, &recid) == 1) {
            break;
        }
    }
    /* Recover. */
    unsigned char recpubkey[65]; int recpubkeylen = 0;
    CHECK(secp256k1_ecdsa_recover_compact(message, 32, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) == 1);
    CHECK(recpubkeylen == pubkeylen);
    CHECK(memcmp(pubkey, recpubkey, pubkeylen) == 0);
    /* Destroy signature and verify again. */
    csignature[secp256k1_rand32() % 64] += 1 + (secp256k1_rand32() % 255);
    CHECK(secp256k1_ecdsa_recover_compact(message, 32, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) != 1 ||
          memcmp(pubkey, recpubkey, pubkeylen) != 0);
    CHECK(recpubkeylen == pubkeylen);

}

void run_ecdsa_end_to_end(void) {
    for (int i=0; i<64*count; i++) {
        test_ecdsa_end_to_end();
    }
}

/* Tests several edge cases. */
void test_ecdsa_edge_cases(void) {
    const unsigned char msg32[32] = {
        'T', 'h', 'i', 's', ' ', 'i', 's', ' ',
        'a', ' ', 'v', 'e', 'r', 'y', ' ', 's',
        'e', 'c', 'r', 'e', 't', ' ', 'm', 'e',
        's', 's', 'a', 'g', 'e', '.', '.', '.'
    };
    const unsigned char sig64[64] = {
        /* Generated by signing the above message with nonce 'This is the nonce we will use...'
         * and secret key 0 (which is not valid), resulting in recid 0. */
        0x67, 0xCB, 0x28, 0x5F, 0x9C, 0xD1, 0x94, 0xE8,
        0x40, 0xD6, 0x29, 0x39, 0x7A, 0xF5, 0x56, 0x96,
        0x62, 0xFD, 0xE4, 0x46, 0x49, 0x99, 0x59, 0x63,
        0x17, 0x9A, 0x7D, 0xD1, 0x7B, 0xD2, 0x35, 0x32,
        0x4B, 0x1B, 0x7D, 0xF3, 0x4C, 0xE1, 0xF6, 0x8E,
        0x69, 0x4F, 0xF6, 0xF1, 0x1A, 0xC7, 0x51, 0xDD,
        0x7D, 0xD7, 0x3E, 0x38, 0x7E, 0xE4, 0xFC, 0x86,
        0x6E, 0x1B, 0xE8, 0xEC, 0xC7, 0xDD, 0x95, 0x57
    };
    unsigned char pubkey[65];
    int pubkeylen = 65;
    CHECK(!secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 0));
    CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 1));
    CHECK(!secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 2));
    CHECK(!secp256k1_ecdsa_recover_compact(msg32, 32, sig64, pubkey, &pubkeylen, 0, 3));

    /* signature (r,s) = (4,4), which can be recovered with all 4 recids. */
    const unsigned char sigb64[64] = {
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
    };
    unsigned char pubkeyb[33];
    int pubkeyblen = 33;
    for (int recid = 0; recid < 4; recid++) {
        /* (4,4) encoded in DER. */
        unsigned char sigbder[8] = {0x30, 0x06, 0x02, 0x01, 0x04, 0x02, 0x01, 0x04};
        /* (order + r,4) encoded in DER. */
        unsigned char sigbderlong[40] = {
            0x30, 0x26, 0x02, 0x21, 0x00, 0xFF, 0xFF, 0xFF,
            0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
            0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC,
            0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E,
            0x8C, 0xD0, 0x36, 0x41, 0x45, 0x02, 0x01, 0x04
        };
        CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sigb64, pubkeyb, &pubkeyblen, 1, recid));
        CHECK(secp256k1_ecdsa_verify(msg32, 32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == 1);
        for (int recid2 = 0; recid2 < 4; recid2++) {
            unsigned char pubkey2b[33];
            int pubkey2blen = 33;
            CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sigb64, pubkey2b, &pubkey2blen, 1, recid2));
            /* Verifying with (order + r,4) should always fail. */
            CHECK(secp256k1_ecdsa_verify(msg32, 32, sigbderlong, sizeof(sigbderlong), pubkey2b, pubkey2blen) != 1);
        }
        /* Damage signature. */
        sigbder[7]++;
        CHECK(secp256k1_ecdsa_verify(msg32, 32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == 0);
    }

    /* Test the case where ECDSA recomputes a point that is infinity. */
    {
        secp256k1_ecdsa_sig_t sig;
        secp256k1_scalar_set_int(&sig.s, 1);
        secp256k1_scalar_negate(&sig.s, &sig.s);
        secp256k1_scalar_inverse(&sig.s, &sig.s);
        secp256k1_scalar_set_int(&sig.r, 1);
        secp256k1_gej_t keyj;
        secp256k1_ecmult_gen(&keyj, &sig.r);
        secp256k1_ge_t key;
        secp256k1_ge_set_gej(&key, &keyj);
        secp256k1_scalar_t msg = sig.s;
        CHECK(secp256k1_ecdsa_sig_verify(&sig, &key, &msg) == 0);
    }

    /* Test r/s equal to zero */
    {
        /* (1,1) encoded in DER. */
        unsigned char sigcder[8] = {0x30, 0x06, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01};
        unsigned char sigc64[64] = {
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
        };
        unsigned char pubkeyc[65];
        int pubkeyclen = 65;
        CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sigc64, pubkeyc, &pubkeyclen, 0, 0) == 1);
        CHECK(secp256k1_ecdsa_verify(msg32, 32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 1);
        sigcder[4] = 0;
        sigc64[31] = 0;
        CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sigc64, pubkeyb, &pubkeyblen, 1, 0) == 0);
        CHECK(secp256k1_ecdsa_verify(msg32, 32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 0);
        sigcder[4] = 1;
        sigcder[7] = 0;
        sigc64[31] = 1;
        sigc64[63] = 0;
        CHECK(secp256k1_ecdsa_recover_compact(msg32, 32, sigc64, pubkeyb, &pubkeyblen, 1, 0) == 0);
        CHECK(secp256k1_ecdsa_verify(msg32, 32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 0);
    }
}

void run_ecdsa_edge_cases(void) {
    test_ecdsa_edge_cases();
}

#ifdef ENABLE_OPENSSL_TESTS
EC_KEY *get_openssl_key(const secp256k1_scalar_t *key) {
    unsigned char privkey[300];
    int privkeylen;
    int compr = secp256k1_rand32() & 1;
    const unsigned char* pbegin = privkey;
    EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_secp256k1);
    CHECK(secp256k1_eckey_privkey_serialize(privkey, &privkeylen, key, compr));
    CHECK(d2i_ECPrivateKey(&ec_key, &pbegin, privkeylen));
    CHECK(EC_KEY_check_key(ec_key));
    return ec_key;
}

void test_ecdsa_openssl(void) {
    secp256k1_scalar_t key, msg;
    unsigned char message[32];
    secp256k1_rand256_test(message);
    secp256k1_scalar_set_b32(&msg, message, NULL);
    random_scalar_order_test(&key);
    secp256k1_gej_t qj;
    secp256k1_ecmult_gen(&qj, &key);
    secp256k1_ge_t q;
    secp256k1_ge_set_gej(&q, &qj);
    EC_KEY *ec_key = get_openssl_key(&key);
    CHECK(ec_key);
    unsigned char signature[80];
    unsigned int sigsize = 80;
    CHECK(ECDSA_sign(0, message, sizeof(message), signature, &sigsize, ec_key));
    secp256k1_ecdsa_sig_t sig;
    CHECK(secp256k1_ecdsa_sig_parse(&sig, signature, sigsize));
    CHECK(secp256k1_ecdsa_sig_verify(&sig, &q, &msg));
    secp256k1_scalar_t one;
    secp256k1_scalar_set_int(&one, 1);
    secp256k1_scalar_t msg2;
    secp256k1_scalar_add(&msg2, &msg, &one);
    CHECK(!secp256k1_ecdsa_sig_verify(&sig, &q, &msg2));

    random_sign(&sig, &key, &msg, NULL);
    int secp_sigsize = 80;
    CHECK(secp256k1_ecdsa_sig_serialize(signature, &secp_sigsize, &sig));
    CHECK(ECDSA_verify(0, message, sizeof(message), signature, secp_sigsize, ec_key) == 1);

    EC_KEY_free(ec_key);
}

void run_ecdsa_openssl(void) {
    for (int i=0; i<10*count; i++) {
        test_ecdsa_openssl();
    }
}
#endif

int main(int argc, char **argv) {
    /* find iteration count */
    if (argc > 1) {
        count = strtol(argv[1], NULL, 0);
    }

    /* find random seed */
    uint64_t seed;
    if (argc > 2) {
        seed = strtoull(argv[2], NULL, 0);
    } else {
        FILE *frand = fopen("/dev/urandom", "r");
        if (!frand || !fread(&seed, sizeof(seed), 1, frand)) {
            seed = time(NULL) * 1337;
        }
        fclose(frand);
    }
    secp256k1_rand_seed(seed);

    printf("test count = %i\n", count);
    printf("random seed = %llu\n", (unsigned long long)seed);

    /* initialize */
    secp256k1_start(SECP256K1_START_SIGN | SECP256K1_START_VERIFY);

    /* initializing a second time shouldn't cause any harm or memory leaks. */
    secp256k1_start(SECP256K1_START_SIGN | SECP256K1_START_VERIFY);

    /* Likewise, re-running the internal init functions should be harmless. */
    secp256k1_fe_start();
    secp256k1_ge_start();
    secp256k1_scalar_start();
    secp256k1_ecdsa_start();

#ifndef USE_NUM_NONE
    /* num tests */
    run_num_smalltests();
#endif

    /* scalar tests */
    run_scalar_tests();

    /* field tests */
    run_field_inv();
    run_field_inv_var();
    run_field_inv_all();
    run_field_inv_all_var();
    run_sqr();
    run_sqrt();

    /* group tests */
    run_ge();

    /* ecmult tests */
    run_wnaf();
    run_point_times_order();
    run_ecmult_chain();

    /* ecdsa tests */
    run_ecdsa_sign_verify();
    run_ecdsa_end_to_end();
    run_ecdsa_edge_cases();
#ifdef ENABLE_OPENSSL_TESTS
    run_ecdsa_openssl();
#endif

    printf("random run = %llu\n", (unsigned long long)secp256k1_rand32() + ((unsigned long long)secp256k1_rand32() << 32));

    /* shutdown */
    secp256k1_stop();

    /* shutting down twice shouldn't cause any double frees. */
    secp256k1_stop();

    /* Same for the internal shutdown functions. */
    secp256k1_fe_stop();
    secp256k1_ge_stop();
    secp256k1_scalar_stop();
    secp256k1_ecdsa_stop();
    return 0;
}