1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
|
// Copyright (c) 2014-2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <test/util/setup_common.h>
#include <util/serfloat.h>
#include <boost/test/unit_test.hpp>
#include <cmath>
#include <limits>
BOOST_FIXTURE_TEST_SUITE(serfloat_tests, BasicTestingSetup)
namespace {
uint64_t TestDouble(double f) {
uint64_t i = EncodeDouble(f);
double f2 = DecodeDouble(i);
if (std::isnan(f)) {
// NaN is not guaranteed to round-trip exactly.
BOOST_CHECK(std::isnan(f2));
} else {
// Everything else is.
BOOST_CHECK(!std::isnan(f2));
uint64_t i2 = EncodeDouble(f2);
BOOST_CHECK_EQUAL(f, f2);
BOOST_CHECK_EQUAL(i, i2);
}
return i;
}
} // namespace
BOOST_AUTO_TEST_CASE(double_serfloat_tests) {
BOOST_CHECK_EQUAL(TestDouble(0.0), 0);
BOOST_CHECK_EQUAL(TestDouble(-0.0), 0x8000000000000000);
BOOST_CHECK_EQUAL(TestDouble(std::numeric_limits<double>::infinity()), 0x7ff0000000000000);
BOOST_CHECK_EQUAL(TestDouble(-std::numeric_limits<double>::infinity()), 0xfff0000000000000);
if (std::numeric_limits<float>::is_iec559) {
BOOST_CHECK_EQUAL(sizeof(double), 8);
BOOST_CHECK_EQUAL(sizeof(uint64_t), 8);
// Test extreme values
TestDouble(std::numeric_limits<double>::min());
TestDouble(-std::numeric_limits<double>::min());
TestDouble(std::numeric_limits<double>::max());
TestDouble(-std::numeric_limits<double>::max());
TestDouble(std::numeric_limits<double>::lowest());
TestDouble(-std::numeric_limits<double>::lowest());
TestDouble(std::numeric_limits<double>::quiet_NaN());
TestDouble(-std::numeric_limits<double>::quiet_NaN());
TestDouble(std::numeric_limits<double>::signaling_NaN());
TestDouble(-std::numeric_limits<double>::signaling_NaN());
TestDouble(std::numeric_limits<double>::denorm_min());
TestDouble(-std::numeric_limits<double>::denorm_min());
// Test exact encoding: on currently supported platforms, EncodeDouble
// should produce exactly the same as the in-memory representation for non-NaN.
for (int j = 0; j < 1000; ++j) {
// Iterate over 9 specific bits exhaustively; the others are chosen randomly.
// These specific bits are the sign bit, and the 2 top and bottom bits of
// exponent and mantissa in the IEEE754 binary64 format.
for (int x = 0; x < 512; ++x) {
uint64_t v = InsecureRandBits(64);
v &= ~(uint64_t{1} << 0);
if (x & 1) v |= (uint64_t{1} << 0);
v &= ~(uint64_t{1} << 1);
if (x & 2) v |= (uint64_t{1} << 1);
v &= ~(uint64_t{1} << 50);
if (x & 4) v |= (uint64_t{1} << 50);
v &= ~(uint64_t{1} << 51);
if (x & 8) v |= (uint64_t{1} << 51);
v &= ~(uint64_t{1} << 52);
if (x & 16) v |= (uint64_t{1} << 52);
v &= ~(uint64_t{1} << 53);
if (x & 32) v |= (uint64_t{1} << 53);
v &= ~(uint64_t{1} << 61);
if (x & 64) v |= (uint64_t{1} << 61);
v &= ~(uint64_t{1} << 62);
if (x & 128) v |= (uint64_t{1} << 62);
v &= ~(uint64_t{1} << 63);
if (x & 256) v |= (uint64_t{1} << 63);
double f;
memcpy(&f, &v, 8);
uint64_t v2 = TestDouble(f);
if (!std::isnan(f)) BOOST_CHECK_EQUAL(v, v2);
}
}
}
}
BOOST_AUTO_TEST_SUITE_END()
|