1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
|
// Copyright (c) 2014-2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <hash.h>
#include <test/util/random.h>
#include <test/util/setup_common.h>
#include <util/serfloat.h>
#include <serialize.h>
#include <streams.h>
#include <boost/test/unit_test.hpp>
#include <cmath>
#include <limits>
BOOST_FIXTURE_TEST_SUITE(serfloat_tests, BasicTestingSetup)
namespace {
uint64_t TestDouble(double f) {
uint64_t i = EncodeDouble(f);
double f2 = DecodeDouble(i);
if (std::isnan(f)) {
// NaN is not guaranteed to round-trip exactly.
BOOST_CHECK(std::isnan(f2));
} else {
// Everything else is.
BOOST_CHECK(!std::isnan(f2));
uint64_t i2 = EncodeDouble(f2);
BOOST_CHECK_EQUAL(f, f2);
BOOST_CHECK_EQUAL(i, i2);
}
return i;
}
} // namespace
BOOST_AUTO_TEST_CASE(double_serfloat_tests) {
// Test specific values against their expected encoding.
BOOST_CHECK_EQUAL(TestDouble(0.0), 0U);
BOOST_CHECK_EQUAL(TestDouble(-0.0), 0x8000000000000000);
BOOST_CHECK_EQUAL(TestDouble(std::numeric_limits<double>::infinity()), 0x7ff0000000000000U);
BOOST_CHECK_EQUAL(TestDouble(-std::numeric_limits<double>::infinity()), 0xfff0000000000000);
BOOST_CHECK_EQUAL(TestDouble(0.5), 0x3fe0000000000000ULL);
BOOST_CHECK_EQUAL(TestDouble(1.0), 0x3ff0000000000000ULL);
BOOST_CHECK_EQUAL(TestDouble(2.0), 0x4000000000000000ULL);
BOOST_CHECK_EQUAL(TestDouble(4.0), 0x4010000000000000ULL);
BOOST_CHECK_EQUAL(TestDouble(785.066650390625), 0x4088888880000000ULL);
BOOST_CHECK_EQUAL(TestDouble(3.7243058682384174), 0x400dcb60e0031440);
BOOST_CHECK_EQUAL(TestDouble(91.64070592566159), 0x4056e901536d447a);
BOOST_CHECK_EQUAL(TestDouble(-98.63087668642575), 0xc058a860489c007a);
BOOST_CHECK_EQUAL(TestDouble(4.908737756962054), 0x4013a28c268b2b70);
BOOST_CHECK_EQUAL(TestDouble(77.9247330021754), 0x40537b2ed3547804);
BOOST_CHECK_EQUAL(TestDouble(40.24732825357566), 0x40441fa873c43dfc);
BOOST_CHECK_EQUAL(TestDouble(71.39395607929222), 0x4051d936938f27b6);
BOOST_CHECK_EQUAL(TestDouble(58.80100710817612), 0x404d668766a2bd70);
BOOST_CHECK_EQUAL(TestDouble(-30.10665786964975), 0xc03e1b4dee1e01b8);
BOOST_CHECK_EQUAL(TestDouble(60.15231509068704), 0x404e137f0f969814);
BOOST_CHECK_EQUAL(TestDouble(-48.15848711335961), 0xc04814494e445bc6);
BOOST_CHECK_EQUAL(TestDouble(26.68450101125353), 0x403aaf3b755169b0);
BOOST_CHECK_EQUAL(TestDouble(-65.72071986604303), 0xc0506e2046378ede);
BOOST_CHECK_EQUAL(TestDouble(17.95575825512381), 0x4031f4ac92b0a388);
BOOST_CHECK_EQUAL(TestDouble(-35.27171863226279), 0xc041a2c7ad17a42a);
BOOST_CHECK_EQUAL(TestDouble(-8.58810329425124), 0xc0212d1bdffef538);
BOOST_CHECK_EQUAL(TestDouble(88.51393044338977), 0x405620e43c83b1c8);
BOOST_CHECK_EQUAL(TestDouble(48.07224932612732), 0x4048093f77466ffc);
BOOST_CHECK_EQUAL(TestDouble(9.867348871395659e+117), 0x586f4daeb2459b9f);
BOOST_CHECK_EQUAL(TestDouble(-1.5166424385129721e+206), 0xeabe3bbc484bd458);
BOOST_CHECK_EQUAL(TestDouble(-8.585156555624594e-275), 0x8707c76eee012429);
BOOST_CHECK_EQUAL(TestDouble(2.2794371091628822e+113), 0x5777b2184458f4ee);
BOOST_CHECK_EQUAL(TestDouble(-1.1290476594131867e+163), 0xe1c91893d3488bb0);
BOOST_CHECK_EQUAL(TestDouble(9.143848423979275e-246), 0x0d0ff76e5f2620a3);
BOOST_CHECK_EQUAL(TestDouble(-2.8366718125941117e+81), 0xd0d7ec7e754b394a);
BOOST_CHECK_EQUAL(TestDouble(-1.2754409481684012e+229), 0xef80d32f8ec55342);
BOOST_CHECK_EQUAL(TestDouble(6.000577060053642e-186), 0x197a1be7c8209b6a);
BOOST_CHECK_EQUAL(TestDouble(2.0839423284378986e-302), 0x014c94f8689cb0a5);
BOOST_CHECK_EQUAL(TestDouble(-1.422140051483753e+259), 0xf5bd99271d04bb35);
BOOST_CHECK_EQUAL(TestDouble(-1.0593973991188853e+46), 0xc97db0cdb72d1046);
BOOST_CHECK_EQUAL(TestDouble(2.62945125875249e+190), 0x67779b36366c993b);
BOOST_CHECK_EQUAL(TestDouble(-2.920377657275094e+115), 0xd7e7b7b45908e23b);
BOOST_CHECK_EQUAL(TestDouble(9.790289014855851e-118), 0x27a3c031cc428bcc);
BOOST_CHECK_EQUAL(TestDouble(-4.629317182034961e-114), 0xa866ccf0b753705a);
BOOST_CHECK_EQUAL(TestDouble(-1.7674605603846528e+279), 0xf9e8ed383ffc3e25);
BOOST_CHECK_EQUAL(TestDouble(2.5308171727712605e+120), 0x58ef5cd55f0ec997);
BOOST_CHECK_EQUAL(TestDouble(-1.05034156412799e+54), 0xcb25eea1b9350fa0);
// Test extreme values
BOOST_CHECK_EQUAL(TestDouble(std::numeric_limits<double>::min()), 0x10000000000000);
BOOST_CHECK_EQUAL(TestDouble(-std::numeric_limits<double>::min()), 0x8010000000000000);
BOOST_CHECK_EQUAL(TestDouble(std::numeric_limits<double>::max()), 0x7fefffffffffffff);
BOOST_CHECK_EQUAL(TestDouble(-std::numeric_limits<double>::max()), 0xffefffffffffffff);
BOOST_CHECK_EQUAL(TestDouble(std::numeric_limits<double>::lowest()), 0xffefffffffffffff);
BOOST_CHECK_EQUAL(TestDouble(-std::numeric_limits<double>::lowest()), 0x7fefffffffffffff);
BOOST_CHECK_EQUAL(TestDouble(std::numeric_limits<double>::denorm_min()), 0x1);
BOOST_CHECK_EQUAL(TestDouble(-std::numeric_limits<double>::denorm_min()), 0x8000000000000001);
// Note that all NaNs are encoded the same way.
BOOST_CHECK_EQUAL(TestDouble(std::numeric_limits<double>::quiet_NaN()), 0x7ff8000000000000);
BOOST_CHECK_EQUAL(TestDouble(-std::numeric_limits<double>::quiet_NaN()), 0x7ff8000000000000);
BOOST_CHECK_EQUAL(TestDouble(std::numeric_limits<double>::signaling_NaN()), 0x7ff8000000000000);
BOOST_CHECK_EQUAL(TestDouble(-std::numeric_limits<double>::signaling_NaN()), 0x7ff8000000000000);
// Construct doubles to test from the encoding.
static_assert(sizeof(double) == 8);
static_assert(sizeof(uint64_t) == 8);
for (int j = 0; j < 1000; ++j) {
// Iterate over 9 specific bits exhaustively; the others are chosen randomly.
// These specific bits are the sign bit, and the 2 top and bottom bits of
// exponent and mantissa in the IEEE754 binary64 format.
for (int x = 0; x < 512; ++x) {
uint64_t v = InsecureRandBits(64);
int x_pos = 0;
for (int v_pos : {0, 1, 50, 51, 52, 53, 61, 62, 63}) {
v &= ~(uint64_t{1} << v_pos);
if ((x >> (x_pos++)) & 1) v |= (uint64_t{1} << v_pos);
}
double f;
memcpy(&f, &v, 8);
TestDouble(f);
}
}
}
/*
Python code to generate the below hashes:
def reversed_hex(x):
return bytes(reversed(x)).hex()
def dsha256(x):
return hashlib.sha256(hashlib.sha256(x).digest()).digest()
reversed_hex(dsha256(b''.join(struct.pack('<d', x) for x in range(0,1000)))) == '43d0c82591953c4eafe114590d392676a01585d25b25d433557f0d7878b23f96'
*/
BOOST_AUTO_TEST_CASE(doubles)
{
DataStream ss{};
// encode
for (int i = 0; i < 1000; i++) {
ss << EncodeDouble(i);
}
BOOST_CHECK(Hash(ss) == uint256{"43d0c82591953c4eafe114590d392676a01585d25b25d433557f0d7878b23f96"});
// decode
for (int i = 0; i < 1000; i++) {
uint64_t val;
ss >> val;
double j = DecodeDouble(val);
BOOST_CHECK_MESSAGE(i == j, "decoded:" << j << " expected:" << i);
}
}
BOOST_AUTO_TEST_SUITE_END()
|